Context-free Languages

CS60001: Foundations of Computing Science

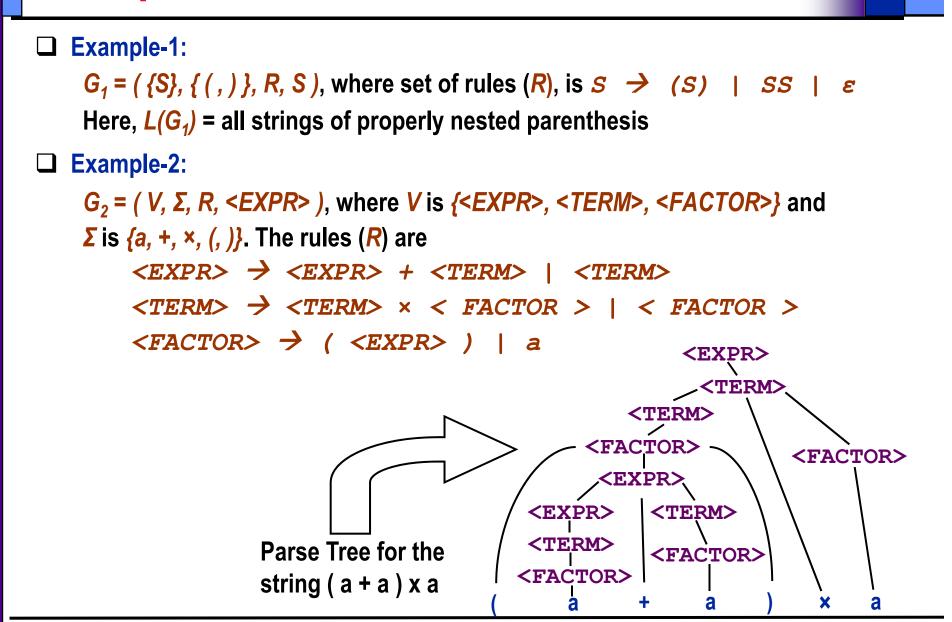
Pallab Dasgupta

Professor, Dept. of Computer Sc. & Engg., Indian Institute of Technology Kharagpur

Context-free Grammar (CFG)

- \square A context-free grammar (CFG) is a 4-tuple (V, Σ , R, S), where
 - V is a finite set called the *variables*
 - ∑ is a finite set, disjoint from V, called the terminals
 - *R* is a finite set of *rules*, with each rule being a variable and a string of variables and terminals
 - \blacksquare S \in V is the start variable
- **☐** Few Terminologies / Notions:
 - If u, v and w are strings of variables and terminals, and $A \rightarrow w$ is a rule of the grammar, we say that uAv yields uwv, written as uAv => uwv
 - u derives v, written as $u \stackrel{*}{=} > v$, if u => v or if a sequence $u_1, u_2, ..., u_k$ exists for $k \ge 0$ and $u => u_1 => u_2 => ... => u_k => v$
 - The language generated by some context-free grammar (CFG), G, is called the context-free language (CFL), $L(G) = \{w \in \Sigma^* \mid S \stackrel{*}{=} > w\}$

Example of Context-free Grammars



Designing Context-free Grammars

Let $L(G_3)$ = equal number of 1s and 0s follow each other = $\{0^n1^n \mid n \ge 0\}$ $U\{1^n0^n \mid n \ge 0\}$

The grammar for the language $\{0^n1^n \mid n \ge 0\}$ is $S_1 \to 0S_11 \mid \varepsilon$ and the grammar for the language $\{1^n0^n \mid n \ge 0\}$ is $S_2 \to 1S_20 \mid \varepsilon$ Therefore, The complete grammar for the grammar $L(G_3)$ is

$$S \rightarrow S_1 \mid S_2 ; S_1 \rightarrow 0S_11 \mid \varepsilon ; S_2 \rightarrow 1S_20 \mid \varepsilon$$

