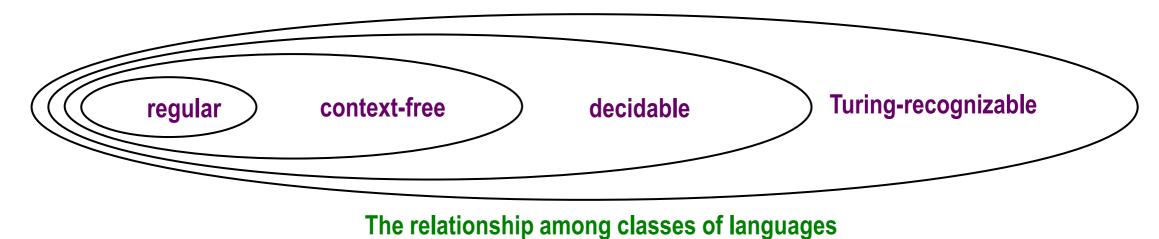
Decidability

Foundations of Computing Science

Pallab Dasgupta Professor, Dept. of Computer Sc & Engg

Decidable Problems Concerning Regular Languages


Theorems:

- Let A_{DFA} = {<B, w> | B is a DFA that accepts input string w}, then A_{DFA} is a decidable language
- Let A_{NFA} = {<B, w> | B is a NFA that accepts input string w}, then A_{NFA} is a decidable language
- Let A_{REX} = {<R, w> | R is a regular expression that generates string w}, then A_{REX} is a decidable language
- Let E_{DFA} = {<A> | A is a DFA and L(A) = Φ}, then E_{DFA} is a decidable language (*emptiness testing*)
- Let EQ_{DFA} = {<A, B> | A & B are DFAs and L(A) = L(B)}, then EQ_{DFA} is a decidable language

Decidable Problems Concerning Context-free Languages

Theorems:

- Let A_{CFG} = {<G, w> | G is a CFG that generates string w}, then A_{CFG} is a decidable language
- Let E_{CFG} = {<G> | G is a CFG and L(G) = Φ}, then E_{CFG} is a decidable language (*emptiness testing*)
- Let EQ_{CFG} = {<G, H> | G & H are CFGs and L(G) = L(H)}, then EQ_{CFG} is an undecidable language
- Every context-free language is decidable

The Halting Problem

- > Let $A_{TM} = \{ <M, w > | M \text{ is a TM and } M \text{ accepts } w \}$
 - A_{TM} is *Turing-recognizable*
 - A_{TM} is undecidable
- The Diagonalization Method [Georg Cantor, 1873]
 - Definitions:
 - A function that is both one-to-one and onto is called a *correspondence*
 - A set is *countable* if either it is finite or it has the same size as $\boldsymbol{\mathcal{N}}$
 - Example (Theorem): The set of real numbers (\mathcal{R}) is *uncountable*
 - Corollary: Some languages are not Turing-recognizable
- The Halting Problem (A_{TM}) is undecidable
- > A Turing-unrecognizable Language
 - Theorem: A language is *decidable* if and only if it is *Turing-recognizable* and *co-Turing-recognizable*
 - Corollary: $\overline{A_{TM}}$ is *not* Turing-recognizable

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR