Context-free Languages

Foundations of Computing Science

Pallab Dasgupta
Professor,
Dept. of Computer Sc \& Engg

Context-free Grammar (CFG)

A context-free grammar (CFG) is a 4-tuple (V, Σ, R, S), where

- V is a finite set called the variables
- Σ is a finite set, disjoint from V, called the terminals
- R is a finite set of rules, with each rule being a variable and a string of variables and terminals
- $S \in V$ is the start variable

Few Terminologies / Notions:

- If u, v and w are strings of variables and terminals, and $A \rightarrow w$ is a rule of the grammar, we say that $u A v$ yields $u w v$, written as $u A v=>u w v$
- u derives v, written as $u \stackrel{*}{=}>v$, if $u=v$ or if a sequence $u_{1}, u_{2}, \ldots, u_{k}$ exists for $k \geq 0$ and $u=u_{1}=u_{2}=\ldots=u_{k}=v$
- The language generated by some context-free grammar (CFG), G, is called the context-free language $(C F L), L(G)=\left\{w \in \Sigma^{*} \mid S \stackrel{*}{=}>w\right\}$

Example of Context-free Grammars

Example-1:

$G_{1}=(\{S\},\{()\}, R, S$,$) , where set of rules (R)$, is $S \rightarrow(S)|S S| \varepsilon$ Here, $L\left(G_{1}\right)=$ all strings of properly nested parenthesis
Example-2:
$G_{2}=(V, \Sigma, R,\langle E X P R\rangle)$, where V is $\{<E X P R>,\langle T E R M>,\langle F A C T O R\rangle\}$ and Σ is $\{a,+, x,()$,$\} . The rules (R$) are

```
<EXPR> > <EXPR> + <TERM> | <TERM>
<TERM> > <TERM> x < FACTOR > | < FACTOR >
<FACTOR> > (<EXPR> ) | a
```


Designing Context-free Grammars

Example:

Let $L\left(G_{3}\right)=$ equal number of 1 s and 0 s follow each other

$$
=\left\{0^{n} 1^{n} \mid n \geq 0\right\} \cup\left\{1^{n} 0^{n} \mid n \geq 0\right\}
$$

The grammar for the language $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is $S_{1} \rightarrow 0 S_{1} 1 \mid \varepsilon$ and the grammar for the language $\left\{1^{n} 0^{n} \mid n \geq 0\right\}$ is $S_{2} \rightarrow 1 S_{2} 0 \mid \varepsilon$
Therefore, The complete grammar for the grammar $L\left(G_{3}\right)$ is

$$
S \rightarrow S_{1}\left|S_{2} ; S_{1} \rightarrow 0 S_{1} 1\right| \varepsilon ; S_{2} \rightarrow 1 S_{2} 0 \mid \varepsilon
$$

Designing CFG for Regular Languages:

- Regular Languages \rightarrow DFA
- If $\delta\left(q_{i}, a\right)=q_{j}$ is a transition in DFA; add the rule $R_{i} \rightarrow a R_{j}$ to CFG
- Add the rule $R_{i} \rightarrow \varepsilon$ to CFG if q_{i} is an accept state
- Make R_{0} the start variable of CFG, where q_{0} is the start state of DFA

Ambiguity

A string w is derived ambiguously in context-free grammar G iff it has two or more different leftmost derivations

Grammar G is ambiguous iff it generates some string ambiguously

Example:

- Consider the grammar G_{4} :
<EXPR> \rightarrow <EXPR> + <EXPR> | <EXPR> x <EXPR> | (<EXPR>) | a
- G_{4} generates the string $a+a \times a$ ambiguously

Two Parse Trees for the Same String a $+\mathrm{a} \times \mathrm{a}$

Chomsky Normal Form

A context-free grammar is in Chomsky Normal Form iff every rule is of the form
$A \rightarrow B C$ and $A \rightarrow a$, where

