
Binary Decision Diagrams (BDD)

Aritra Hazra
Dept. of Computer Science & Engg.,
Indian Institute of Technology Kharagpur

Formal Systems (Spring 2014)
Dept. of Computer Science & Engg, IIT Kharagpur

Dept. of Computer Science & Engineering, IIT Kharagpur 2

Contents

 Motivation for Decision diagrams
 Binary Decision Diagrams
 ROBDD
 Effect of Variable Ordering on BDD size
 BDD operations
 Encoding state machines
 Reachability Analysis using OBDDs

Dept. of Computer Science & Engineering, IIT Kharagpur 3

Sample Analysis Task

 Logic Circuit Comparison
■ Do circuits compute identical function?

● Basic task of formal hardware verification
● Compare new design to “known good” design

A

C
B

O1

T1

T2

A
B
C

O2

T3

Dept. of Computer Science & Engineering, IIT Kharagpur 4

A

C

B
O1

T1

T2

A
B
C

O2
T3

Diff

cc0

A

C

B
O1

T1

T2

A
B
C

O2
T3

Diff0
0

0

0

0 00

c 1

A

C

B
O1

T1

T2

A
B
C

O2
T3

Diff1

1
A

C

B
O1

T1

T2

A
B
C

O2
T3

Diff1

1

1

1

1
1

1
1

0

a

c 1

1

Solution by Combinatorial Search

 Satisfiability Formulation
■ Search for input assignment giving

different outputs

 Branch & Bound
■ Assign input(s)
■ Propagate forced values
■ Backtrack when cannot succeed

A

C

B
O1

T1

T2

A
B
C

O2
T3

Diff1

1

0

0 0

a

c
1

0 a

b

c
1

0

0

A

C

B
O1

T1

T2

A
B
C

O2
T3

Diff1

1

0

0
0

0

0
0

0

0
0

0A

C

B
O1

T1

T2

A
B
C

O2
T3

Diff1

1

0

0
0

1

1
1

1

1
1

0

a

b

c
1

0

1

 Challenge

■ Must prove all assignments fail

■ Typically explore significant
fraction of inputs

■ Exponential time complexity

Dept. of Computer Science & Engineering, IIT Kharagpur 5

Another Approach

 Generate Complete Representation of Circuit Function
■ Compact, canonical form

■ Functions equal if and only if representations identical
■ Never enumerate explicit function values
■ Exploit structure & regularity of circuit functions

A

C

B

O1

T1

T2

A
B
C

O2

T3

b

0 1

c

a

b

0 1

c

a

Dept. of Computer Science & Engineering, IIT Kharagpur 6

Truth Table Decision Tree

■ Vertex represents decision
■ Follow green (dashed) line for value 0
■ Follow red (solid) line for value 1
■ Function value determined by leaf value.

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
0
0
1
0
1
0
1

x1 x2 x3 f

Decision Structure

0 0

x3

0 1

x3

x2

0 1

x3

0 1

x3

x2

x1

Dept. of Computer Science & Engineering, IIT Kharagpur 7

Binary Decision Diagram

 DAG representation of Boolean functions

 Operations on Boolean functions can be implemented as
graph algorithms on BDDs

 Tasks in many problem domains can be expressed entirely
in terms of BDDs

 BDDs have been useful in solving problems that would not
be possible by more traditional techniques.

Dept. of Computer Science & Engineering, IIT Kharagpur 8

Binary Decision Diagram (BDD)

 Each non-terminal vertex v is labeled by a variable var(v) and
has arcs directed toward two children
■ lo(v) (dotted line) corresponding to the case where the

variable is assigned 0
■ hi(v) (solid line) where the variable is assigned 1

 Each terminal vertex is labeled as 0 or 1

 For a given assignment to the variables, the value of the
function is determined by tracing the path form root to a
terminal vertex, following the branches appropriately

