Binary Decision Diagrams (BDD)

Formal Systems (Spring 2014) Dept. of Computer Science & Engg, IIT Kharagpur

Aritra Hazra Dept. of Computer Science & Engg., Indian Institute of Technology Kharagpur

Contents

- Motivation for Decision diagrams
- Binary Decision Diagrams
- Effect of Variable Ordering on BDD size
- BDD operations
- Encoding state machines
- Reachability Analysis using OBDDs

Sample Analysis Task

- Logic Circuit Comparison
 - Do circuits compute identical function?
 - Basic task of formal hardware verification
 - Compare new design to "known good" design

Solution by Combinatorial Search

Satisfiability Formulation

 Search for input assignment giving different outputs

Branch & Bound

- Assign input(s)
- Propagate forced values
- Backtrack when cannot succeed

Challenge

- Must prove all assignments fail
- Typically explore significant fraction of inputs
- Exponential time complexity

Another Approach

- Functions equal if and only if representations identical
- Never enumerate explicit function values
- Exploit structure & regularity of circuit functions

Truth Table

x ₁	x ₂	X 3	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

- Vertex represents decision
- Follow green (dashed) line for value 0
- Follow red (solid) line for value 1
- Function value determined by leaf value.

Binary Decision Diagram

- DAG representation of Boolean functions
- Operations on Boolean functions can be implemented as graph algorithms on BDDs
- Tasks in many problem domains can be expressed entirely in terms of BDDs
- BDDs have been useful in solving problems that would not be possible by more traditional techniques.

Binary Decision Diagram (BDD)

- Each non-terminal vertex v is labeled by a variable var(v) and has arcs directed toward two children
 - Io(v) (dotted line) corresponding to the case where the variable is assigned 0
 - hi(v) (solid line) where the variable is assigned 1
- **Each terminal vertex is labeled as 0 or 1**

For a given assignment to the variables, the value of the function is determined by tracing the path form root to a terminal vertex, following the branches appropriately □ Shannon's Expansion: $f = xf_x + x'f_{x'}$

BDD represents recursive application of Shannon's expansion

Ordered Binary Decision Diagram (OBDD)

- Assign arbitrary total ordering to variables
 - e.g. $x_1 < x_2 < x_3$
- Variables must appear in ascending order along all paths

Properties

- No conflicting variable assignments along path
- Simplifies manipulation

Dept. of Computer Science & Engineering, IIT Kharagpur

Dept. of Computer Science & Engineering, IIT Kharagpur

- Canonical representation of Boolean function
- For the same variable ordering, two functions equivalent if and only if graphs isomorphic
 - Can be tested in linear time

Some Example Functions

Circuit Functions

Functions

- All outputs of 4-bit adder
- Functions of data inputs

Shared Representation

- Graph with multiple roots
- 31 nodes for 4-bit adder
- 571 nodes for 64-bit adder
- Linear Growth

Effect of Variable Ordering on ROBDD Size

Analysis of Ordering Example

Dept. of Computer Science & Engineering, IIT Kharagpur

Intractable Problem

- Even when problem represented as OBDD
- A good variable ordering should use
 - Local computability
 - Ordering based on power to control output
- Application-Based Heuristics
 - Exploit characteristics of application
 - Ordering for functions of combinational circuit
 - Traverse circuit graph depth-first from outputs to inputs
 - Assign variables to primary inputs in order encountered

Dynamic Variable Ordering

- Rudell, ICCAD '93
- Concept
 - Variable ordering changes as computation progresses
 - Typical application involves long series of BDD operations
 - Proceeds in background, invisible to user
- Implementation
 - When approach memory limit, attempt to reduce
 - Garbage collect unneeded nodes
 - Attempt to find better order for variables
 - Simple, greedy reordering heuristics

Dynamic Reordering By Sifting

- Choose candidate variable
- Try all positions in ordering
 - Repeatedly swap with adjacent variable
- Move to best position found

Best

Choices

Function Class	Best	Worst	Ordering Sensitivity
ALU (Add/Sub)	linear	exponential	High
Symmetric	linear	quadratic	None
Multiplication	exponential	exponential	Low

