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Sample Analysis Task

 Logic Circuit Comparison
■ Do circuits compute identical function?

● Basic task of formal hardware verification
● Compare new design to “known good” design
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Solution by Combinatorial Search

 Satisfiability Formulation
■ Search for input assignment giving 

different outputs

 Branch & Bound
■ Assign input(s)
■ Propagate forced values
■ Backtrack when cannot succeed
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 Challenge

■ Must prove all assignments fail

■ Typically explore significant 
fraction of inputs

■ Exponential time complexity
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Another Approach

 Generate Complete Representation of Circuit Function
■ Compact, canonical form

■ Functions equal if and only if representations identical
■ Never enumerate explicit function values
■ Exploit structure & regularity of circuit functions
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Truth Table Decision Tree

■ Vertex represents decision
■ Follow green (dashed) line for value 0
■ Follow red (solid) line for value 1
■ Function value determined by leaf value.
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Binary Decision Diagram

 DAG representation of Boolean functions 

 Operations on Boolean functions can be implemented as 
graph algorithms on BDDs

 Tasks in many problem domains can be expressed entirely 
in terms of BDDs 

 BDDs have been useful in solving problems that would not 
be possible by more traditional techniques.
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Binary Decision Diagram (BDD)

 Each non-terminal vertex v is labeled by a variable var(v) and 
has arcs directed toward two children 
■ lo(v) (dotted line) corresponding to the case where the 

variable is assigned 0
■ hi(v) (solid line) where the variable is assigned 1

 Each terminal vertex is labeled as 0 or 1

 For a given assignment to the variables, the value of the 
function is determined by tracing the path form root to a 
terminal vertex, following the branches appropriately
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BDDs and Shannon’s Expansion

 Shannon’s Expansion: f = xfx + x′fx′

 BDD represents recursive application of Shannon’s expansion

fx′ fx

x

f
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■ Assign arbitrary total ordering to variables
● e.g.  x1 < x2 < x3

■ Variables must appear in ascending order along all 
paths

OK Not OK

Properties
 No conflicting variable assignments along path
 Simplifies manipulation 

Ordered Binary Decision Diagram (OBDD)
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Merge equivalent leaves

0 0 0

Eliminate all but one terminal 
vertex with a given label and redirect 

all arcs into the eliminated vertices
to the remaining

Reduction Rule #1
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If non-terminal vertices u and v have
var(u) = var(v), lo(u) = lo(v) and
hi(u) = hi(v), eliminate one of them
and redirect all incoming arcs
to the other 
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Eliminate Redundant Tests
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If non-terminal vertex v has
lo(v) = hi(v), eliminate v and 

redirect all incoming 
arcs to lo(v)
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Initial Graph Reduced Graph

 Canonical representation of Boolean function

 For the same variable ordering, two functions equivalent if and only if 
graphs isomorphic

● Can be tested in linear time

(x1+x2)·x3

Reduced OBDD (ROBDD)

0 0

x3

0 1

x3

x2

0 1

x3

0 1

x3

x2

x1

x2

0 1

x3

x1



Dept. of Computer Science & Engineering, IIT Kharagpur 15

Constants
Unique unsatisfiable function

Unique tautology1

0

Variable

Treat variable
as function

Odd Parity

Linear
representation

Typical Function
 (x1 ∨ x2 ) ∧ x4

 No vertex labeled x3

 independent of x3

 Many subgraphs shared 
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 Functions
■ All outputs of 4-bit adder
■ Functions of data inputs
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 Shared Representation
■ Graph with multiple roots
■ 31 nodes for 4-bit adder
■ 571 nodes for 64-bit adder

■ Linear Growth

Circuit Functions
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Good Ordering Bad Ordering

Linear Growth
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Selecting a good Variable Ordering

 Intractable Problem
■ Even when problem represented as OBDD

 A good variable ordering should use
■ Local computability
■ Ordering based on power to control output

 Application-Based Heuristics
■ Exploit characteristics of application

● Ordering for functions of combinational circuit
● Traverse circuit graph depth-first from outputs to 

inputs
● Assign variables to primary inputs in order 

encountered
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Dynamic Variable Ordering

 Rudell, ICCAD ‘93

 Concept
■ Variable ordering changes as computation progresses

● Typical application involves long series of BDD 
operations

■ Proceeds in background, invisible to user

 Implementation
■ When approach memory limit, attempt to reduce

● Garbage collect unneeded nodes
● Attempt to find better order for variables

■ Simple, greedy reordering heuristics
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Dynamic Reordering By Sifting