Dept. of Computer Science & Engineering, IIT Kharagpur 9

BDDs and Shannon’s Expansion

 Shannon’s Expansion: f = xfx + x′fx′

 BDD represents recursive application of Shannon’s expansion

fx′ fx

x

f

Dept. of Computer Science & Engineering, IIT Kharagpur 10

■ Assign arbitrary total ordering to variables
● e.g. x1 < x2 < x3

■ Variables must appear in ascending order along all
paths

OK Not OK

Properties
 No conflicting variable assignments along path
 Simplifies manipulation

Ordered Binary Decision Diagram (OBDD)

x3

x2

x1

x1

x3

x1

x2

x3

x1

x3

Dept. of Computer Science & Engineering, IIT Kharagpur 11

Merge equivalent leaves

0 0 0

Eliminate all but one terminal
vertex with a given label and redirect

all arcs into the eliminated vertices
to the remaining

Reduction Rule #1

0 0

x3

0 1

x3

x2

0 1

x3

0 1

x3

x2

x1

x3 x3

x2

x3

0 1

x3

x2

x1

Dept. of Computer Science & Engineering, IIT Kharagpur 12

y

x

z

x

Merge isomorphic nodes

y

x

z

x

y

x

z

x

If non-terminal vertices u and v have
var(u) = var(v), lo(u) = lo(v) and
hi(u) = hi(v), eliminate one of them
and redirect all incoming arcs
to the other

Reduction Rule #2

x3 x3

x2

x3

0 1

x3

x2

x1

x3

x2

0 1

x3

x2

x1

Dept. of Computer Science & Engineering, IIT Kharagpur 13

Eliminate Redundant Tests

y

x

y

If non-terminal vertex v has
lo(v) = hi(v), eliminate v and

redirect all incoming
arcs to lo(v)

Reduction Rule #3

x3

x2

0 1

x3

x2

x1

x2

0 1

x3

x1

Dept. of Computer Science & Engineering, IIT Kharagpur 14

Initial Graph Reduced Graph

 Canonical representation of Boolean function

 For the same variable ordering, two functions equivalent if and only if
graphs isomorphic

● Can be tested in linear time

(x1+x2)·x3

Reduced OBDD (ROBDD)

0 0

x3

0 1

x3

x2

0 1

x3

0 1

x3

x2

x1

x2

0 1

x3

x1

Dept. of Computer Science & Engineering, IIT Kharagpur 15

Constants
Unique unsatisfiable function

Unique tautology1

0

Variable

Treat variable
as function

Odd Parity

Linear
representation

Typical Function
 (x1 ∨ x2) ∧ x4

 No vertex labeled x3

 independent of x3

 Many subgraphs shared

Some Example Functions

x2

0 1

x4

x1

0 1

x

x2

x3

x4

10

x4

x3

x2

x1

Dept. of Computer Science & Engineering, IIT Kharagpur 16

b3 b3

a3

Cout

b3

b2 b2

a2

b2 b2

a2

b3

a3

S3

b2

b1 b1

a1

b1 b1

a1

b2

a2

S2

b1

a0 a0

b1

a1

S1

b0

10

b0

a0

S0

 Functions
■ All outputs of 4-bit adder
■ Functions of data inputs

A

B

Cout

S
A
D
D

 Shared Representation
■ Graph with multiple roots
■ 31 nodes for 4-bit adder
■ 571 nodes for 64-bit adder

■ Linear Growth

Circuit Functions

Dept. of Computer Science & Engineering, IIT Kharagpur 17

Good Ordering Bad Ordering

Linear Growth
0

b3

a3

b2

a2

1

b1

a1

Exponential Growth

a3 a3

a2

b1 b1

a3

b2

b1

0

b3

b2

1

b1

a3

a2

a1

(a1 < b1 < a2 < b2 < a3 < b3) (a1 < a2 < a3 < b1< b2 < b3)

