The Church-Turing Thesis

Foundations of Computing Science

Pallab Dasgupta
Professor,
Dept. of Computer Sc \& Engg

Turing Machines

A Turing Machine is a 7 -tuple, $\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }} q_{\text {reject }}\right)$, where

- Q, Σ, Γ are all finite sets
- Q is the set of states
- Σ is the input alphabet not containing the blank symbol \sqcup
$\cdot \delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}$ is the transition function
- $q_{0} \in Q$ is the start state
- $q_{\text {accept }} \in Q$ is the accept state
- $q_{\text {reject }} \in Q$ is the reject state, where $q_{\text {rject }} \neq q_{\text {accept }}$

Differences Between Finite Automata and Turing Machines

- A Turing machine can both write on the tape and read from it.
- The read-write head can both move to the left and to the right.
- The tape is infinite.
- The special states for rejecting and accepting take effect immediately.

Language for Turing Machines

A Turing Machine M accepts input w if a sequence of configurations $C_{1}, C_{2}, \ldots, C_{k}$ exists, where

- C_{1} is the start configuration of M on input w
- Each C_{i} yields C_{i+1}
- C_{k} is an accepting configuration

The collection of strings that M accepts is the language of M, or the language recognized by M, denoted by $L(M)$

- A language is Turing-recognizable (recursively enumerable language) iff some Turing machine recognizes it.
- A language is Turing-decidable (recursive language) or decidable iff some Turing machine decides it.
- Every Turing-decidable language is also Turing-recognizable.

Example of Turing Machine

Turing Machine M that decides $A=\left\{0^{2^{n}} \mid n \geq 0\right\}$
M on input string w,

1. Sweep left to right across the tape, crossing off every alternate 0
2. If in Stage 1, the tape contained a single 0 , accept
3. If in Stage 1 , the tape contained more than a single 0 , and the number of Os was odd, reject
4. Return the head to the left-hand end of the tape
5. Go to Stage 1
$M=\left(Q, \Sigma, \Gamma, \delta, q_{1}, q_{\text {accept }} q_{\text {reject }}\right)$, where

- $Q=\left\{q_{1}, q_{2}, q_{3}, q_{4}, q_{5}, q_{\text {accept }}, q_{\text {reject }}\right\}$
- $q_{1} \leftarrow$ start state
- $q_{\text {accept }} \leftarrow$ accept state
- $q_{\text {reject }} \leftarrow$ reject state
- $\Sigma=\{0\}$ and $\Gamma=\{0, \mathrm{x}, \sqcup\}$

Variants of Turing Machines

Multi-tape Turing Machines

- Transition function, $\delta: Q \times \Gamma^{\mathrm{k}} \rightarrow \mathrm{Q} \times \Gamma^{\mathrm{k}} \times\{\mathrm{L}, \mathrm{R}, \mathrm{S}\}^{\mathrm{k}}$ (k is the number of tapes)
- The expression $\delta\left(q_{i}, a_{1}, a_{2}, \ldots, a_{k}\right)=\left(q_{j}, b_{1}, b_{2}, \ldots, b_{k}, L, S, \ldots, L\right)$ means that,
- the machine is in state q_{i} and heads 1 through k reading a_{1} through a_{k}
- the machine goes to state q_{j}, writing symbols b_{1} through b_{k}
- the machine directs each head to move left(L), right(R) or stay put(S)
- Theorems:
- Every multi-tape Turing machine has an equivalent single-tape Turing machine
- A language is Turing-recognizable if and only if some multi-tape Turing machine recognizes it

Variants of Turing Machines (contd...)

Nondeterministic Turing Machines

- Transition function, $\delta: Q \times \Gamma \rightarrow \mathscr{P}(Q \times \Gamma \times\{L, R\})$
- Theorems:
- Every nondeterministic Turing machine has an equivalent deterministic Turing machine
- A language is Turing-recognizable if and only if some nondeterministic Turing machine recognizes it
- A language is decidable if and only if some nondeterministic Turing machine decides it

Enumerators

- Starts with a blank input tape
- Language can be infinite list of strings (may be repetitive and generated by the enumerator without halting)
- Theorem: A language is Turing-recognizable if and only if some enumerator enumerates it

The Definition of Algorithm

- Hilbert's $10^{\text {th }}$ Problem:

■ Devise an algorithm that tests whether a polynomial has an integral root.

- $D=\{p \mid p$ is a polynomial with an integral root $\}$ - whether D is decidable
- The answer is negative; in contrast D is Turing-recognizable

To Define Algorithms

- Church proposed notational system called λ-calculus
- Turing proposed "machine"

The Church-Turing Thesis

Intuitive notion of algorithms	equals	Turing machine algorithms