General Experience

- Many tasks have reasonable OBDD representations
- Algorithms remain practical for up to 100,000 node OBDDs
- Heuristic ordering methods generally satisfactory

BDD Operations

Strategy

- Represent data as set of OBDDs
 - Identical variable orderings
- Express solution method as sequence of symbolic operations
- Implement each operation by OBDD manipulation
- Algorithmic Properties
 - Arguments are OBDDs with identical variable orderings.
 - Result is OBDD with same ordering.
 - "Closure Property"

Given argument functions f and g, and a binary operator <op>, APPLY returns the function f <op> g

Works by traversing the argument graphs depth first

- Algebraic operations "commute" with the Shannon expansion for any variable x
 - $f < op > g = x' (f|_{x=0} < op > g|_{x=0}) + x ((f|_{x=1} < op > g|_{x=1}))$

The Apply Algorithm

Consider a function f represented by a BDD with root vertex r_f

The restriction of f with respect to a variable x such that

 $x \le var(r_f)$ can be computed as :

$$\mathbf{f} \mid_{\mathbf{x} = \mathbf{b}} = \mathbf{r}_{f}, \qquad \mathbf{x} < \operatorname{var}(\mathbf{r}_{f})$$

= $lo(r_f)$, x = var (r_f) and b = 0

= hi(
$$r_f$$
), $x = var(r_f)$ and $b = 1$

The algorithm for APPLY utilizes the above restriction definition.

Each evaluation step is identified by a vertex from each of the argument graphs

Suppose functions f and g are represented by root vertices r_f and r_g

□ If r_f and r_g are both terminal vertices, terminate and return an appropriately labeled terminal vertex e.g. (A₄, B₃) and (A₅, B₄)

The Apply algorithm

Let x be the splitting variable

 $(x = min(var(r_f), var(r_g)))$

BDDs for (f|_{x=0} <op> g|_{x=0}) and (f|_{x=1} <op> g|_{x=1}) are computed by recursively evaluating the restrictions of f and g for value 0 and for value 1

Initial evaluation with vertices A₁, B₁ causes recursive evaluations with vertices A₂, B₂ and A₆, B₅

Apply operation

- Reaching a terminal with a dominant value (e.g 1 for OR, 0 for AND) terminates recursion and returns an appropriately labeled terminal (A₅, B₂ and A₃, B₄)
- Avoid multiple recursive calls on the same pair of arguments by a hash table (A₃, B₂ and A₅, B₂)

Each evaluation step returns a vertex in the generated graph

Apply reduction before merging the result

Complexity of operation : O(m_f * m_g) where m_f and m_g represent the number of vertices in the BDDs for f and g respectively Example

Dept. of Computer Science & Engineering, IIT Kharagpur

Restrict Operation

Concept

- **Effect** of setting function argument x_i to constant k (0 or 1).
- Also called Cofactor operation

$$F_{X} \text{ equivalent to } F[x=1] \qquad k \xrightarrow[X_{i-1}]{} F \longrightarrow F[x_{i}=k]$$

$$F_{\overline{X}} \text{ equivalent to } F[x=0] \qquad k \xrightarrow[X_{i+1}]{} F \longrightarrow F[x_{i}=k]$$

Implementation

- Depth-first traversal
- Redirect any arc into vertex v having var(v) = x to point to hi(v) for x =1 and lo(v) for x = 0
- Complexity linear in argument graph size

- Express as combination of Apply and Restrict
- Preserve closure property
 - Result is an OBDD with the right variable ordering
- Polynomial complexity
 - Although can sometimes improve with special implementations

Variable Quantification

- Eliminate dependency on some argument through quantification
- Combine with AND for universal quantification.

Digital Applications of BDDs

Verification

- Combinational equivalence (UCB, Fujitsu, Synopsys, ...)
- FSM equivalence (Bull, UCB, MCC, Colorado, Torino, ...)
- Symbolic Simulation (CMU, Utah)
- Symbolic Model Checking (CMU, Bull, Motorola, ...)