Effect of Variable Ordering on ROBDD Size

)()()(332211 bababa ∧∨∧∨∧

Dept. of Computer Science & Engineering, IIT Kharagpur 18

K = 2 K = n

0

b3

a3

b2

a2

1

b1

a1

a3 a3

a2

b1 b1

a3

b2

b1

0

b3

b2

1

b1

a3

a2

a1

Analysis of Ordering Example

)()()(332211 bababa ∧∨∧∨∧

Dept. of Computer Science & Engineering, IIT Kharagpur 19

Selecting a good Variable Ordering

 Intractable Problem
■ Even when problem represented as OBDD

 A good variable ordering should use
■ Local computability
■ Ordering based on power to control output

 Application-Based Heuristics
■ Exploit characteristics of application

● Ordering for functions of combinational circuit
● Traverse circuit graph depth-first from outputs to

inputs
● Assign variables to primary inputs in order

encountered

Dept. of Computer Science & Engineering, IIT Kharagpur 20

Dynamic Variable Ordering

 Rudell, ICCAD ‘93

 Concept
■ Variable ordering changes as computation progresses

● Typical application involves long series of BDD
operations

■ Proceeds in background, invisible to user

 Implementation
■ When approach memory limit, attempt to reduce

● Garbage collect unneeded nodes
● Attempt to find better order for variables

■ Simple, greedy reordering heuristics

Dept. of Computer Science & Engineering, IIT Kharagpur 21

a3

b2 b2

a3

a2

a3

b1

b2

0

b3

b1

1

b2

a3

a2

a1

a3

b2

b3

b2

a3

a2

a3

b2

0

b1

b3

1

b2

a3

a2

a1

a2

a3

b1

b2

0

b3

b2

a3

1

b1

a2

a1

a3

b2

0

b3

b2

a3

a2

1

b1

a1

• • • a3

b2

0

b3

b2

a3

a2

1

a1

b1

Best
Choices

Dynamic Reordering By Sifting

■ Choose candidate variable
■ Try all positions in ordering

● Repeatedly swap with adjacent variable
■ Move to best position found

Dept. of Computer Science & Engineering, IIT Kharagpur 22

Function Class Best Worst Ordering Sensitivity
ALU (Add/Sub) linear exponential High
Symmetric linear quadratic None
Multiplication exponential exponential Low

 General Experience
■ Many tasks have reasonable OBDD representations
■ Algorithms remain practical for up to 100,000 node OBDDs
■ Heuristic ordering methods generally satisfactory

Sample Function Classes

Dept. of Computer Science & Engineering, IIT Kharagpur 23

BDD Operations

 Strategy
■ Represent data as set of OBDDs

● Identical variable orderings
■ Express solution method as sequence of symbolic operations
■ Implement each operation by OBDD manipulation

 Algorithmic Properties
■ Arguments are OBDDs with identical variable orderings.
■ Result is OBDD with same ordering.
■ “Closure Property”

Dept. of Computer Science & Engineering, IIT Kharagpur 24

The APPLY Operation

 Given argument functions f and g, and a binary operator <op>,
APPLY returns the function f <op> g

 Works by traversing the argument graphs depth first

 Algebraic operations “commute” with the Shannon expansion
for any variable x
■ f <op> g = x’ (f|x=0 <op> g|x=0) + x ((f|x=1 <op> g|x=1)

Dept. of Computer Science & Engineering, IIT Kharagpur 25

The Apply Algorithm

 Consider a function f represented by a BDD with root vertex rf

 The restriction of f with respect to a variable x such that
x ≤ var(rf) can be computed as :

f | x = b = rf , x < var(rf)

= lo(rf), x = var (rf) and b = 0

= hi(rf), x = var (rf) and b = 1

 The algorithm for APPLY utilizes the above restriction definition.

