Time Complexity

Foundations of Computing Science

Pallab Dasgupta
Professor,
Dept. of Computer Sc \& Engg

Measuring Complexity

Definition

- Let M be a deterministic Turing machine that halts on all inputs. The running time or time complexity of M is the function $f: \mathscr{N} \rightarrow \mathcal{N}$, where $f(n)$ is the running time of M, we say that M runs in time $f(n)$ and that M is an $f(n)$ time Turing machine. Customarily we use n to represent the length of the input

Complexity Analysis

- Worst-case Analysis
- Longest running time of all inputs of a particular length
- Average-case Analysis
- Average of all the running times of inputs of a particular length

Big-O and Small-o Notations

Asymptotic Upper Bound (0)

- Let f and g be functions $f, g: \mathcal{N} \rightarrow \mathcal{R}^{+}$. Say that $f(n)=O(g(n))$ if positive integers c and n_{0} exist such that for every integer $n \geq n_{0}$

$$
f(n) \leq c . g(n)
$$

- When $f(n)=O(g(n))$ we say that $g(n)$ is an upper bound for $f(n)$, or more precisely, that $g(n)$ is an asymptotic upper bound for $f(n)$, to emphasize that we are suppressing constant factors

Asymptotic Strict-Upper Bound (o)

- Let f and g be functions $f, g: \mathcal{N} \rightarrow \mathcal{R}^{+}$. Say that $f(n)=o(g(n))$ if

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0
$$

- In other words, $f(\mathrm{n})=\mathrm{o}(\mathrm{g}(\mathrm{n}))$ means that, for any real number $\mathrm{c}>0$, a number n_{0} exist, where $f(\mathrm{n})<\mathrm{c} . \mathrm{g}(\mathrm{n})$ for all $n \geq n_{0}$

Analyzing Algorithms

Let $t: \mathcal{N} \rightarrow \mathcal{R}^{+}$be a function. Define the time complexity class, $\operatorname{TIME}(t(n))$, to be the collection of all languages that are decidable by an $O(t(n))$ time Turing machine

Example

- Analyze the TM algorithm for the language $\mathcal{A}=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$
- There can be different TM constructions $\left(M_{1}, M_{2}, M_{3}\right)$ deciding the language [see Sipser's Book, pp. 207209]
- The total-time taken by them is different
- M_{1} decides \mathcal{A} in time $O\left(n^{2}\right)$, therefore $\mathcal{A} \in \operatorname{TIME}\left(n^{2}\right)$
- M_{2} decides \mathcal{A} in time $O(n \log n)$, therefore $\mathcal{A} \in$ TIME(n.logn)
- M_{3} decides \mathcal{A} in time $O(n)$, therefore $\mathcal{A} \in \operatorname{TIME}(n)$

Complexity Relationships among Models

Definition

- Let $N_{T M}$ be a non-deterministic Turing machine that is a decider. The running time of $N_{T M}$ is the function $f: \mathcal{N} \rightarrow \mathcal{N}$, where $f(n)$ is the maximum number of steps that $N_{T M}$ uses on any branch of its computation on any input n

Theorems

- Let $t(n)$ be a function, where $t(n) \geq n$. Then every $t(n)$ time multi-tape Turing machine has an equivalent $O\left(t^{2}(n)\right)$ time single-tape Turing machine
- Let $t(n)$ be a function, where $t(n) \geq n$. Then every $t(n)$ time non-deterministic single-tape Turing machine has an equivalent $2^{0(t(n))}$ time deterministic single-tape Turing machine

The Class P (Polynomial Time)

Definition

- P is the class of languages that are decidable in polynomial time on a deterministic single-tape Turing machine. In other words,

$$
P=\bigcup_{k} \operatorname{TIME}\left(n^{k}\right)
$$

The role of P in theory:

- P is invariant for all models of computation that are polynomially equivalent to the deterministic singletape Turing machine
- P roughly corresponds to the class of problems that are realistically solvable on a computer Examples of Problems in P
- PATH $=\{\langle G, s, t\rangle \mid G$ is a directed graph that has a directed path from s to $t\}$
- RELATIVE_PRIME $=\{\langle x, y\rangle \mid x$ and y are relatively prime $\}$
- Every context-free language is a member of P

The Class NP (Non-deterministic Polynomial Time)

Definitions

- A verifier for a language \mathcal{A} is an algorithm V, where

$$
\mathcal{A}=\{w \mid \text { V accepts }\langle w, c>\text { for some string } c\} .
$$

We measure the time of a verifier only in terms of the length of w, so a polynomial time verifier runs in polynomial time in the length of w.

