Lecture 6 (Sept. 19): Gomory-Hu Trees

Lecturer: Zachary Friggstad Scribe: Mirmahdi Rahgoshay

6.1 Algorithm for Constructing Gomory-Hu Trees

In this lecture we continued the discussion on Gomory-Hu trees, which are a compact way to represent $s - t$ cuts for all pairs s, t. We provide an algorithm to construct the tree. First we recall two lemmas from previous lecture.

Lemma 1 For any sequence of $k \geq 2$ distinct vertices $v_1, v_2, ..., v_k$ we have:

$$
\lambda_{v_1, v_k} \ge \min_{1 \le i \le k} \lambda_{v_i, v_{i+1}}.\tag{6.1}
$$

(See previous lecture for complete proof)

Lemma 2 Let s, $t \in V$ be distinct vertices and A a minimum s – t cut. For every distinct vertices u, $v \notin A$ there is a $u - v$ minimum cut B with $A \subseteq B$ or $A \cap B = \emptyset$.

(See previous lecture for complete proof)

In the following we are going to provide an algorithm to construct a Gomory-Hu Tree for an undirected graph after recalling the definition of the Gomory-Hu tree.

Definition 1 A Gomory-Hu Tree (GHT) for an undirected graph $\mathcal{G} = (V, E)$ with capacities μ is a tree $\mathcal{T} = (V; F)$ on the same set of vertices as G such that for every $uv \in F$, the fundamental cut C_{uv} is a minimum $u - v$ cut in \mathcal{G} (i.e. $\mu(\delta(C_{uv})) = \lambda_{u,v}$).

Basic idea: Select vertex pair $s, t \in V(G)$ and find a minimum s-t-cut A. Contract A (or $B := V - A$) to one vertex. Then select s' , $t' \in B$ (or A). Find a minimal $s'-t'-cut A'$ in contracting graph G' with $V(G') - A'$. Observe that, based on the lemma 2, a minimal cut in the contracting graph corresponds to a minimal cut in the original graph. Recurse until we reach a graph where there is only one vertex in the uncontracted part.

Now we describe the algorithm which constructs a Gomory-Hu tree. At each step, the vertices of the tree $\mathcal T$ being constructed are subsets of V and, furthermore, constitute a partition of V. Throughout we let $V(\mathcal{T})$ and $E(\mathcal{T})$ denote the vertices of the tree $\mathcal T$ being constructed.

A key operation is that of contracting. It's probably easier to see what this is by simply looking at Figure 6.1, but the formal definition follows. Given disjoint subsets S_1, S_2, \ldots, S_k of V, let $\mathcal{G}/S_1, S_2, \ldots, S_k$ be the graph with vertices $(V - \bigcup_{i=1}^{k} S_i) \cup \{v_{S_i} : 1 \leq i \leq k\}$ where the vertices v_{S_i} are new vertices representing the subsets S_i . For each vertex $v \in V$, let $\phi(v)$ be v if $v \notin \bigcup_{i=1}^k S_i$, otherwise let $\phi(v) = v_{S_i}$ where i is such that $v \in S_i$. The edges of the contracted graph are $\{\phi(u)\phi(v): uv \in E, \phi(u) \neq \phi(v)\}$ and each such edge $\phi(u)\phi(v)$ has capacity $\mu(uv)$.

```
Algorithm 1 Gomory-Hu Algorithm
Input: Undirected graph \mathcal{G} = (V; E), \mu : E \to \mathbb{R}_{\geq 0}.
Output: A Gomory-Hu tree \mathcal{T} for (\mathcal{G}, \mu).
   V(\mathcal{T}) \leftarrow \{V(\mathcal{G})\} (a single vertex that corresponds to all vertices in \mathcal{G})
   E(\mathcal{T}) \leftarrow \emptysetwhile There is some X \in V(\mathcal{T}) such that |X| \geq 2 do
      Let s, t be any two distinct vertices in XLet C_1, C_2, ..., C_k be the connected components of \mathcal{T} - XS_i \leftarrow \bigcup_{Y \in C_i} Y for each 1 \leq i \leq k (i.e. all vertices of V represented in some vertex in C_i)
      Let H be the graph obtained from G by contracting each S_i to a single vertex v_{S_i}Find a minimum s - t cut S in H and let A = X \cap S, B = X - S.
      V(\mathcal{T}) \leftarrow (V(\mathcal{T}) - \{X\}) \cup \{A, B\}for each edge e = XY \in E(\mathcal{T}) incident with X do
         let i be such that Y \in C_iif v_{S_i} \in S then
            e' \leftarrow AYelse
            e' \leftarrow BYend if
         E(\mathcal{T}) \leftarrow (E(\mathcal{T}) - \{e\}) \cup \{e'\}w(e') \leftarrow w(e)end for
      E(\mathcal{T}) \leftarrow E(\mathcal{T}) \cup \{AB\}w(AB) \leftarrow \mu(\delta(S)) {The capacity of \delta(S) in H}
   end while
   Replace all \{v\} \in V(\mathcal{T}) by v and all \{u\}\{v\} \in E(\mathcal{T}) by uv.
   Return (V(\mathcal{T}); E(\mathcal{T})).
```


Figure 6.1: Above: a graph G and two highlighed subsets of nodes C_1, C_2 . Below: the graph $\mathcal{G}/C_1, C_2$ obtained by contracting the two subsets to single nodes. Note we keep parallel edges that result from this contraction, but any edge fully contained in a single connected component is deleted.

Note that the vertices of the intermediate trees $\mathcal T$ will be vertex sets of the original graph. Indeed they formed a partition of $V(G)$ throughout the algorithm: At the beginning, the only vertex of T is $V(G)$. In each iteration, a vertex of $\mathcal T$ containing at least two vertices of $\mathcal G$ is chosen and split into two.

