The Church-Turing Thesis

CS60001: Foundations of Computing Science

Pallab Dasgupta

Professor, Dept. of Computer Sc. & Engg., Indian Institute of Technology Kharagpur

Turing Machines

- \Box A Turing Machine is a 7-tuple, (Q, Σ, Γ, δ, q₀, q_{accept}, q_{reject}), where
 - \blacksquare Q, Σ , Γ are all finite sets
 - Q is the set of states
 - ∑ is the *input alphabet* not containing the *blank symbol* ⊔
 - lacksquare Γ is the stack alphabet, where $\ ldot$ ldot Γ and $\Sigma \subseteq \Gamma$
 - δ : Q × Γ → Q × Γ × {L, R} is the transition function
 - \blacksquare $q_0 \in Q$ is the start state
 - Q_{accept} € Q is the accept state
 - $Q_{reject} \in Q$ is the *reject state*, where $Q_{reject} \neq Q_{accept}$
- **☐** Differences Between Finite Automata and Turing Machines
 - A Turing machine can both write on the tape and read from it
 - The read-write head can both move to the left and to the right
 - The tape is infinite
 - The special states for rejecting and accepting take effect immediately

Language for Turing Machines

- \square A Turing Machine *M* accepts input *w* if a sequence of configurations C_1 , C_2 , ..., C_k exists, where

 - \blacksquare Each C_i yields C_{i+1}
- □ The collection of strings that M accepts is the language of M, or the language recognized by M, denoted by L(M)
 - A language is Turing-recognizable (recursively enumerable language) if some Turing machine recognizes it
 - A language is Turing-decidable (recursively language) or decidable if some Turing machine decides it
 - **Every Turing-decidable language is also Turing-recognizable**

Example of Turing Machine

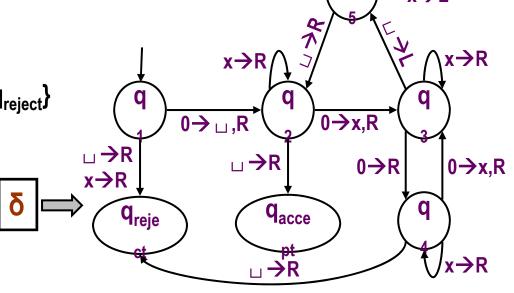
Turing Machine *M* that decides $A = \{0^{2^n} \mid n \ge 0\}$

M on input string w,

- Sweep left to right across the tape, crossing off every other 0
- If in stage 1 the tape contained a single 0, accept
- If in stage 1 the tape contained more than a single 0, and the number of 0s was odd, reject
- Return the head to the left-hand end of the tape
- Go to stage 1

$$M = (Q, \Sigma, \Gamma, \delta, q_1, q_{accept}, q_{reject}), where$$

- $Q = \{q_1, q_2, q_3, q_4, q_5, q_{accept}, q_{reject}\}$
- $q_1 \leftarrow$ start state
- **q**_{accept} ← accept state
- $q_{reject} \leftarrow reject state$
- $\Sigma = \{0\}$ and $\Gamma = \{0, x, \bot\}$



Variants of Turing Machines

- Multi-tape Turing Machines
 - Transition function, $\delta: \mathbb{Q} \times \Gamma^k \to \mathbb{Q} \times \Gamma^k \times \{L, R, S\}^k$ (k is the number of tapes)
 - The expression $\delta(q_i, a_1, a_2, ..., a_k) = (q_i, b_1, b_2, ..., b_k, L, S, ..., L)$ means that,
 - the machine is in state q_i and heads 1 through k reading a_1 through a_k
 - the machine goes to state q_i , which symbols b_1 through b_k
 - the machine directs each head to move left(L), right(R) or stay put(S)

Theorems:

- Every multi-tape Turing machine has an equivalent single-tape Turing machine
- A language is Turing-recognizable if and only if some multi-tape Turing machine recognizes it

Variants of Turing Machines (contd...)

- Nondeterministic Turing Machines
 - Transition function, $δ: Q \times Γ \rightarrow \mathcal{P}(Q \times Γ \times \{L, R\})$
 - Theorems:
 - Every nondeterministic Turing machine has an equivalent deterministic
 Turing machine
 - A language is Turing-recognizable if and only if some nondeterministic
 Turing machine recognizes it
 - A language is decidable if and only if some nondeterministic Turing machine decides it
- □ Enumerators
 - Starts with a blank input tape
 - Language can be infinite list of strings (may be repetitive and generated by the enumerator without halting)
 - Theorem: A language is Turing-recognizable if and only if some enumerator enumerates it

The Definition of Algorithm

- ☐ Hilbert's 10th Problem:
 - Devise an algorithm that tests whether a polynomial has an integral root.
 - D = {p | p is a polynomial with an integral root} whether D is decidable
 - The answer is *negative*; in contrast *D* is *Turing-recognizable*
- **☐** To Define Algorithms
 - Church proposed notational system called λ-calculus
 - **■** Turing proposed "machine"

equivalent

■ The Church-Turing Thesis

Intuitive notion	equals	Turing machine
of algorithms		algorithms