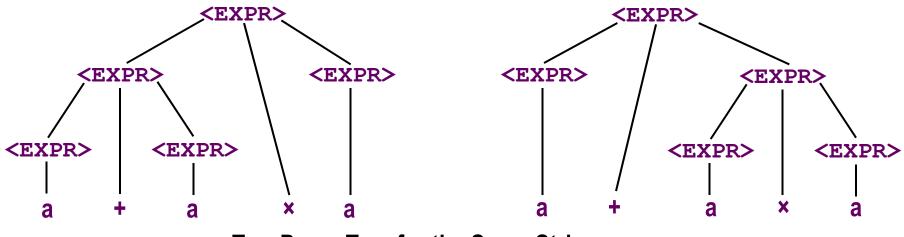
- **□** Designing CFG for Regular Languages:
 - Regular Languages → DFA
 - If $\delta(q_i, a) = q_i$ is a transition in DFA; add the rule $R_i \rightarrow aR_i$ to CFG
 - Add the rule $R_i \rightarrow \varepsilon$ to CFG if q_i is an accept state
 - Make R_0 the start variable of CFG, where q_0 is the start state of DFA

Ambiguity

- ☐ A string w is derived ambiguously in context-free grammar G if it has two or more different leftmost derivations
- ☐ Grammar G is ambiguous if it generates some string ambiguously
- **□** Example:
 - Consider the grammar G_4 :

```
\langle EXPR \rangle \rightarrow \langle EXPR \rangle + \langle EXPR \rangle \mid \langle EXPR \rangle \times \langle EXPR \rangle \mid \langle \langle EXPR \rangle \rangle \mid a
```

■ G_4 generates the string $a + a \times a$ ambiguously

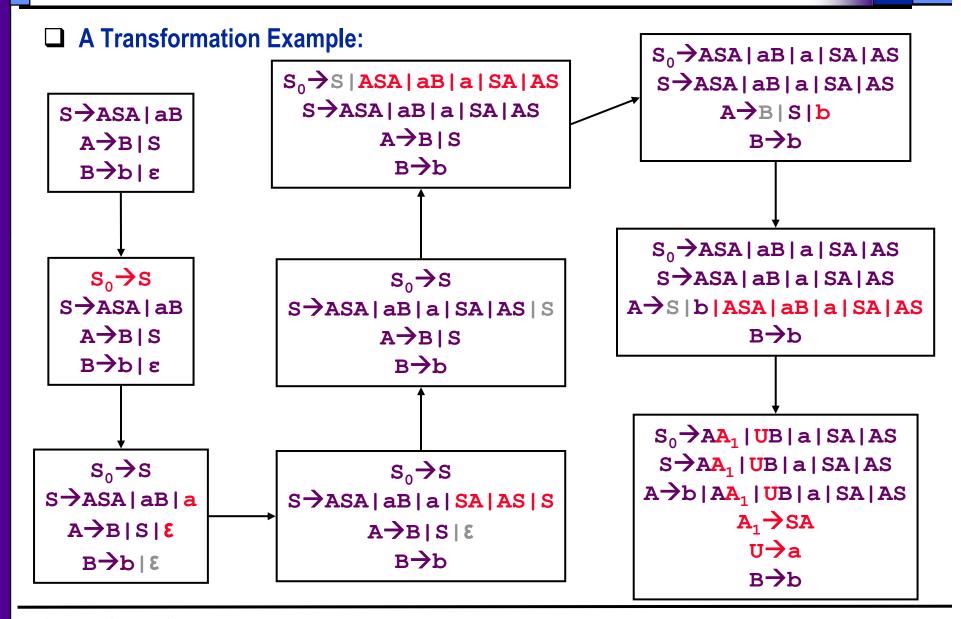


Two Parse Tree for the Same String a + a × a

Chomsky Normal Form

- ☐ A context-free grammar is in *Chomsky Normal Form* if every rule is of the form
 - $A \rightarrow BC$ and $A \rightarrow a$, where
 - a is any terminal
 - A, B and C are any variables except that B and C may not be start variable
 - In addition, we permit the rule $S \rightarrow \varepsilon$, where S is the start variable
- **□** Theorem:
 - Any context-free language is generated by a context-free grammar in Chomsky normal form

