INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

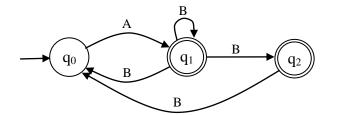
Date: 09-02-2018	Time: 60 min	Full	marks: 30		No. of students: 11
Spring Semester Class Test 1, 2017/18		Dept: Comp. Sc & Engg.			Sub No: CS60060
M.Tech (Elective)				Sub Name:	Formal Systems
		Instructions:	Answer all que	stions.	

For each of the following, indicate True/False. For those that are false, indicate a word which distinguishes the LHS from the RHS:
[4 x 2 marks]

Statement	True/False	Word
$(E_1 + E_2).F^{\omega} \equiv E_1.F^{\omega} + E_2.F^{\omega}$		
$E.(F_1 + F_2)^{\omega} \equiv E.F_1^{\omega} + E.F_2^{\omega}$		
$E.(F.F^*)^{\omega} \equiv E.F^{\omega}$		
$(E^*.F)^\omega \equiv E_*F^\omega$		

Where E, E₁, E₂, F, F₁, F₂ are arbitrary regular expressions with $\varepsilon \notin \mathcal{L}(F) \cup \mathcal{L}(F_1) \cup \mathcal{L}(F_2)$.

2. Complete the following statements:


[1+1+2 marks]

- A linear time property P is a liveness property whenever pref(P) = ______
- b. A linear time property P is a safety property iff closure(P) = _____
- c. The expansion law for the Until operator of LTL states that :

φ₁ U φ₂ ≡

3. Draw the NBA for the following GNBA, where $F=\{\{q_1\},\{q_2\}\}$.

[6 marks]

4. Draw the GNBA for the LTL property $\varphi = (a \land \neg b) \cup ((\neg a) \cup b)$. Clearly specify the elementary sets of formulas, the set of sets of final states, the initial states, and the labels on the transitions of the GNBA. **[12 marks]**