Regular Languages CS60001: Foundations of Computing Science

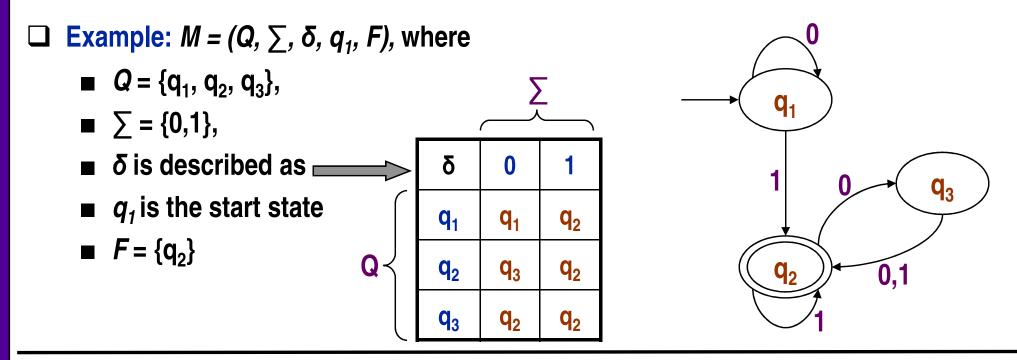
Pallab Dasgupta

Professor, Dept. of Computer Sc. & Engg., Indian Institute of Technology Kharagpur

Deterministic Finite Automaton (DFA)

□ A deterministic finite automaton (DFA) is a 5-tuple (Q, \sum , δ , q_0 , F), where

- *Q* is a finite set called the *states*,
- \sum is a finite set called the *alphabet*,
- $\delta: Q \times \Sigma \rightarrow Q$ is the *transition function*,
- $q_0 \in Q$ is the *start state*, and
- $F \subseteq Q$ is the set of accepted states (final states)



Acceptance/Recognition by DFA

□ Let M = (Q, \sum , δ , q₀, F) be a deterministic finite automaton and w = w₁w₂...w_n be a string where each w_i ∈ \sum . Then M accepts w if a sequence of states r₀, r₁, ..., r_n in Q exists with three conditions:

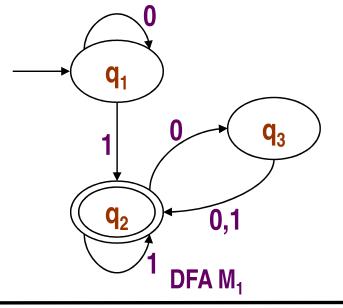
$$\bullet \quad \mathbf{r}_0 = \mathbf{q}_0,$$

•
$$\delta(r_i, w_{i+1}) = r_{i+1}$$
, for $i = 0, 1, ..., n-1$, and

Therefore, M recognizes language A_M if $A_M = \{w \mid M \text{ accepts } w\}$

Example:

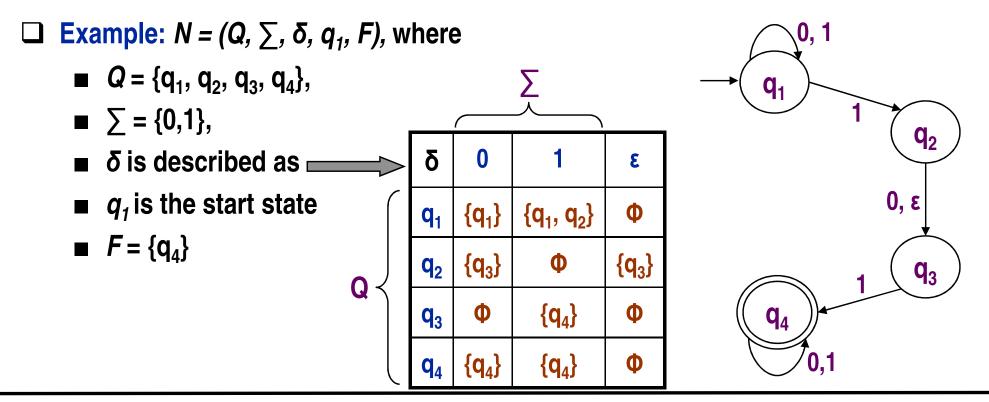
 $L(M_1) = A_{M1} (M_1 \text{ recognizes/accepts } A_{M1}), \text{ where}$ $A_{M1} = \{w \mid w \text{ contains at least one 1 and}$ an even number of 0s follow the last 1}