■ Choose candidate variable
■ Try all positions in ordering

● Repeatedly swap with adjacent variable
■ Move to best position found
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Function Class Best Worst Ordering Sensitivity
ALU (Add/Sub) linear exponential High
Symmetric linear quadratic None
Multiplication exponential exponential Low

 General Experience
■ Many tasks have reasonable OBDD representations
■ Algorithms remain practical for up to 100,000 node OBDDs
■ Heuristic ordering methods generally satisfactory

Sample Function Classes
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BDD Operations

 Strategy
■ Represent data as set of OBDDs

● Identical variable orderings
■ Express solution method as sequence of symbolic operations
■ Implement each operation by OBDD manipulation

 Algorithmic Properties
■ Arguments are OBDDs with identical variable orderings.
■ Result is OBDD with same ordering.
■ “Closure Property”
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The APPLY Operation

 Given argument functions f and g, and a binary operator <op>, 
APPLY returns the function f <op> g

 Works by traversing the argument graphs depth first 

 Algebraic operations “commute” with the Shannon expansion 
for any variable x
■ f <op> g = x’ (f|x=0 <op> g|x=0 ) + x ((f|x=1 <op> g|x=1)
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The Apply Algorithm

 Consider a function f represented by a BDD with root vertex rf

 The restriction of f with respect to a variable x such that 
x ≤ var(rf) can be computed as :

f | x = b = rf ,         x < var(rf )

= lo(rf),    x = var (rf) and b = 0

= hi(rf),    x = var (rf) and b = 1

 The algorithm for APPLY utilizes the above restriction definition.
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The Apply Algorithm

 Each evaluation step is identified by a vertex from each of the 
argument graphs

 Suppose functions f and g are represented by root vertices rf and rg

 If rf and rg are both terminal vertices, terminate and return an 
appropriately labeled terminal vertex e.g. (A4, B3) and (A5, B4)
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The Apply algorithm

 Let x be the splitting variable 

( x= min(var(rf) , var(rg))

 BDDs for (f|x=0 <op> g|x=0 ) and (f|x=1 <op> g|x=1 ) are computed by 
recursively evaluating the restrictions of f and g for value 0 and 
for value 1 
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Recursive Calls

Example

 Initial evaluation with vertices A1, B1 causes recursive 
evaluations with vertices A2, B2 and  A6, B5
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Apply operation

 Reaching a terminal with a dominant value (e.g 1 for OR, 0 for 
AND) terminates recursion and returns an appropriately labeled 
terminal (A5, B2 and A3, B4)

 Avoid multiple recursive calls on the same pair of arguments by 
a hash table (A3, B2 and A5, B2)



Dept. of Computer Science & Engineering, IIT Kharagpur 30

Apply operation

 Each evaluation step returns a vertex in the generated graph

 Apply reduction before merging the result

 Complexity of operation : O(mf * mg) where mf and mg represent 
the number of vertices in the BDDs for f and g respectively
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Recursive Calls Without Reduction With Reduction

Example
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 Concept
■ Effect of setting function argument xi to constant k (0 or 1).
■ Also called Cofactor operation

k F 
xi –1

xi +1

xn 

x1

F [xi =k]
Fx equivalent to F [x = 1]
Fx equivalent to F [x = 0]

Restrict Operation
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Implementation

 Depth-first traversal

 Redirect any arc into vertex v having var(v) = x to 
point to hi(v) for x =1 and lo(v) for x = 0

 Complexity linear in argument graph size

Restriction Algorithm
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Argument F

Restriction Execution Example
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■ Express as combination of Apply and Restrict

■ Preserve closure property
●Result is an OBDD with the right variable 

ordering

■ Polynomial complexity
●Although can sometimes improve with special 

implementations

Derived Operations



Dept. of Computer Science & Engineering, IIT Kharagpur 36

xi –1
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F ∃ ∃ xi F 
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xi –1

xi +1
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x1

Variable Quantification

■ Eliminate dependency on some argument through 
quantification

■ Combine with AND for universal quantification.
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Digital Applications of BDDs

 Verification
■ Combinational equivalence  (UCB, Fujitsu, Synopsys, …)

■ FSM equivalence  (Bull, UCB, MCC,Colorado, Torino, …)

■ Symbolic Simulation (CMU, Utah)

■ Symbolic Model Checking (CMU, Bull, Motorola, …)

 Synthesis
■ Don’t care set representation  (UCB, Fujitsu, …)

