The Church-Turing Thesis

Foundations of Computing Science

Pallab Dasgupta Professor, Dept. of Computer Sc & Engg

Turing Machines

A Turing Machine is a 7-tuple, (Q, Σ , Γ , δ , q_0 , q_{accept} , q_{reject}), where

- Q, Σ, Γ are all *finite* sets
- Q is the set of states
- Σ is the *input alphabet* not containing the *blank symbol* \Box
- $\delta: \mathbb{Q} \times \Gamma \rightarrow \mathbb{Q} \times \Gamma \times \{L, R\}$ is the transition function
- q₀ € Q is the start state
- q_{accept} € Q is the accept state
- $q_{reject} \in Q$ is the *reject state*, where $q_{reject} \neq q_{accept}$

Differences Between Finite Automata and Turing Machines

- A Turing machine can both write on the tape and read from it.
- The read-write head can both move to the left and to the right.
- The tape is infinite.
- The special states for rejecting and accepting take effect immediately.

Language for Turing Machines

A Turing Machine *M* accepts input *w* if a sequence of configurations $C_1, C_2, ..., C_k$ exists, where

- C₁ is the start configuration of M on input w
- Each C_i yields C_{i+1}
- C_k is an accepting configuration

The collection of strings that *M* accepts is the *language of M*, or the *language recognized by M*, denoted by *L(M)*

- A language is Turing-recognizable (recursively enumerable language) iff some Turing machine recognizes it.
- A language is Turing-decidable (recursive language) or decidable iff some Turing machine decides it.
- Every Turing-decidable language is also Turing-recognizable.

Example of Turing Machine

Turing Machine *M* that decides $A = \{0^{2^n} | n \ge 0\}$

M on input string *w*,

- **1.** Sweep left to right across the tape, crossing off every alternate 0
- 2. If in Stage 1, the tape contained a single 0, *accept*
- 3. If in Stage 1, the tape contained more than a single 0, and the number of 0s was odd, *reject*

Variants of Turing Machines

Multi-tape Turing Machines

- Transition function, $\delta: \mathbb{Q} \times \Gamma^k \rightarrow \mathbb{Q} \times \Gamma^k \times \{L, R, S\}^k$ (k is the number of tapes)
- The expression $\delta(q_i, a_1, a_2, ..., a_k) = (q_j, b_1, b_2, ..., b_k, L, S, ..., L)$ means that,
 - the machine is in state q_i and heads 1 through k reading a₁ through a_k
 - the machine goes to state q_i , writing symbols b_1 through b_k
 - the machine directs each head to move *left(L)*, *right(R)* or *stay put(S)*
- Theorems:
 - Every multi-tape Turing machine has an equivalent single-tape Turing machine
 - A language is Turing-recognizable if and only if some multi-tape Turing machine recognizes it

Variants of Turing Machines (contd...)

Nondeterministic Turing Machines

- Transition function, $\delta: Q \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\})$
- Theorems:
 - Every nondeterministic Turing machine has an equivalent deterministic Turing machine
 - A language is Turing-recognizable if and only if some nondeterministic Turing machine recognizes it
 - A language is decidable if and only if some nondeterministic Turing machine decides it

Enumerators

- Starts with a blank input tape
- Language can be infinite list of strings (may be repetitive and generated by the enumerator without halting)
- Theorem: A language is Turing-recognizable if and only if some enumerator enumerates it

The Definition of Algorithm

Hilbert's 10th Problem:

- Devise an algorithm that tests whether a polynomial has an integral root.
- **D** = {p | p is a polynomial with an integral root} whether **D** is decidable
- The answer is negative; in contrast D is Turing-recognizable

To Define Algorithms

- Church proposed notational system called λ -calculus equivalent
- Turing proposed "machine"

The Church-Turing Thesis

Intuitive notion	equals	Turing machine
of algorithms		algorithms