Non-deterministic Finite Automaton (NFA)

A non-deterministic finite automaton (NFA) is a 5-tuple (Q, \sum, δ, q_0, F), where

- *Q* is a finite set called the *states*,
- \sum is a finite set called the *alphabet*,
- $\delta: Q \times \sum_{\varepsilon} \rightarrow P(Q)$ is the transition function,
- $q_0 \in Q$ is the *start state*, and
- $F \subseteq Q$ is the set of accepted states (final states)



Indian Institute of Technology Kharagpur

Pallab Dasgupta

Acceptance/Recognition by NFA

□ Let N = (Q, \sum , δ , q₀, F) be a non-deterministic finite automaton and y = y₁y₂...y_n be a string where each y_i ∈ \sum_{ϵ} . Then N accepts y if a sequence of states r₀, r₁, ..., r_m in Q exists with three conditions:

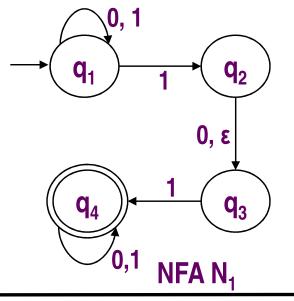
$$\bullet \ \mathbf{r}_0 = \mathbf{q}_0,$$

■
$$r_{i+1} \in \delta(r_i, y_{i+1})$$
, for i = 0, 1, ..., m-1, and

Therefore, N recognizes language A_N if $A_N = \{y \mid N \text{ accepts } y\}$

Example:

 $L(N_1) = A_{N1}$ (N₁ recognizes/accepts A_{N1}), where $A_{N1} = \{y \mid y \text{ contains either 101 or 11 as a substring}\}$



□ A language is called a regular language if some automaton recognizes it

□ Let A and B be regular languages. The regular operations *union*, *concatenation* and *star* are defined as follows:

Closure Theorems:

- The class of regular languages is closed under the union operation (if A₁ and A₂ are regular languages, so is A₁ U A₂)
- The class of regular languages is closed under the concatenation operation (if A₁ and A₂ are regular languages, so is A₁ \circ A₂)
- The class of regular languages is closed under the star operation (if A is a regular language, so is A*)

Regular Expressions

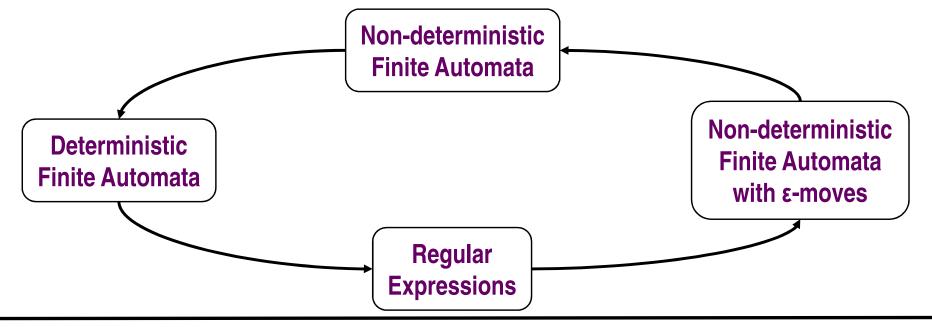
- **R** is a regular expression if **R** is
 - a for some a in the alphabet \sum ,
 - **€**,
 - Φ,
 - **(R₁ U R₂)**, where R_1 and R_2 are regular expressions
 - **(** $R_1 \circ R_2$), where R_1 and R_2 are regular expressions
 - **R** $_1^*$, where **R** $_1$ is a regular expression
- □ Some Important Identities:
 - $R^+ \equiv RR^*$ and $R^+ \cup \varepsilon \equiv R^*$
 - $\blacksquare R U \phi \equiv R \text{ and } R \circ \varepsilon \equiv R$
 - (*R U* ε) may not equal *R* (Ex: if R = 0; then L(R) = {0}, but L(R U ε) = {0, ε })
 - $(R \circ \Phi)$ may not equal R (Ex: if R = 0; then L(R) = {0}, but L(R \circ \Phi) = Φ)
- Example of Regular Expression
 - Let D = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} is the alphabet of decimal digits; then a numerical constant that may include a fractional part and/or a sign may be described as a member of the language: (+ U U ε) (D⁺ U D⁺. D^{*} U D^{*}. D⁺)