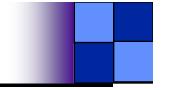
Any CFG → **Chomsky Normal Form**



Pushdown Automaton (PDA)

- \square A pushdown automata (PDA) is a 6-tuple (Q, Σ , Γ , δ , q_0 , F), where
 - \blacksquare Q, Σ , Γ and Γ are all finite sets
 - Q is the set of states
 - ∑ is the *input alphabet*
 - *\(\cap \)* is the *stack alphabet*
 - \bullet $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \rightarrow P(Q \times \Gamma_{\varepsilon})$ is the transition relation
 - $= q_0 \in Q$ is the start state
 - \blacksquare $F \subseteq Q$ is the set of accepted states

Examples of PDA



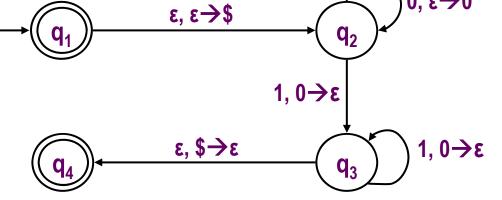
 \Box Let the PDA M₁ be (Q, Σ, Γ, δ, q₁, F), where

Q = {q₁, q₂, q₃, q₄}

$$\Sigma$$
 = {0, 1}
 Γ = {0, \$}
F = {q₁, q₄}
 δ is given by

Input	0			1			3		
Stack	0	\$	3	0	\$	w	0	\$	3
q_1									{(q ₂ , \$)}
q_2			{(q ₂ , 0)}	$\{(q_3, \varepsilon)\}$					
q_3				$\{(q_3, \epsilon)\}$				$\{(q_3, \epsilon)\}$	
q_4									

$$L(M_1) = \{0^n 1^n \mid n \ge 0\}$$



 $0, \varepsilon \rightarrow 0$

Acceptance/Recognition by PDA

- \square A pushdown automaton $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ accepts input w if
 - w can be written as $w = w_1 w_2 ... w_m$, where each $w_i \in \Sigma_{\varepsilon}$
 - Sequences of states $r_0, r_1, ..., r_m \in Q$ and strings $s_0, s_1, ..., s_m \in \Gamma^*$ exists (the strings s_i represent the sequence of stack contents that M has on the accepting branch of the computation)
 - The following *three* conditions are satisfied:
 - $r_0 = q_0$ and $s_0 = \varepsilon$ [M starts out properly, in the start state and with an empty stack]
 - For i = 0, 1, ..., m-1; we have $(r_{i+1}, b) \in \delta(r_i, w_{i+1}, a)$, where $s_i = at$ and $s_{i+1} = bt$ for some $a, b \in \Gamma_{\varepsilon}$ and $t \in \Gamma^*$

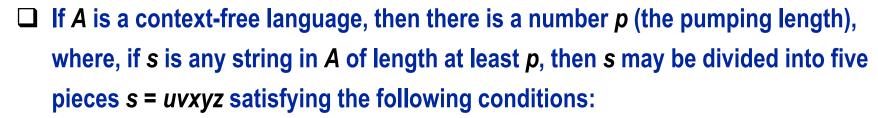
[M moves properly according to the state, stack & next input symbol]

r_m ∈ F [an accept state occurs at the input end]

☐ Theorem:

- A language is context-free if and only if some pushdown automaton recognizes it
 - Every regular language is context-free

Pumping Lemma for CFL



- For each $i \ge 0$, $uv^ixy^iz \in A$
- |vy| > 0, and
- |vxy| ≤ p

□ Examples:

- The following languages (denoted by B, C, D) are not context-free:
 - B = $\{a^nb^nc^n \mid n \ge 0\}$
 - C = $\{a^ib^jc^k \mid 0 \le i \le j \le k\}$
 - D = $\{ww \mid w \in \{0,1\}^*\}$