Dept. of Computer Science & Engineering, IIT Kharagpur 26

The Apply Algorithm

 Each evaluation step is identified by a vertex from each of the
argument graphs

 Suppose functions f and g are represented by root vertices rf and rg

 If rf and rg are both terminal vertices, terminate and return an
appropriately labeled terminal vertex e.g. (A4, B3) and (A5, B4)

Dept. of Computer Science & Engineering, IIT Kharagpur 27

The Apply algorithm

 Let x be the splitting variable

(x= min(var(rf) , var(rg))

 BDDs for (f|x=0 <op> g|x=0) and (f|x=1 <op> g|x=1) are computed by
recursively evaluating the restrictions of f and g for value 0 and
for value 1

Dept. of Computer Science & Engineering, IIT Kharagpur 28

Recursive Calls

Example

 Initial evaluation with vertices A1, B1 causes recursive
evaluations with vertices A2, B2 and A6, B5

b

0

d

1

c

a

A4 A5

A3

A2

A6

A1

0 1

d

c

a

B3 B4

B2

B5

B1

A4,B3 A5,B4

A3,B2

A6,B2

A2,B2

A3,B4A5,B2

A6,B5

A1,B1

Dept. of Computer Science & Engineering, IIT Kharagpur 29

Apply operation

 Reaching a terminal with a dominant value (e.g 1 for OR, 0 for
AND) terminates recursion and returns an appropriately labeled
terminal (A5, B2 and A3, B4)

 Avoid multiple recursive calls on the same pair of arguments by
a hash table (A3, B2 and A5, B2)

Dept. of Computer Science & Engineering, IIT Kharagpur 30

Apply operation

 Each evaluation step returns a vertex in the generated graph

 Apply reduction before merging the result

 Complexity of operation : O(mf * mg) where mf and mg represent
the number of vertices in the BDDs for f and g respectively

Dept. of Computer Science & Engineering, IIT Kharagpur 31

Recursive Calls Without Reduction With Reduction

Example

A4,B3 A5,B4

A3,B2

A6,B2

A2,B2

A3,B4A5,B2

A6,B5

A1,B1

0 1

d

c

b

11

c

a

C2

C4

C5

C3

C6

C1 0

d

c

b

1

a

Dept. of Computer Science & Engineering, IIT Kharagpur 32

 Concept
■ Effect of setting function argument xi to constant k (0 or 1).
■ Also called Cofactor operation

k F
xi –1

xi +1

xn

x1

F [xi =k]
Fx equivalent to F [x = 1]
Fx equivalent to F [x = 0]

Restrict Operation

Dept. of Computer Science & Engineering, IIT Kharagpur 33

Implementation

 Depth-first traversal

 Redirect any arc into vertex v having var(v) = x to
point to hi(v) for x =1 and lo(v) for x = 0

 Complexity linear in argument graph size

Restriction Algorithm

Dept. of Computer Science & Engineering, IIT Kharagpur 34

Argument F

Restriction Execution Example

0

a

b

c

d

1 0

a

c

d

1

Restriction F[b=1]

0

c

d

1

Reduced Result

Dept. of Computer Science & Engineering, IIT Kharagpur 35

■ Express as combination of Apply and Restrict

■ Preserve closure property
●Result is an OBDD with the right variable

ordering

■ Polynomial complexity
●Although can sometimes improve with special

implementations

Derived Operations

Dept. of Computer Science & Engineering, IIT Kharagpur 36

xi –1

xi +1

xn

x1

F ∃ ∃ xi F

1 F

0 F

xi –1

xi +1

xn

x1

xi –1

xi +1

xn

x1

Variable Quantification

■ Eliminate dependency on some argument through
quantification

■ Combine with AND for universal quantification.

Dept. of Computer Science & Engineering, IIT Kharagpur 37

Digital Applications of BDDs

 Verification
■ Combinational equivalence (UCB, Fujitsu, Synopsys, …)

■ FSM equivalence (Bull, UCB, MCC,Colorado, Torino, …)

■ Symbolic Simulation (CMU, Utah)

■ Symbolic Model Checking (CMU, Bull, Motorola, …)

 Synthesis
■ Don’t care set representation (UCB, Fujitsu, …)

■ State minimization (UCB)

■ Sum-of-Products minimization (UCB, Synopsys, NTT)

 Test

■ False path identification (TI)

Dept. of Computer Science & Engineering, IIT Kharagpur 38

Some Popular BDD packages

 CUDD (Colorado University Decision Diagram)

 TUD BDD package (TUDD)

 BUDDY

 CMU BDD

Informations about the above BDD packages and some
more details can be found at http://www.bdd-portal.org/

Dept. of Computer Science & Engineering, IIT Kharagpur 39

Finite State System Analysis

 Systems Represented as Finite State Machines

■ Analysis Tasks
■ State reachability
■ State machine comparison
■ Temporal logic model checking

 Traditional Methods Impractical for Large Machines

■ Polynomial in number of states
■ Number of states exponential in number of state variables.
■ Example: single 32-bit register has 4,294,967,296 states!

