Decidability

CS60001: Foundations of Computing Science

Pallab Dasgupta

Professor, Dept. of Computer Sc. & Engg., Indian Institute of Technology Kharagpur

Decidable Problems Concerning Regular Languages

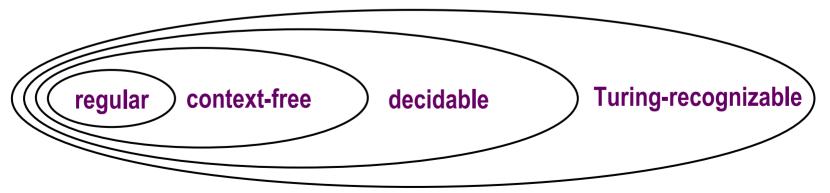
☐ Theorems:

- Let $A_{DFA} = \{ \langle B, w \rangle \mid B \text{ is a DFA that accepts input string } w \}$, then A_{DFA} is a decidable language
- Let $A_{NFA} = \{ \langle B, w \rangle \mid B \text{ is a NFA that accepts input string } w \}$, then A_{NFA} is a decidable language
- Let A_{REX} = {<R, w> | R is a regular expression that generates string w}, then A_{REX} is a decidable language
- Let E_{DFA} = {<A> | A is a DFA and L(A) = Φ}, then E_{DFA} is a decidable language (*emptiness testing*)
- Let $EQ_{DFA} = \{ \langle A, B \rangle \mid A \& B \text{ are DFAs and L}(A) = L(B) \}$, then EQ_{DFA} is a decidable language

Decidable Problems Concerning Context-free Languages

☐ Theorems:

- Let $A_{CFG} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates string } w \}$, then A_{CFG} is a decidable language
- Let E_{CFG} = {<G> | G is a CFG and L(G) = Φ}, then E_{CFG} is a decidable language (*emptiness testing*)
- Let EQ_{CFG} = {<G, H> | G & H are CFGs and L(G) = L(H)}, then EQ_{CFG} is a decidable language
- **■** Every context-free language is decidable



The relationship among classes of languages

The Halting Problem

- \Box Let $A_{TM} = \{ < M, w > | M \text{ is a TM and M accepts w} \}$
 - A_{TM} is *Turing-recognizable*
 - A_{TM} is undecidable
- The Diagonalization Method [Georg Cantor, 1873]
 - Definitions:
 - A function that is both one-to-one and onto is called a correspondence
 - A set is *countable* if either it is finite or it has the same size as $\mathcal N$
 - **Example (Theorem): The set of real numbers (?) is uncountable**
 - **Corollary: Some languages are not** *Turing-recognizable*
- \Box The Halting Problem (A_{TM}) is *undecidable*
- ☐ A Turing-unrecognizable Language
 - Theorem: A language is *decidable* if and only if it is *Turing-recognizable* and *co-Turing-recognizable*
 - Corollary: $\overline{A_{TM}}$ is *not* Turing-recognizable