Equivalence with Finite Automata

☐ Two finite automata are *equivalent* if they accept the same regular language

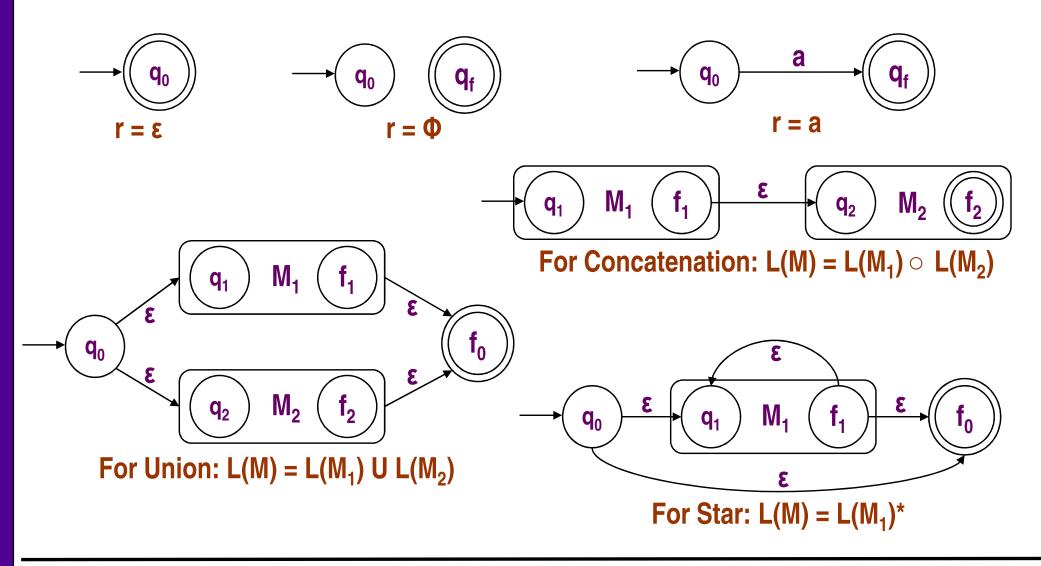
Theorems:

- Every non-deterministic finite automaton has an equivalent deterministic finite automaton
- A language is regular if and only if some non-deterministic finite automaton recognizes/accepts it
- A language is regular if and only if some regular expression describes it
- If a language L is accepted by a DFA, then L is denoted by a regular expression



Regular Expression -> NFA (with ε-moves)

Let r be a regular expression. Then there exists an NFA with ε-transitions (M) that accepts L(r). The construction procedure is as follows:



Pumping Lemma: Proving Non-regularity

- If A is a regular language, then there is a number p (the pumping length) where,
 s is any string in A of length at least p, then s may be divided into three pieces,
 s = xyz satisfying the following conditions:
 - For each $i \ge 0$, $xy^i z \in A$
 - *lyl* > 0, and
 - $|xy| \le p$

Examples:

- The following languages (denoted by B, C, D, E, F) are not regular:
 - $B = \{0^n 1^n \mid n \ge 0\}$
 - C = {w | w has an equal number of 0s and 1s}
 - $F = \{ww \mid w \in \{0, 1\}^*\}$
 - $D = \{1^{n^2} | n \ge 0\}$
 - $E = \{0^i 1^j | i > j\}$