Dept. of Computer Science & Engineering, IIT Kharagpur 40

Symbolic FSM Representation

■ Represent set of transitions as function δ(Old, New)

● Yields 1 if can have transition from state Old to state New

■ Represent as Boolean function
● Use variables for encoding states

Dept. of Computer Science & Engineering, IIT Kharagpur 41

Nondeterministic FSM Symbolic Representation

o1,o2 encoded
old state

n1, n2 encoded
new state

00

10

01

11 o2

o1

1

n2

0

n1

o2

Symbolic FSM Representation

Dept. of Computer Science & Engineering, IIT Kharagpur 42

Rstate 0/1δ
old state

new state
0/1

Given Compute

Initial
R0

=

Q0

Reachability Analysis

• Compute set of states reachable from initial state (Q0 = 00)

• Represent as Boolean function R(S)

Dept. of Computer Science & Engineering, IIT Kharagpur 43

R0

00

Breadth-First Reachability Analysis

■ Ri – set of states that can be reached in i transitions
■ Reach fixed point when Rn = Rn+1

● Guaranteed since finite state

00

10

01

11

R1R0

00 01

R2R1R0

00 01 10

R3R2R1R0

00 01 10

Dept. of Computer Science & Engineering, IIT Kharagpur 44

■ Ri +1 – set of states that can be reached within i +1 transitions
● Either in Ri

● or single transition away from some element of Ri

Ri

δ

Ri

∃

Ri +1

old

new

Iterative Computation

Dept. of Computer Science & Engineering, IIT Kharagpur 45

Example: Computing R1 from R0

o2

o1

1

n2

0

n1

o2

R0

00

R1

00 01

∃ Old [R0(Old) ∧ δ(Old, New)]

1

n2

0

n1

0

1

n2

0

n1

0 1 0

n1

Dept. of Computer Science & Engineering, IIT Kharagpur 46

 Powerful Operations
■ Creating, manipulating, testing
■ Each step polynomial complexity

● Graceful degradation
■ Maintain “closure” property

● Each operation produces form suitable for further
operations

 Generally Stay Small Enough
■ Especially for digital circuit applications
■ Given good choice of variable ordering

 Weak Competition

What’s good about OBDDs ?

Dept. of Computer Science & Engineering, IIT Kharagpur 47

 Doesn’t Solve All Problems
■ Can’t do much with multipliers
■ Some problems just too big
■ Weak for search problems

 Must be Careful
■ Choose good variable ordering
■ Some operations too hard

What’s not good about OBDDs?

Dept. of Computer Science & Engineering, IIT Kharagpur 48

Zero Suppressed BDD’s - ZBDD’s

 ZBDD’s were invented by Minato to efficiently represent sparse
sets. They have turned out to be extremely useful in implicit
methods for representing primes (which usually are a sparse
subset of all cubes).

 Different reduction rules.

Dept. of Computer Science & Engineering, IIT Kharagpur 49

Zero Suppressed BDD’s - ZBDD’s

 ZBDD Reduction Rule:: eliminate all nodes where the then
node points to 0. Connect incoming edges to else node

 For ZBDD, equivalent nodes can be shared as in case of
BDDs.