■ State minimization  (UCB)

■ Sum-of-Products minimization (UCB, Synopsys, NTT)

 Test

■ False path identification  (TI)
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Some Popular BDD packages

 CUDD (Colorado University Decision Diagram)

 TUD BDD package (TUDD)

 BUDDY

 CMU BDD

Informations about the above BDD packages and some
more details can be found at http://www.bdd-portal.org/
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Finite State System Analysis

 Systems Represented as Finite State Machines

■ Analysis Tasks
■ State reachability
■ State machine comparison
■ Temporal logic model checking

 Traditional Methods Impractical for Large Machines

■ Polynomial in number of states
■ Number of states exponential in number of state variables.
■ Example: single 32-bit register has 4,294,967,296 states!
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Symbolic FSM Representation

■ Represent set of transitions as function δ(Old, New)

● Yields 1 if can have transition from state Old to state New

■ Represent as Boolean function
● Use variables for encoding states
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Nondeterministic FSM Symbolic Representation

o1,o2 encoded
old state

n1, n2 encoded
new state
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1
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0

n1

o2

Symbolic FSM Representation
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Rstate 0/1δ
old state

new state
0/1

Given Compute

Initial
R0

=

Q0

Reachability Analysis

• Compute set of states reachable from initial state (Q0 = 00) 

• Represent as Boolean function R(S)
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R0

00

Breadth-First Reachability Analysis

■ Ri – set of states that can be reached in i transitions
■ Reach fixed point when Rn = Rn+1

● Guaranteed since finite state
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■ Ri +1 – set of states that can be reached within i +1 transitions
● Either in Ri 

● or single transition away from some element of Ri

Ri

δ

Ri

∃

Ri +1

old

new

Iterative Computation
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Example: Computing R1 from R0
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 Powerful Operations
■ Creating, manipulating, testing
■ Each step polynomial complexity

● Graceful degradation
■ Maintain “closure” property

● Each operation produces form suitable for further 
operations

 Generally Stay Small Enough
■ Especially  for digital circuit applications
■ Given good choice of variable ordering

 Weak Competition

What’s good about OBDDs ?
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 Doesn’t Solve All Problems
■ Can’t do much with multipliers
■ Some problems just too big
■ Weak for search problems

 Must be Careful
■ Choose good variable ordering
■ Some operations too hard

What’s not good about OBDDs?
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Zero Suppressed BDD’s - ZBDD’s

 ZBDD’s were invented by Minato to efficiently represent sparse
sets.  They have turned out to be extremely useful in implicit 
methods for representing primes (which usually are a sparse 
subset of all cubes).

 Different reduction rules.
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Zero Suppressed BDD’s - ZBDD’s

 ZBDD Reduction Rule:: eliminate all nodes where the then
node points to 0.  Connect incoming edges to else node

 For ZBDD, equivalent nodes can be shared as in case of 
BDDs.

0 1

ZBDD:
0

1

0 1

0
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x0 + 2x1 + 4x2

 Evaluating a MTBDD for a given variable assignment is similar 
to that in case of BDD

 Very inefficient for representing functions yielding values over 
a large range
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MTBDD- Multiterminal BDD
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EVBDD – Edge value BDD

 EVBDDs can be used when the number of 
possible function values are too high for 
MTBDDs.

 Evaluating a EVBDD involves tracing a path 
determined by the variable assignment, 
summing the weights and the terminal node 
value

g
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x1

x0

0 1
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*BMD( Binary Moment Diagrams )

 Features 
■ Used for Word level simulation/verification
■ Canonical
■ Based on linear decomposition of a function

 Functional Decomposition :
f  = (1-x) f~x + (x) fx

= f~x + x ( fx - f~x) 
= f~x + x ( f.x )                

where f.x is the linear moment w.r.t.  x
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Representing *BMDs

 Graph :
■ Example

x1 x2 f

0 0 8

0 1 -12

1 0 10

1 1 -6

f = (1-x1)(1-x2)(8)+(1-x1)(x2)(-12)

+(x1)(1-x2)(10) + (x1)(x2)(-6)

= 8 - 20(x2) + 2(x1) + 4(x1*x2)
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Weights combine multiplicatively along path from root to leaf Rules :
 weights of 2 branches relatively prime 
 weight 0 allowed only for terminal vertices 
 if one edge has weight 0, the other has weight 1

x

y y

8 -202 4

x

yy

1-5 2

2

2

BMD

* BMD

Edge Weights ( *BMDs )
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