Regular Languages

Foundations of Computing Science

Pallab Dasgupta
Professor,
Dept. of Computer Sc \& Engg

Deterministic Finite Automaton (DFA)

A deterministic finite automaton (DFA) is a 5 -tuple ($Q, \Sigma, \delta, q_{0}, F$), where

- Q is a finite set called the set of states,
- Σ is a finite set called the alphabet,
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function,
- $q_{0} \in Q$ is the start state, and
- $F \subseteq Q$ is the set of accept states (final states)

Example: $M=\left(Q, \Sigma, \delta, q_{1}, F\right)$, where

- $Q=\left\{q_{1}, q_{2}, q_{3}\right\}$,
- $\Sigma=\{0,1\}$,
- δ is described as
- q_{1} is the start state
- $F=\left\{q_{2}\right\}$

Acceptance/Recognition by DFA

Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a deterministic finite automaton and $w=w_{1} w_{2} \ldots w_{n}$ be a string where each $w_{i} \in \sum$. Then M accepts w if a sequence of states $r_{0}, r_{1}, \ldots, r_{n}$ in Q exists with three conditions:

- $r_{0}=q_{0}$,
- $\delta\left(r_{i} ; w_{i+1}\right)=r_{i+1}$, for $i=0,1, \ldots, n-1$, and
- $r_{n} \in F$

Therefore, M recognizes language A_{M} if $A_{M}=\{w \mid M$ accepts $w\}$

Example:
$L\left(M_{1}\right)=A_{M 1}\left(M_{1}\right.$ recognizes/accepts $\left.A_{M 1}\right)$, where
$A_{M 1}=\{\mathrm{w} \mid \mathrm{w}$ contains at least one 1 and an even number of 0 s follow the last 1$\}$

Non-deterministic Finite Automaton (NFA)

A non-deterministic finite automaton (NFA) is a 5 -tuple $\left(Q, \sum, \delta, q_{0}, F\right)$, where

- Q is a finite set called the set of states,
- Σ is a finite set called the alphabet,
- $\delta: Q \times \sum_{\varepsilon} \rightarrow P(Q)$ is the transition function,
- $q_{0} \in Q$ is the start state, and
- $F \subseteq Q$ is the set of accept states (final states)

Example: $N=\left(Q, \Sigma, \delta, q_{1}, F\right)$, where

- $Q=\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\}$,
- $\Sigma=\{0,1\}$,
- δ is described as
- q_{1} is the start state
- $F=\left\{q_{4}\right\}$

Acceptance/Recognition by NFA

Let $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a non-deterministic finite automaton and $y=y_{1} y_{2} \ldots y_{n}$ be a string where each $y_{i} \in$ $\sum_{\varepsilon^{*}}$. Then N accepts y if a sequence of states $r_{0}, r_{1}, \ldots, r_{m}$ in Q exists with three conditions:

- $r_{0}=q_{0}$,
- $r_{i+1} \in \delta\left(r_{i}, y_{i+1}\right)$, for $i=0,1, \ldots, m-1$, and
- $r_{m} \in F$

Therefore, N recognizes language A_{N} if $\mathrm{A}_{\mathrm{N}}=\{y \mid \mathrm{N}$ accepts y$\}$

Example:
$L\left(N_{1}\right)=A_{N 1}\left(N_{1}\right.$ recognizes/accepts $\left.A_{N 1}\right)$, where $A_{N 1}=\{y \mid y$ contains either 101 or 11 as a substring $\}$

Regular Operations

A language is called a regular language iff some DFA recognizes it

Let A and B be regular languages. The regular operations union, concatenation and star are defined as follows:

- Union: $A \cup B=\{x \mid x \in A$ or $x \in B\}$
- Concatenation: $\mathrm{A} \circ \mathrm{B}=\{\mathrm{xy} \mid \mathrm{x} \in \mathrm{A}$ and $\mathrm{y} \in \mathrm{B}\}$
- Star: $A^{*}=\left\{x_{1} x_{2} \ldots x_{k} \mid k \geq 0\right.$ and $\left.x_{i} \in A\right\}$

Binary Operation

Closure under Regular Operations

Closure Theorems:

- The class of regular languages is closed under the union operation

$$
\text { (if } \mathrm{A}_{1} \text { and } \mathrm{A}_{2} \text { are regular languages, so is } \mathrm{A}_{1} \cup \mathrm{~A}_{2} \text {) }
$$

- The class of regular languages is closed under the concatenation operation

$$
\text { (if } \mathrm{A}_{1} \text { and } \mathrm{A}_{2} \text { are regular languages, so is } \mathrm{A}_{1} \circ \mathrm{~A}_{2} \text {) }
$$

- The class of regular languages is closed under the star operation (if A is a regular language, so is A^{*})

Regular Expressions

R is a regular expression if R is

- a for some a in the alphabet \sum,
- ε,
- Φ,
- $\left(R_{1} \cup R_{2}\right)$, where R_{1} and R_{2} are regular expressions
- $\left(R_{1} \circ R_{2}\right)$, where R_{1} and R_{2} are regular expressions
- $R_{1}{ }^{*}$, where R_{1} is a regular expression

Some Important Identities:

- $R^{+} \equiv R R^{*}$ and $R^{+} U \varepsilon \equiv R^{*}$
- $R U \Phi \equiv R$ and $R \circ \varepsilon \equiv R$
- ($R \cup \varepsilon$) may not equal $R(E x$: if $R=0$; then $L(R)=\{0\}$, but $L(R \cup \varepsilon)=\{0, \varepsilon\})$
- $(R \circ \Phi)$ may not equal $R(E x$: if $R=0$; then $L(R)=\{0\}$, but $L(R \circ \Phi)=\Phi)$

Example of Regular Expression

- Let $D=\{0,1,2,3,4,5,6,7,8,9\}$ is the alphabet of decimal digits; then a numerical constant that may include a fractional part and/or a sign may be described as a member of the language: (+ U-U $\varepsilon)\left(D^{+} U\left(D^{+} . D^{*}\right) U\left(D^{*} . D^{+}\right)\right)$

Equivalence with Finite Automata

Two finite automata are equivalent if they accept the same regular language
Theorems:

- Every non-deterministic finite automaton has an equivalent deterministic finite automaton
- A language is regular if and only if some non-deterministic finite automaton recognizes/accepts it
- A language is regular if and only if some regular expression describes it
- If a language L is accepted by a DFA, then L is denoted by a regular expression

Regular Expression \rightarrow NFA (with ε-moves)

Let R be a regular expression. Then there exists an NFA with ε-transitions (M) that accepts $L(R)$. The construction procedure is as follows:

$R=\varepsilon$

Pumping Lemma: Proving Non-regularity

If A is a regular language, then there is a number p (the pumping length) where, s is any string in A of length at least p, then s may be divided into three pieces, $s=x y z$ satisfying the following conditions:

- For each $i \geq 0, x y^{i} z \in A$
- $|y|>0$, and
- $|x y| \leq p$

Examples:

- The following languages (denoted by B, C, D, E, F) are not regular:
- $B=\left\{0^{n 1 n} \mid n \geq 0\right\}$
- $C=\{w \mid w$ has an equal number of $0 s$ and $1 s\}$
- $F=\{w w \mid w \in\{0,1\} *$
- $D=\left\{1^{n} \mid n \geq 0\right\}$
- $E=\left\{0^{i} 1^{j} \mid i>j\right\}$