Synthesis

- Don't care set representation (UCB, Fujitsu, ...)
- State minimization (UCB)
- Sum-of-Products minimization (UCB, Synopsys, NTT)

Test

False path identification (TI)

Some Popular BDD packages

CUDD (Colorado University Decision Diagram)

TUD BDD package (TUDD)

Informations about the above BDD packages and some more details can be found at http://www.bdd-portal.org/

Dept. of Computer Science & Engineering, IIT Kharagpur

Finite State System Analysis

- Systems Represented as Finite State Machines
 - Analysis Tasks
 - State reachability
 - State machine comparison
 - Temporal logic model checking
- Traditional Methods Impractical for Large Machines
 - Polynomial in number of states
 - Number of states exponential in number of state variables.
 - Example: single 32-bit register has 4,294,967,296 states!

Symbolic FSM Representation

- **Represent set of transitions as function** $\delta(Old, New)$
 - Yields 1 if can have transition from state Old to state New
- Represent as Boolean function
 - Use variables for encoding states

Reachability Analysis

- Compute set of states reachable from initial state (Q₀ = 00)
- Represent as Boolean function R(S)

Breadth-First Reachability Analysis

- R_i set of states that can be reached in *i* transitions
- **Reach fixed point when** $R_n = R_{n+1}$
 - Guaranteed since finite state

Iterative Computation

- **\blacksquare** R_{i+1} set of states that can be reached within *i* +1 transitions
 - Either in R_i
 - or single transition away from some element of R_i

Example: Computing R_1 from R_0

Dept. of Computer Science & Engineering, IIT Kharagpur

What's good about OBDDs ?

Powerful Operations

- Creating, manipulating, testing
- Each step polynomial complexity
 - Graceful degradation
- Maintain "closure" property
 - Each operation produces form suitable for further operations
- Generally Stay Small Enough
 - Especially for digital circuit applications
 - Given good choice of variable ordering
- Weak Competition

What's not good about OBDDs?

Doesn't Solve All Problems

- Can't do much with multipliers
- Some problems just too big
- Weak for search problems

Must be Careful

- Choose good variable ordering
- Some operations too hard

ZBDD's were invented by Minato to efficiently represent sparse sets. They have turned out to be extremely useful in implicit methods for representing primes (which usually are a sparse subset of all cubes).

Different reduction rules.

Zero Suppressed BDD's - ZBDD's

ZBDD Reduction Rule:: eliminate all nodes where the then node points to 0. Connect incoming edges to else node

For ZBDD, equivalent nodes can be shared as in case of BDDs.

MTBDD- Multiterminal BDD

- Evaluating a MTBDD for a given variable assignment is similar to that in case of BDD
- Very inefficient for representing functions yielding values over a large range

EVBDDs can be used when the number of possible function values are too high for MTBDDs.

Evaluating a EVBDD involves tracing a path determined by the variable assignment, summing the weights and the terminal node value

*BMD(Binary Moment Diagrams)

Features

- Used for Word level simulation/verification
- Canonical
- Based on linear decomposition of a function

Functional Decomposition :

$$f = (1-x) f_{-x} + (x) f_{x}$$

$$= f_{-x} + x (f_x - f_{-x})$$

$$= f_{-x} + x (f_{-x})$$

where f_{x} is the linear moment w.r.t. x

Representing *BMDs

Graph :

- Example
- f = (1-x1)(1-x2)(8) + (1-x1)(x2)(-12) + (x1)(1-x2)(10) + (x1)(x2)(-6)= 8 20(x2) + 2(x1) + 4(x1*x2)

Dept. of Computer Science & Engineering, IIT Kharagpur

Edge Weights (*BMDs)

Weights combine multiplicatively along path from root to leaf Rules :

- weights of 2 branches relatively prime
- weight 0 allowed only for terminal vertices
- if one edge has weight 0, the other has weight 1

Dept. of Computer Science & Engineering, IIT Kharagpur

References

Graph Based Algorithms for Boolean Function Manipulation,

Randal E. Bryant, IEEE Transactions on Computers, Volume: C-35, Issue: 8, pp. 677-691, August 1986.

Symbolic Boolean Manipulation with Ordered Binary Decision Diagrams,

Randal E. Bryant, ACM Computing Surveys, Volume: 24 Issue: 3, pp. 293-318, September 1992.

An Introduction to Binary Decision Diagrams,

Henrik Reif Andersen, Technical Report, Course Notes on the WWW, October 1997.