- a is any terminal
- A, B and C are any variables - except that B and C may not be start variable
- In addition, we permit the rule $S \rightarrow \varepsilon$, where S is the start variable

Theorem:

- Any context-free language is generated by a context-free grammar in Chomsky normal form

Any CFG \rightarrow Chomsky Normal Form

A Transformation Example:

Pushdown Automaton (PDA)

A pushdown automata (PDA) is a 6 -tuple ($Q, \Sigma, \Gamma, \delta, q_{0}, F$), where

- Q, Σ, Γ and F are all finite sets
- Q is the set of states
- Σ is the input alphabet
- Γ is the stack alphabet
- $\delta: Q \times \Gamma_{\varepsilon} \times \Gamma_{\varepsilon} \rightarrow P\left(Q \times \Gamma_{\varepsilon}\right)$ is the transition relation
- $q_{0} \in Q$ is the start state
- $F \subseteq Q$ is the set of accept states

Examples of PDA

Let the PDA M_{1} be $\left(Q, \Sigma, \Gamma, \delta, q_{1}, F\right)$, where

$Q=\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\}$	Input	0			1			ε		
$\begin{aligned} & \Sigma=\{0,1\} \\ & \Gamma=\{0, \$\} \end{aligned}$	Stack	0	\$	ε	0	\$	ε	0	\$	ε
$\mathrm{F}=\left\{\mathrm{q}_{1}, \mathrm{q}_{4}\right\}$	q_{1}									$\left\{\left(q_{2}, \$\right)\right\}$
δ is given by	q_{2}			$\left\{\left(\mathrm{a}_{2}, 0\right)\right\}$	$\left\{\left(9_{3}, \varepsilon\right)\right\}$					
	q_{3}				$\left\{\left(9_{3}, \varepsilon\right)\right\}$				$\left\{\left(q_{4}, \varepsilon\right)\right\}$	
	q_{4}									

PDA M_{1} recognizes the language,

$$
L\left(M_{1}\right)=\left\{0^{n} 1^{n} \mid n \geq 0\right\}
$$

Acceptance/Recognition by PDA

A pushdown automaton $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$ accepts input w if

- w can be written as $w=w_{1} w_{2} \ldots w_{m}$, where each $w_{i} \in \Sigma_{\varepsilon}$
- Sequences of states $r_{0}, r_{1}, \ldots, r_{m} \in Q$ and strings $s_{0}, s_{1}, \ldots, s_{m} \in \Gamma^{*}$ exists (the strings s_{i} represent the sequence of stack contents that M has on the accepting branch of the computation)
- The following three conditions are satisfied:
- $r_{0}=q_{0}$ and $s_{0}=\varepsilon$
[M starts out properly, in the start state and with an empty stack]
- For $i=0,1, \ldots, m-1$; we have $\left(r_{i+1}, b\right) \in \delta\left(r_{i}, w_{i+1}, a\right)$, where $s_{i}=$ at and $s_{i+1}=b t$ for some $a, b \in \Gamma_{\varepsilon}$ and $t \in \Gamma^{*}$
[M moves properly according to the state, stack \& next input symbol]
- $r_{m} \in F$ [an accept state occurs at the input end]

Theorem:

- A language is context-free if and only if some pushdown automaton recognizes it
- Every regular language is context-free

Pumping Lemma for CFL

If A is a context-free language, then there is a number p (the pumping length), where, if s is any string in A of length at least p, then s may be divided into five pieces $s=u v x y z$ satisfying the following conditions:

- For each $i \geq 0$, uvixy'z $\in A$
- $|v y|>0$, and
- $|v x y| \leq p$

Examples:

- The following languages (denoted by B, C, D) are not context-free:
- $B=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$
- $C=\left\{a^{i} b^{j} c^{k} \mid 0 \leq i \leq j \leq k\right\}$
- $D=\left\{w w \mid w \in\{0,1\}^{*}\right\}$

