Time Complexity

Foundations of Computing Science

Pallab Dasgupta Professor, Dept. of Computer Sc & Engg

Measuring Complexity

Definition

Let *M* be a deterministic Turing machine that halts on all inputs. The *running time* or *time complexity* of *M* is the function *f*: *N*→*N*, where *f(n)* is the running time of *M*, we say that *M* runs in time *f(n)* and that *M* is an *f(n)* time Turing machine. Customarily we use *n* to represent the length of the input

Complexity Analysis

- Worst-case Analysis
 - Longest running time of all inputs of a particular length
- Average-case Analysis
 - Average of all the running times of inputs of a particular length

Big-O and Small-o Notations

Asymptotic Upper Bound (O)

• Let f and g be functions f, g: $\mathcal{N} \rightarrow \mathcal{R}^+$. Say that f(n) = O(g(n)) if positive integers c and n_0 exist such that for every integer $n \ge n_0$

 $f(n) \leq c.g(n)$

When f(n) = O(g(n)) we say that g(n) is an upper bound for f(n), or more precisely, that g(n) is an asymptotic upper bound for f(n), to emphasize that we are suppressing constant factors

Asymptotic Strict-Upper Bound (o)

• Let f and g be functions f, g: $\mathcal{N} \rightarrow \mathcal{R}^+$. Say that f(n) = o(g(n)) if

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

In other words, f(n) = o(g(n)) means that, for any real number c > 0, a number n₀ exist, where f(n) < c.g(n) for all n ≥ n₀

Analyzing Algorithms

Let $t: \mathcal{N} \rightarrow \mathcal{R}^{+}$ be a function. Define the *time complexity class*, *TIME(t(n))*, to be the collection of all languages that are decidable by an O(t(n)) time Turing machine

Example

- Analyze the TM algorithm for the language $\mathcal{A} = \{0^k 1^k \mid k \ge 0\}$
- There can be different TM constructions (M₁, M₂, M₃) deciding the language [see Sipser's Book, pp. 207-209]
- The total-time taken by them is different
 - M_1 decides \mathcal{A} in time $O(n^2)$, therefore $\mathcal{A} \in TIME(n^2)$
 - M_2 decides \mathcal{A} in time O(nlogn), therefore $\mathcal{A} \in TIME(n.logn)$
 - M_3 decides \mathcal{A} in time O(n), therefore $\mathcal{A} \in TIME(n)$

Complexity Relationships among Models

Definition

• Let N_{TM} be a non-deterministic Turing machine that is a decider. The running time of N_{TM} is the function $f: \mathcal{N} \rightarrow \mathcal{N}$, where f(n) is the maximum number of steps that N_{TM} uses on any branch of its computation on any input n

Theorems

- Let t(n) be a function, where $t(n) \ge n$. Then every t(n) time multi-tape Turing machine has an equivalent $O(t^2(n))$ time single-tape Turing machine
- Let t(n) be a function, where t(n) ≥ n. Then every t(n) time non-deterministic single-tape Turing machine has an equivalent 2^{O(t(n))} time deterministic single-tape Turing machine

The Class P (Polynomial Time)

Definition

• *P* is the class of languages that are decidable in polynomial time on a deterministic single-tape Turing machine. In other words,

 $P = \bigcup_{k} TIME(n^{k})$

The role of P in theory:

- P is invariant for all models of computation that are polynomially equivalent to the deterministic singletape Turing machine
- *P* roughly corresponds to the class of problems that are realistically solvable on a computer Examples of Problems in P
 - PATH = {<G, s, t> | G is a directed graph that has a directed path from s to t}
 - RELATIVE_PRIME = {<x, y> | x and y are relatively prime}
 - Every context-free language is a member of P

The Class NP (Non-deterministic Polynomial Time)

Definitions

• A verifier for a language \mathcal{A} is an algorithm V, where

A = {w | V accepts <w, c> for some string c}.

We measure the time of a verifier only in terms of the length of w, so a *polynomial time verifier* runs in polynomial time in the length of w.

- A language *A* is *polynomially verifiable* if it has a polynomial time verifier.
- NP is the class of languages that have polynomial time verifiers

Examples of Problems in NP

• HAM_PATH = {<G, s, t> | G is a directed graph

with a Hamiltonian path from s to t}

- COMPOSITES = {x | x = pq, for integers p, q > 1}
- CLIQUE = {<G, k> | G is an undirected graph with k-clique}
- SUBSET-SUM = {<S, t> | S = {x₁, x₂, ..., x_k} and for some

 $\{y_1, y_2, ..., y_l\} \subseteq \{x_1, x_2, ..., x_k\}$, we have $\Sigma y_i = t\}$

The Class NP (contd...)

Theorem

 A language is in NP if and only if it is decided by some non-deterministic polynomial time Turing machine

Definition

Non-deterministic time complexity class is defined as,

NTIME(t(n)) = {L | L is a language decided by a O(t(n)) time non-deterministic Turing machine}

Corollary:

$$NP = \bigcup_{k} TIME(n^{k})$$

The P Versus NP Question

Referring (loosely) to polynomial time solvable as solvable "quickly",

- **P** = the class of languages for which membership can be decided quickly
- *NP* = the class of languages for which membership can be verified quickly

Unsolved Problem in Theoretical Computer Science

• P = NP? **OR** $P \neq NP$?

Best method known for solving languages in *NP* deterministically uses exponential time. In other words, we can prove that

NP
$$\subseteq$$
 EXPTIME = \bigcup_{k} TIME(2^{n^k})

But, we do not know whether *NP* is contained in a smaller deterministic time complexity class

NP-Completeness

Polynomial Time Reducibility

- A function f: Σ* → Σ* is a polynomial time computable function if some polynomial time Turing machine M exists that halts with just f(w) on its tape, when started on any input w
- Language A is polynomial time mapping reducible, or simply polynomial time reducible, to language B, written A ≤_p B, if a polynomial time computable function f: Σ* → Σ* exists, where for every w,
 w∈A ⇔ f(w)∈B

The function **f** is called the *polynomial time reduction* of **A** to **B**

Theorem

- If $\mathcal{A} \leq_{p} \mathcal{B}$ and $\mathcal{B} \in P$, then $\mathcal{A} \in P$
- **3SAT** is polynomial time reducible to **CLIQUE**

NP-Completeness (contd...)

Definition

- A language *B* is *NP-complete* if it satisfies two conditions:
 - *B* is in *NP*, and
 - Every \mathcal{A} in NP is polynomial time reducible to \mathcal{B}

Theorems

- If \mathcal{B} is NP-complete and $\mathcal{B} \in P$, then P = NP
- If \mathcal{B} is NP-complete and $\mathcal{B} \leq_p C$ for C in NP, then C is NP-complete

COOK-LEVIN's Theorem

- SAT is NP-complete (other form: SAT
 SAT is NP-complete (other form: SAT
 SAT if and only if P = NP)
- Corollary: 3SAT is NP-complete

Additional NP-Complete Problems

Examples of NP-complete Problems

- CLIQUE = {<G, k> | G is an undirected graph with k-clique}
- VERTEX-COVER = {<G, k> | G is an undirected graph that has a k-node vertex cover}
- HAM_PATH = {<G, s, t> | G is a directed graph with a Hamiltonian path from s to t}
- UHAM_PATH = Hamiltonian path in undirected graph
- SUBSET-SUM = {<S, t> | S = { $x_1, x_2, ..., x_k$ } and for some { $y_1, y_2, ..., y_l$ } { $x_1, x_2, ..., x_k$ }, we have $\Sigma y_i = t$ }