- A language $\not \subset$ is polynomially verifiable if it has a polynomial time verifier.
- $N P$ is the class of languages that have polynomial time verifiers

Examples of Problems in NP

- HAM_PATH $=\{<\mathrm{G}, \mathrm{s}, \mathrm{t}\rangle \mid \mathrm{G}$ is a directed graph with a Hamiltonian path from s to $t\}$
- COMPOSITES $=\{x \mid x=p q$, for integers $p, q>1\}$
- CLIQUE $=\{<\mathrm{G}, \mathrm{k}>\mid \mathrm{G}$ is an undirected graph with k-clique $\}$
- SUBSET-SUM $=\{<S, t\rangle \mid S=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ and for some

$$
\left.\left\{y_{1}, y_{2}, \ldots, y_{1}\right\} \subseteq\left\{x_{1}, x_{2}, \ldots, x_{k}\right\} \text {, we have } \sum y_{i}=t\right\}
$$

The Class NP (contd...)

Theorem

- A language is in NP if and only if it is decided by some non-deterministic polynomial time Turing machine

Definition

- Non-deterministic time complexity class is defined as, $\operatorname{NTIME}(\mathrm{t}(\mathrm{n}))=\{\mathrm{L} \mid \mathrm{L}$ is a language decided by a $\mathrm{O}(\mathrm{t}(\mathrm{n}))$ time non-deterministic Turing machine $\}$

Corollary: $\quad N P=\bigcup_{k} \operatorname{TIME}\left(\mathrm{n}^{\mathrm{k}}\right)$

The P Versus NP Question

Referring (loosely) to polynomial time solvable as solvable "quickly",

- $P=$ the class of languages for which membership can be decided quickly
- $N P=$ the class of languages for which membership can be verified quickly

Unsolved Problem in Theoretical Computer Science

- $\mathrm{P}=\mathrm{NP}$?
OR
$P \neq N P$?

Best method known for solving languages in NP deterministically uses exponential time. In other words, we can prove that

$$
N P \subseteq E X P T I M E=\bigcup_{k} \operatorname{TIME}\left(2^{n \mathrm{k}}\right)
$$

But, we do not know whether NP is contained in a smaller deterministic time complexity class

NP-Completeness

Polynomial Time Reducibility

- A function f : $\Sigma^{*} \rightarrow \Sigma^{*}$ is a polynomial time computable function if some polynomial time Turing machine M exists that halts with just $f(w)$ on its tape, when started on any input w
- Language \mathcal{A} is polynomial time mapping reducible, or simply polynomial time reducible, to language \mathfrak{B}, written $\mathcal{A} \leq_{p} \mathcal{B}$, if a polynomial time computable function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ exists, where for every w,

$$
w \in \mathcal{A} \Leftrightarrow f(w) \in \mathcal{B}
$$

The function f is called the polynomial time reduction of A to B

Theorem

- If $\mathcal{A} \leq_{p} \mathcal{B}$ and $\mathcal{B} \in P$, then $\mathcal{A} \in P$
- 3SAT is polynomial time reducible to CLIQUE

NP-Completeness (contd...)

Definition

- A language \mathcal{B} is $N P$-complete if it satisfies two conditions:
- \mathcal{B} is in $N P$, and
- Every \mathcal{A} in $N P$ is polynomial time reducible to \mathscr{B}

Theorems

- If \mathcal{B} is NP-complete and $\mathcal{B} \in P$, then $P=N P$
- If \mathcal{B} is NP-complete and $\mathcal{B} \leq_{p} C$ for C in $N P$, then C is NP-complete

COOK-LEVIN's Theorem

- SAT is NP-complete (other form: SAT P if and only if $P=N P$)
- Corollary: 3SAT is NP-complete

Additional NP-Complete Problems

Examples of NP-complete Problems

- CLIQUE $=\{<G, k>\mid G$ is an undirected graph with k-clique $\}$
- VERTEX-COVER $=\{<\mathrm{G}, \mathrm{k}>\mid \mathrm{G}$ is an undirected graph that has a k-node vertex cover\}
- HAM_PATH $=\{<G, s, t\rangle \mid G$ is a directed graph

$$
\text { with a Hamiltonian path from s to t\} }
$$

- UHAM_PATH = Hamiltonian path in undirected graph
- SUBSET-SUM $=\left\{\langle S, t\rangle \mid S=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}\right.$ and for some

$$
\left.\left\{y_{1}, y_{2}, \ldots, y_{l}\right\} \quad\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}, \text { we have } \Sigma y_{i}=t\right\}
$$