0 1

ZBDD:
0

1

0 1

0

Dept. of Computer Science & Engineering, IIT Kharagpur 50

x0 + 2x1 + 4x2

 Evaluating a MTBDD for a given variable assignment is similar
to that in case of BDD

 Very inefficient for representing functions yielding values over
a large range

0 1

x0

2 3

x0

x1

4 5

x0

6 7

x0

x1

x2

MTBDD- Multiterminal BDD

Dept. of Computer Science & Engineering, IIT Kharagpur 51

EVBDD – Edge value BDD

 EVBDDs can be used when the number of
possible function values are too high for
MTBDDs.

 Evaluating a EVBDD involves tracing a path
determined by the variable assignment,
summing the weights and the terminal node
value

g

x2

4

2

x1

x0

0 1

Dept. of Computer Science & Engineering, IIT Kharagpur 52

*BMD(Binary Moment Diagrams)

 Features
■ Used for Word level simulation/verification
■ Canonical
■ Based on linear decomposition of a function

 Functional Decomposition :
f = (1-x) f~x + (x) fx

= f~x + x (fx - f~x)
= f~x + x (f.x)

where f.x is the linear moment w.r.t. x

Dept. of Computer Science & Engineering, IIT Kharagpur 53

Representing *BMDs

 Graph :
■ Example

x1 x2 f

0 0 8

0 1 -12

1 0 10

1 1 -6

f = (1-x1)(1-x2)(8)+(1-x1)(x2)(-12)

+(x1)(1-x2)(10) + (x1)(x2)(-6)

= 8 - 20(x2) + 2(x1) + 4(x1*x2)

Dept. of Computer Science & Engineering, IIT Kharagpur 54

Weights combine multiplicatively along path from root to leaf Rules :
 weights of 2 branches relatively prime
 weight 0 allowed only for terminal vertices
 if one edge has weight 0, the other has weight 1

x

y y

8 -202 4

x

yy

1-5 2

2

2

BMD

* BMD

Edge Weights (*BMDs)

Dept. of Computer Science & Engineering, IIT Kharagpur 55

References

 Graph Based Algorithms for Boolean Function Manipulation,

Randal E. Bryant, IEEE Transactions on Computers, Volume: C-35, Issue: 8, pp. 677-

691, August 1986.

 Symbolic Boolean Manipulation with Ordered Binary Decision

Diagrams,

Randal E. Bryant, ACM Computing Surveys, Volume: 24 Issue: 3, pp. 293-318,

September 1992.

 An Introduction to Binary Decision Diagrams,

Henrik Reif Andersen, Technical Report, Course Notes on the WWW, October 1997.

	Slide Number 1
	Contents		
	Sample Analysis Task
	Solution by Combinatorial Search
	Another Approach
	Decision Structure
	Binary Decision Diagram
	Binary Decision Diagram (BDD)
	BDDs and Shannon’s Expansion	
	Ordered Binary Decision Diagram (OBDD)
	Reduction Rule #1
	Reduction Rule #2
	Reduction Rule #3
	Reduced OBDD (ROBDD)
	Some Example Functions
	Circuit Functions
	Effect of Variable Ordering on ROBDD Size
	Analysis of Ordering Example
	Selecting a good Variable Ordering
	Dynamic Variable Ordering
	Dynamic Reordering By Sifting
	Sample Function Classes
	BDD Operations
	The APPLY Operation	
	The Apply Algorithm
	The Apply Algorithm
	The Apply algorithm
	Example
	Apply operation	
	Apply operation	
	Example
	Restrict Operation
	Restriction Algorithm
	Restriction Execution Example
	Derived Operations
	Variable Quantification
	Digital Applications of BDDs
	Some Popular BDD packages
	Finite State System Analysis
	Symbolic FSM Representation
	Symbolic FSM Representation
	Reachability Analysis
	Breadth-First Reachability Analysis
	Iterative Computation
	Example: Computing R1 from R0
	What’s good about OBDDs ?
	What’s not good about OBDDs?
	Zero Suppressed BDD’s - ZBDD’s
	Zero Suppressed BDD’s - ZBDD’s
	MTBDD- Multiterminal BDD
	EVBDD – Edge value BDD
	*BMD(Binary Moment Diagrams)
	Representing *BMDs
	Edge Weights (*BMDs)
	References

