Introduction and Background CS60001: Foundations of Computing Science

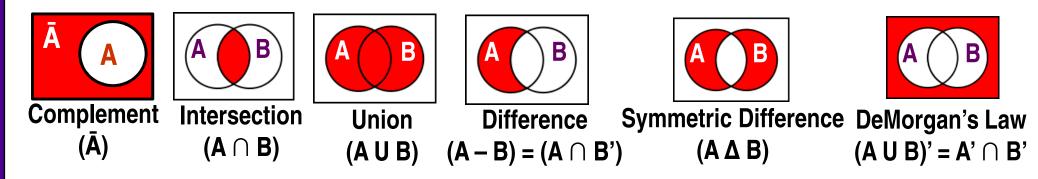
Pallab Dasgupta

Professor, Dept. of Computer Sc. & Engg., Indian Institute of Technology Kharagpur

Set Theory

- □ A *set* is a group of objects represented as a unit
 - Example: set of odd positive integers less than 50 and divisible by 5 { 5, 15, 25, 35, 45 }
- □ Let A and B are two sets. A is a *subset* of B (A ⊆ B) if every element of A is also an element of B, i.e., $x \in A => x \in B$
 - A is a proper subset of B (A \subset B) if A is a subset of B and A \neq B
 - Example: $A \subset B$, where
 - B = set of odd positive integers less than 50 & divisible by $5 \equiv \{5, 15, 25, 35, 45\}$
 - A = set of odd positive integers less than 50 & divisible by $15 \equiv \{15, 45\}$

□ Set Operations



Set Theory (contd...)

Notations

- $\mathcal{N} =$ Set of natural number
- z = Set of integers [z + = Set of positive integers]
- **\mathscr{R}** = Set of real numbers [\mathscr{R}^+ = Set of positive real numbers]
- Q = Set of rational numbers
- *C* = Set of complex numbers
- Dever Set of A, P(A) is the set of all subsets of A
 - A = { 1, 2 } then P(A) = { Φ , {1}, {2}, {1, 2} }, Here Φ is *Null Set*

Cartesian Product of A and B (written as A × B) is the set of all pairs where the first element is a member of A and the second element is a member of B

Then, $A \times B = \{(1, x), (1, y), (1, z), (2, x), (2, y), (2, z)\}$

Function

- □ A function (or mapping) is an object that sets up an input-output relationship
 - If f is a function whose output value is b when the input value is a, we write f(a) = b
 - Let $f(x_1) = y_1$ and $f(x_2) = y_2$. If $y_1 \neq y_2$, then $x_1 \neq x_2$.
- □ The set of possible input to the function is called *domain*
- □ The outputs of a function come from a set is called *range*
 - **f** is a function with domain D and range R is represented as, $f: D \rightarrow R$

Example:

Consider the function, $f: \{1, 2, 3, 4, 5, 6\} \rightarrow \{0, 1, 2\}$

- The function f takes positive integers less than 7 and outputs the result modulo 3; i.e., f(n) = n%3
- Domain of *f* is, D = {1, 2, 3, 4, 5, 6}
- Range of *f* is, R = {0, 1, 2}

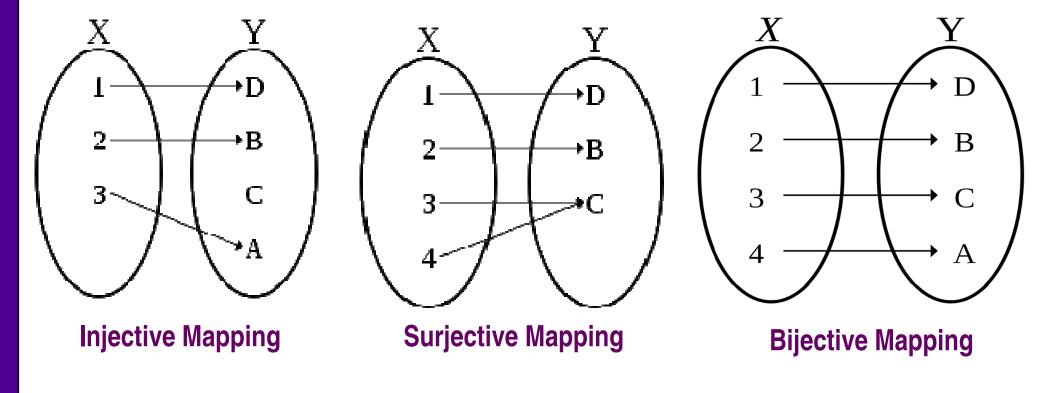
Function (contd....)