6.2 Proof of Correctness

To prove the correctness of this algorithm, we establish the following loop invariant. For brevity, for any edge $XY \in V(\mathcal{T})$ at any point of the algorithm we instead let C'_{XY} refer to the set of vertices contained in some Z that is connected to X after removing XY from $E(\mathcal{T})$ (this is very similar to the fundamental cut, but not quite the same as, technically, the fundamental cut would be a subset of $V(\mathcal{T})$, which is a collection of subsets of V).

Lemma 3 Initially and after each iteration, for any edge $YZ \in E(\mathcal{T})$ there is some $s \in Y, t \in Z$ such the fundamental cut C_{YZ}' is a minimum s, t cut (i.e. $w(YZ) = \lambda_{s,t}$).

Proof. The statement is trivial at the beginning of the algorithm when $\mathcal T$ contains no edges; we show that it is never violated during the iterations. So let fix X, s, t, S, A, B for an iteration of the algorithm which before starting it, above statement holds. By renaming s and t if necessary we assume $s \in S$ (thus $s \in A$).

We first show the invariant holds for the new edge AB.

Claim 1 Expanding the contracted nodes v_{S_i} lying in S is a minum s – t cut in \mathcal{G} .

Note, the set mentioned in the claim is simply C'_{AB} at the end of this iteration. Since $s \in A, y \in B$ this shows the invariant holds for the new edge AB.

Proof. Let us contract $S_1, S_2, ..., S_k$ (connected components of $\mathcal{T} - X$) one by one; for $0 \leq i \leq k$ let \mathcal{H}_i be the graph arise from G by contracting each of $S_1, S_2, ..., S_k$ to a single vertex. Note \mathcal{H}_k was called \mathcal{H} in the algorithm and \mathcal{H}_0 is the original graph G. A straightforward proof by induction that uses Lemma 2 and the fact that each S_i is a minimum $s_i - t_i$ cut for some pair (by the loop invariant) shows that \mathcal{H}_i contains an $s - t$ cut with capacity equal to the minimum $s - t$ cut capacity in G. So expanding the contracted nodes in the minimum $s - t$ cut S computed in H yields a minimum $s - t$ cut in \mathcal{G} .

Next we examine edges that were of the form XY but were replaced by AY or BY . We suppose XY is replaced by AY, the other case is proven in an identical way. Note that by the invariant, there is some $p \in X, q \in Y$ such that C'_{XY} (before modifying T) is a minimum $p-q$ cut in G. If $p \in A$ and because the set of nodes in C'_{AY} (after the modification) is the same as the set C'_{XY} (before the modification) shows the invariant continues to hold for edge AY. So, suppose $p \in B$.

Claim 2 $\lambda_{s,q} = \lambda_{p,q}$

This would complete the analysis of this case, as we then would have that $\mu(\delta_{\mathcal{G}}(C'_{AY})) = \lambda_{p,q} = \lambda_{s,q}$ and $s \in A, q \in Y$.

Proof.

From Lemma 1 we have:

$$
\lambda_{s,q} \ge \min\{\lambda_{s,t}, \lambda_{t,p}, \lambda_{p,q}\}.
$$
\n(6.2)

For brevity let $\overline{S} \subseteq V$ be the set obtained from S by expanding the contracted nodes in S.

Claim 1 shows $\delta(\overline{S})$ is a minimum s – t cut. Also, because $s, q \in \overline{S}$ we can conclude from Lemma 2 that some minimum $s - q$ cut in \overline{G} is disjoint (or contains) $V - \overline{S}$. Because $t, p \in B \subseteq V - \overline{S}$, this means that adding an edge tp with arbitrarily high capacity does not change $\lambda_{s,q}$. Hence:

$$
\lambda_{s,q} \ge \min\{\lambda_{s,t}, \lambda_{p,q}\}.\tag{6.3}
$$

Also, because the minimum $s - t$ cut \overline{S} also separates p and q we have $\lambda_{s,t} \geq \lambda_{p,q}$ meaning

$$
\lambda_{s,q} \ge \lambda_{p,q}.\tag{6.4}
$$

 \blacksquare

To prove equality observe that $w(XY)$ is the capacity of a cut s and q. Hence:

$$
\lambda_{s,q} \le w(XY) = \lambda_{p,q} \Rightarrow \lambda_{s,q} = \lambda_{p,q}.\tag{6.5}
$$

This completes the proof of the second claim.

Finally, every other edge $YZ \in E(\mathcal{T})$ at the start of the iteration where $Y, Z \neq X$ is not altered and C_{YZ}' remains unchanged after the iteration, so the claim continues to hold for them.

Now we are ready to provide the final theorem which is the correctness of the algorithm.

Theorem 1 (Gomory and Hu [1961) Every undirected graph possesses a Gomory-Hu tree, and such a tree is found in $O(n^3\sqrt{m})$ time.

Proof. It is fairly straightforward to see the complexity of the algorithm is dominated by $n - 1$ times the complexity of finding a minimum $s - t$ cut. By assuming that we can find a minimum cut in $O(n^2\sqrt{m})$, we obtain the $O(n^3\sqrt{m})$ for the algorithm.

The fact that the invariant Lemma 3 holds at the end of the last iteration and the fact that every vertex in $V(\mathcal{T})$ (just before the final conversion of nodes in \mathcal{T} from singleton sets to vertices in V) is a singleton set shows that the fundamental cut of every edge $uv \in E(\mathcal{T})$ (just after the conversion) is a minimum $u - v$ cut in \mathcal{G} .