Regular Languages

Foundations of Computing Science

Pallab Dasgupta
Professor,
Dept. of Computer Sc & Engg

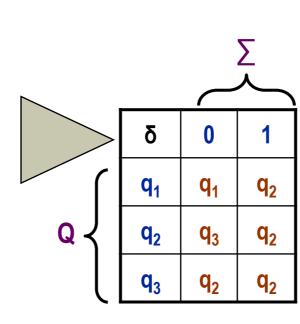
Deterministic Finite Automaton (DFA)

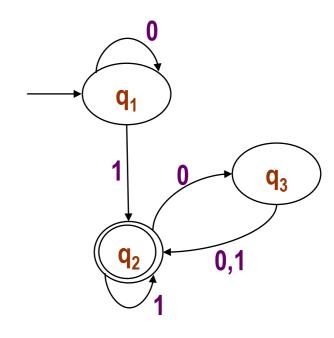
A deterministic finite automaton (DFA) is a 5-tuple (Q, \sum , δ , q_0 , F), where

- Q is a finite set called the set of states,
- ∑ is a finite set called the *alphabet*,
- δ : $Q \times \sum \rightarrow Q$ is the transition function,
- $q_0 \in Q$ is the start state, and
- $F \subseteq Q$ is the set of accept states (final states)

Example: $M = (Q, \sum, \delta, q_1, F)$, where

- $Q = \{q_1, q_2, q_3\},$
- $\sum = \{0,1\},$
- δ is described as
- q_1 is the start state
- $F = \{q_2\}$





Acceptance/Recognition by DFA

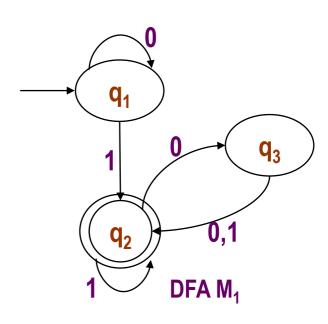
Let M = (Q, \sum , δ , q₀, F) be a deterministic finite automaton and w = w₁w₂...w_n be a string where each w_i $\in \sum$. Then M accepts w if a sequence of states r₀, r₁, ..., r_n in Q exists with three conditions:

- $r_0 = q_0$,
- $\delta(r_i, w_{i+1}) = r_{i+1}$, for i = 0, 1, ..., n-1, and
- $r_n \in F$

Therefore, M recognizes language A_M if $A_M = \{w \mid M \text{ accepts } w\}$

Example:

 $L(M_1) = A_{M1}$ (M₁ recognizes/accepts A_{M1}), where $A_{M1} = \{w \mid w \text{ contains at least one 1 and}$ an even number of 0s follow the last 1}



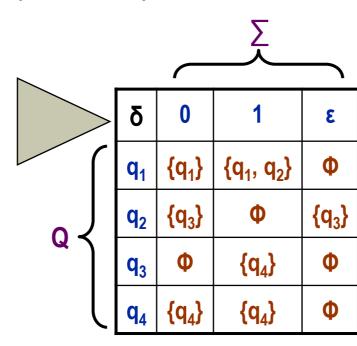
Non-deterministic Finite Automaton (NFA)

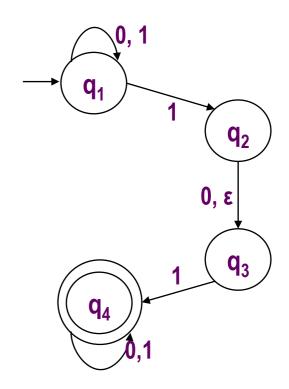
A non-deterministic finite automaton (NFA) is a 5-tuple (Q, \sum , δ , q_0 , F), where

- Q is a finite set called the set of states,
- ∑ is a finite set called the *alphabet*,
- $\delta: Q \times \sum_{\varepsilon} \rightarrow P(Q)$ is the transition function,
- $q_0 \in Q$ is the start state, and
- $F \subseteq Q$ is the set of accept states (final states)

Example: $N = (Q, \sum, \delta, q_1, F)$, where

- $Q = \{q_1, q_2, q_3, q_4\},$
- $\sum = \{0,1\},$
- δ is described as
- q_1 is the start state
- $F = \{q_4\}$





Acceptance/Recognition by NFA

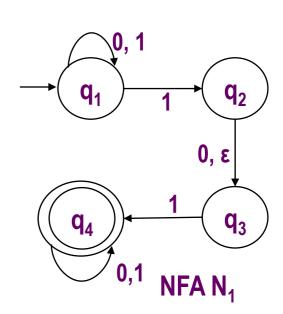
Let N = (Q, \sum , δ , q₀, F) be a non-deterministic finite automaton and y = y₁y₂...y_n be a string where each y_i \in \sum_{ϵ} . Then N accepts y if a sequence of states r₀, r₁, ..., r_m in Q exists with three conditions:

- $r_0 = q_0$,
- $r_{i+1} \in \delta(r_i, y_{i+1})$, for i = 0, 1, ..., m-1, and
- r_m ∈ F

Therefore, N recognizes language A_N if $A_N = \{y \mid N \text{ accepts } y\}$

Example:

$$L(N_1) = A_{N1}$$
 (N₁ recognizes/accepts A_{N1}), where $A_{N1} = \{y \mid y \text{ contains either 101 or 11 as a substring}\}$



Regular Operations

A language is called a regular language iff some DFA recognizes it

Let A and B be regular languages. The regular operations *union*, *concatenation* and *star* are defined as follows:

- Union: A U B = {x | x ∈ A or x ∈ B}
 Concatenation: A B = {xy | x ∈ A and y ∈ B}
- Star: $A^* = \{x_1x_2...x_k \mid k \ge 0 \text{ and } x_i \in A\}$

Closure under Regular Operations

Closure Theorems:

- The class of regular languages is closed under the union operation (if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$)
- The class of regular languages is closed under the concatenation operation (if A_1 and A_2 are regular languages, so is $A_1 \circ A_2$)
- The class of regular languages is closed under the star operation (if A is a regular language, so is A*)

Regular Expressions

R is a regular expression if R is

- a for some a in the alphabet ∑,
- ٠ ٤,
- Ф,
- (R₁ U R₂), where R₁ and R₂ are regular expressions
- $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions
- R₁*, where R₁ is a regular expression

Some Important Identities:

- $R^+ \equiv RR^*$ and $R^+ \cup \epsilon \equiv R^*$
- $R U \Phi \equiv R$ and $R \circ \varepsilon \equiv R$
- $(R \cup \epsilon)$ may not equal R (Ex: if R = 0; then $L(R) = \{0\}$, but $L(R \cup \epsilon) = \{0, \epsilon\}$)
- $(R \circ \Phi)$ may not equal R (Ex: if R = 0; then L(R) = $\{0\}$, but L(R $\circ \Phi$) = Φ)

Example of Regular Expression

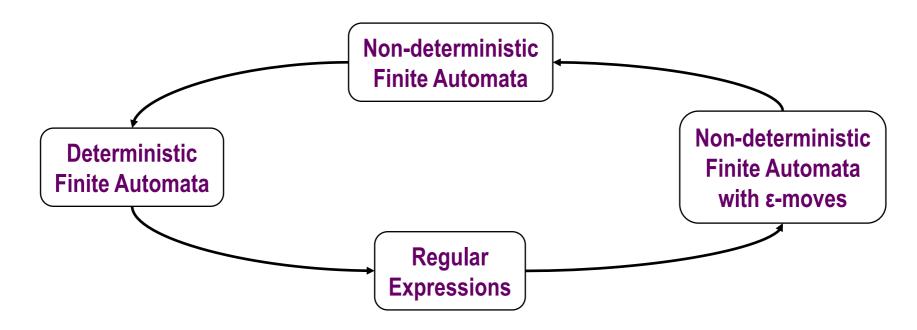
Let D = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} is the alphabet of decimal digits; then a numerical constant that may include a fractional part and/or a sign may be described as a member of the language: (+ U – U ε) (D+ U (D+. D+) U (D+. D+))

Equivalence with Finite Automata

Two finite automata are equivalent if they accept the same regular language

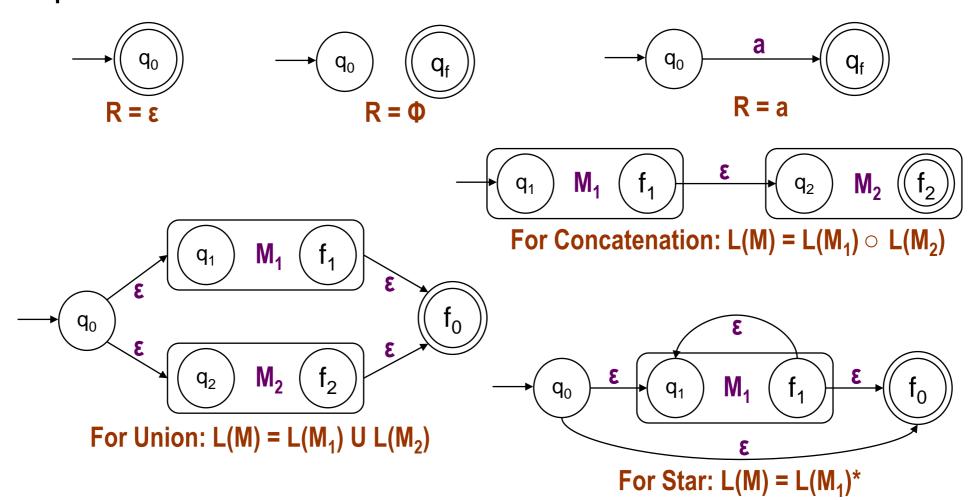
Theorems:

- Every non-deterministic finite automaton has an equivalent deterministic finite automaton
- A language is regular if and only if some non-deterministic finite automaton recognizes/accepts it
- A language is regular if and only if some regular expression describes it
- If a language L is accepted by a DFA, then L is denoted by a regular expression



Regular Expression \rightarrow NFA (with ϵ -moves)

Let R be a regular expression. Then there exists an NFA with ε -transitions (M) that accepts L(R). The construction procedure is as follows:



Pumping Lemma: Proving Non-regularity

If A is a regular language, then there is a number p (the pumping length) where, s is any string in A of length at least p, then s may be divided into three pieces, s = xyz satisfying the following conditions:

- For each $i \ge 0$, $x y^i z \in A$
- |y| > 0, and
- |xy| ≤ p

Examples:

- The following languages (denoted by B, C, D, E, F) are not regular:
 - $B = \{0^n1^n \mid n \ge 0\}$
 - C = {w | w has an equal number of 0s and 1s}
 - $F = \{ww \mid w \in \{0, 1\}^*\}$
 - $D = \{1^n \mid n \ge 0\}$
 - $E = \{0^i 1^j | i > j\}$