□ Mapping are of 3 types:

■ Injective Mapping – Into Mapping, i.e., $\forall x_1, x_2 \in X$, if $f(x_1) = f(x_2)$ then $x_1 = x_2$

and equivalently, if $x_1 \neq x_2$ then $f(x_1) \neq f(x_2)$

- Surjective Mapping Onto Mapping, i.e., Y = f(X)
- Bijective Mapping Injective + Surjective (One-to-one Onto Mapping)



Relation

 \Box A property whose domain is a set of *k*-tuples (A × A × ... × A) is called *relation*

- If K = 2 the relation is called *binary relation*
 - Example: less than (<) is a binary relation

<mark>∽</mark>k number of As

❑ A binary relation *R* is an *equivalence relation* if R satisfies following conditions:

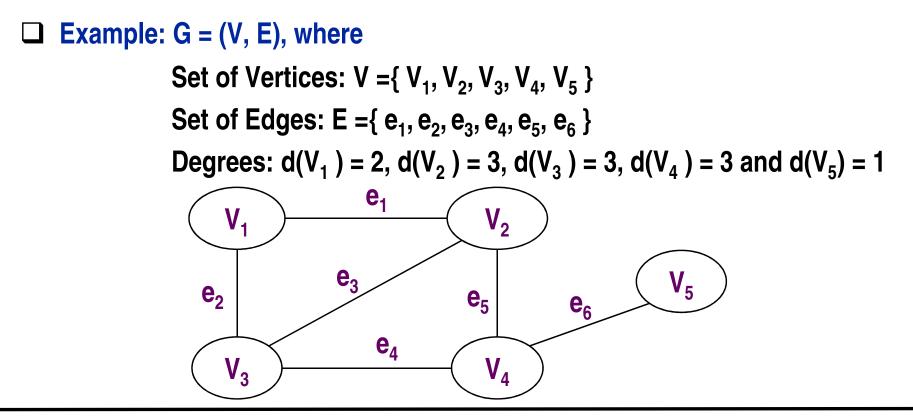
- **R** is reflexive i.e., $\forall x, xRx$
- R is symmetric i.e., $\forall x \forall y$, (xRy => yRx)
- **R** is transitive i.e., $\forall x \forall y \forall z$, (xRy and yRz => xRz)

A binary relation *R* is an *partial-order relation* if R satisfies following conditions:

- **R** is reflexive i.e., $\forall x, xRx$
- **R** is anti-symmetric i.e., $\forall x \forall y$, (xRy and $yRx = > x \equiv y$)
- R is transitive i.e., $\forall x \forall y \forall z$, (xRy and yRz => xRz)

Graph

- □ An *undirected graph* is a set of points with lines connecting some of the points
 - G = (V, E) where V is the set of vertices and E is the set of edges
- Number of edges incident at a particular node (v) is the degree [d(v)] of the node



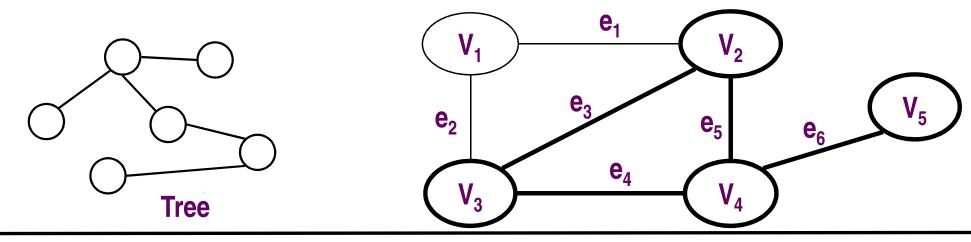
Indian Institute of Technology Kharagpur

Graph(contd...)

