Space Complexity CS60001: Foundations of Computing Science

Pallab Dasgupta

Professor, Dept. of Computer Sc. & Engg., Indian Institute of Technology Kharagpur

Introduction

Definition

- Let *M* be a deterministic Turing machine that halts on all inputs. The *space complexity* of *M* is the function $f: \mathcal{N} \rightarrow \mathcal{N}$, where f(n) is the maximum number of tape cells that *M* scans on any input of length *n*. If the space complexity of *M* is f(n), we also say that *M* runs in space f(n)
- If M is a non-deterministic Turing machine wherein all branches halt on all inputs, we define its space complexity f(n) to be the maximum number of tape cells that M scans on any branch of its computation for any input of length n

Space Complexity Classes

- □ Definition: Let f: N → R be a function. The space complexity classes, SPACE(f(n)) and NSPACE(f(n)), are defined as follows:
 - SPACE(f(n)) = {L | L is a language decided by O(f(n)) space deterministic Turing machine}
 - NSPACE(f(n)) = {L | L is a language decided by an O(f(n)) space

non-deterministic Turing machine}

Examples

- SAT can be solved with a linear space algorithm [Space complexity = O(n)]
- Testing whether a non-deterministic finite automaton accepts all strings,
 - i.e. $ALL_{NFA} = \{ < A > | A \text{ is a NFA and } L(A) = \Sigma^* \}$
 - Non-deterministic space complexity = O(n)
- SAVITCH'S Theorem
 - For any function $f: \mathcal{N} \rightarrow \mathcal{R}^{\dagger}$, where $f(n) \ge n$,

 $NSPACE(f(N)) \subseteq SPACE(f^{2}(n))$

The Class PSPACE

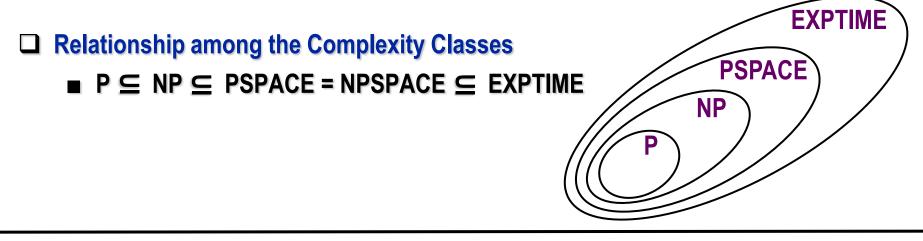
Definition

 PSPACE is the class of languages that are decidable in polynomial space on a deterministic Turing machine. In other words,

```
PSPACE = \bigcup_{k} SPACE(n^{k})
```

 NPSPACE is the class of languages that are decidable in polynomial space on a non-deterministic Turing machine. In other words,

NPSPACE = \bigcup_{k} NSPACE(n^k)



Indian Institute of Technology Kharagpur

PSPACE-Completeness

Definition

- A language *B* is *PSPACE-complete* if it satisfies two conditions:
 - B is in PSPACE, and
 - Every \mathcal{A} in PSPACE is polynomial time reducible to \mathcal{B}
- If *B* merely satisfies condition-2, we say that it is *PSPACE-hard*

Examples of PSPACE-complete Problems

- TQBF = {<Φ> | Φ is a true fully quantified Boolean formula}
- FORMULA-GAME = {<Φ> | Player E has a winning strategy in

the formula game associated with ϕ }

GENERALIZED-GEOGRAPHY =

{<G, b> | Player I has a winning strategy for the generalized
geography game played on the graph G starting at node b}

The Classes L and NL

Definitions

- L is the class of languages that are decidable in logarithmic space on a deterministic Turing machine. In other words, L = SPACE(log n)
- NL is the class of languages that are decidable in logarithmic space on a non-deterministic Turing machine. In other words, NL = NSPACE(log n)

Examples

- The language $\mathcal{A} = \{0^{k}1^{k} \mid k \ge 0\}$ is a member of L
- The language PATH = {<G, s, t> | G is a directed graph that has a directed path from s to t} is a member of NL

Definition

If *M* is a Turing machine that has a separate read-only input tape and *w* is an input, a configuration of *M* on *w* is a setting of the state, the work tape, and the position of the two tape heads. The input *w* is not a part of the configuration of *M* on *w*

Definitions

- A log space transducer is a Turing machine with a read-only input tape, a write-only output tape, and a read/write work tape. The work tape may contain O(log n) symbols.
- A log space transducer *M* computes a function $f: \Sigma^* \rightarrow \Sigma^*$, where f(w) is the string remaining on the output tape after *M* halts when it is started with *w* on its input tape. We call *f* a *log space computable function*.
- Language \mathcal{A} is log space reducible language \mathcal{B} , written $\mathcal{A} \leq_{L} \mathcal{B}$, if \mathcal{A} is mapping reducible to \mathcal{B} by means of a log space computable function f

NL-Completeness

Definition

- A language *B* is *NL*-complete if
 - $\mathcal{B} \in \mathsf{NL}$, and
 - Every \mathcal{A} in NL is log space reducible to \mathcal{B}

Theorem

- If $\mathcal{A} \leq_{L} \mathcal{B}$ and $\mathcal{B} \in L$, then $\mathcal{A} \in L$
- Corollary: If any NL-complete language is in *L*, then *L* = *NL*
- Example of NL-complete Problems
 - PATH = {<G, s, t> | G is a directed graph that has a directed path from s to t}
 - Corollary: $NL \subseteq P$

Theorem

NL = coNL