Reducibility

Foundations of Computing Science

Pallab Dasgupta
Professor,
Dept. of Computer Sc \& Engg

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Undecidable Problems from Language Theory

Theorems:

- Let $\operatorname{HALT}_{T M}=\{<M, w>\mid M$ is a TM and M halts on input $w\}$, then $\operatorname{HALT}_{T M}$ is undecidable
- Let $E_{T M}=\{<M>\mid M$ is a TM and $L(M)=\Phi\}$, then $\mathrm{E}_{\text {TM }}$ is undecidable
- Let REGULAR $_{T M}=\{<M>\mid M$ is a $T M$ and $L(M)$ is a regular language $\}$, then REGULAR $_{\text {TM }}$ is undecidable
- Let $E Q_{T M}=\left\{<M_{1}, M_{2}>\mid M_{1} \& M_{2}\right.$ are TMs and $\left.L\left(M_{1}\right)=L\left(M_{2}\right)\right\}$, then $E Q_{T M}$ is undecidable

Reductions via Computation Histories

Important Definitions:

- Let M be a Turing machine and w an input string. An accepting computation history for M on w is a sequence of configurations, $C_{1}, C_{2}, \ldots, C_{1}$, where C_{1} is the start configuration of M on w, C_{l} is an accepting configuration of M, and each C_{i} legally follows from C_{i-1} according to the rules of M. A rejecting computation history for M on w is defined similarly, except that C, is a rejecting configuration.
- A linear bounded automaton (LBA) is a restricted type of Turing machine wherein the tape head is not permitted to move off the portion of the tape containing the input. If the machine tries to move its head off either end of the input, the head stays where it is, in the same way that the head will not move off the left-hand end of an ordinary Turing machine's tape.

Reductions via Computation Histories (contd...)

Lemma:

- Let M be an LBA with q states and g symbols in the tape alphabet. There are exactly $q n^{n}$ distinct configurations of M for a tape of length n

Theorems:

- Let $A_{\text {LBA }}=\{<M, w>\mid M$ is an LBA that accepts string $w\}$, then $A_{\text {LBA }}$ is decidable
- Let $E_{L B A}=\{<M>\mid M$ is an LBA where $L(M)=\Phi\}$, then $E_{\text {LBA }}$ is undecidable
- Let $A L L_{C F G}=\left\{\langle G\rangle \mid M\right.$ is a CFG and $\left.L(G)=\Sigma^{*}\right\}$, then ALL $_{\text {CFG }}$ is undecidable

A Simple Undecidable Problem

Post Correspondence Problem (PCP)

- The PCP is a collection P of dominos:

$$
\cdot P=\left\{\left[-\frac{t_{1}}{b_{1}}\right],\left[-\frac{t_{2}}{b_{2}}-\right], \ldots,\left[-\frac{t_{k}}{b_{k}}-\right]\right\}
$$

- A match is a sequence $i_{1}, i_{2}, \ldots, i_{i}$; where $t_{i 1} t_{i 2} \ldots t_{i l}=b_{i 1} b_{i 2} \ldots b_{i l}$
- The problem is to determine whether P has a match

Theorem:

- Let $\mathrm{PCP}=\{<\mathrm{P}\rangle \mid \mathrm{P}$ is an instance of the Post correspondence problem with a match\}, then PCP is undecidable

Mapping Reducibility

A function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ is a computable function if some Turing machine M, on every input w, halts with just $f(w)$ on its tape
Language A is mapping reducible to language B, written $A \leq_{m} B$,

- If there is a computable function $f: \Sigma^{*} \rightarrow \Sigma^{*}$, where for every w, $w \in A \Leftrightarrow f(w) \in B$
- The function f is called the reduction of A to B

Theorems:

- If $A \leq_{m} B$ and B is decidable, then A is decidable
- If $A \leq_{m} B$ and A is undecidable, then B is undecidable
- If $A \leq_{m} B$ and B is Turing-recognizable, then A is Turing-recognizable
- If $A \leq_{m} B$ and A is not Turing-recognizable, then B is not Turing-recognizable
- Let $E Q_{T M}=\left\{<M_{1}, M_{2}>\mid M_{1} \& M_{2}\right.$ are $T M s$ and $\left.L\left(M_{1}\right)=L\left(M_{2}\right)\right\}$, then $E Q_{T M}$ is neither Turing-recognizable, nor co-Turing-recognizable