- □ G is a *subgraph* of H if the nodes of G are a subset of the nodes H, and the edges of G are the edges of H on the corresponding nodes
 - Example: Subgraph $H = (V_H, E_H)$ where;

 $V_{H} = \{V_{2}, V_{3}, V_{4}, V_{5}\} \text{ and } E_{H} = \{e_{3}, e_{4}, e_{5}, e_{6}\}$

- □ A *path* in a graph is a sequence of node connected by edges
 - V_1 , V_2 , V_3 , V_4 , V_5 is a path
- □ A path is a *cycle* if it starts and ends in the same node
 - V_1 , V_2 , V_4 , V_3 is a cycle
- □ A graph is a *tree* if it is connected and has no cycle



Indian Institute of Technology Kharagpur

Graph(contd...)

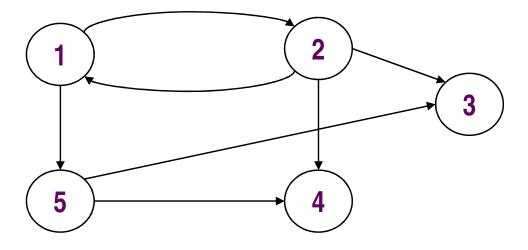
□ If a graph has arrows instead of lines, the graph is called *directed graph*

- Edges from vertex *i* to vertex *j* are represented as pairs (*i*, *j*)
- Out-degree [d+(v)]: number of arrows pointing from a particular node (v)
- In-degree [d⁻(v)]: number of arrows pointing to a particular node (v)

Example: G = (V, E) where,

- Set of vertices, V = {1, 2, 3, 4, 5}
- Set of directed edges, E = {(1,2), (1,5), (2,1), (2,3), (2,4), (5,3), (5,4)}
- In-degrees and Out-degrees,

 $d^{+}(1) = 2; d^{-}(1) = 1$ $d^{+}(2) = 3; d^{-}(2) = 1$ $d^{+}(3) = 0; d^{-}(3) = 2$ $d^{+}(4) = 0; d^{-}(4) = 2$ $d^{+}(5) = 2; d^{-}(5) = 1$



Indian Institute of Technology Kharagpur

Pallab Dasgupta

Boolean Logic

- □ It is a mathematical system built around two values TRUE and FALSE
 - The value TRUE and FALSE are called Boolean values and are often representated by the values 1 and 0
- □ Basic operations are as follows:
 - Negation (~), Conjunction (Λ), Disjunction (V)

□ Truth Table of Basic operations:

			а	b	a∧b	а	b	a V b
а	~a		0	0	0	0	0	0
0	1		0	1	0	0	1	1
1	0		1	0	0	1	0	1
		I	1	1	1	1	1	1

Indian Institute of Technology Kharagpur

Boolean Logic(contd...)

Several other Boolean operations occasionally appear

- Exclusive-Or (XOR): $P \oplus Q \equiv (\sim P \land Q) \lor (P \land \sim Q) \equiv \sim (P <=>Q)$
- Implication: P => Q ≡ ~P V Q
- Equality: P <=> Q ≡ (P => Q) ∧ (Q => P)

Distributive law:

- $P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)$
- $P V (Q \land R) \equiv (P V Q) \land (P V R) [Dual]$

Commutative law:

• $P V Q \equiv Q V P$ and $Q \land R \equiv R \land Q$