
CMPUT 675: Topics in Combinatorics and Optimization Fall 2016

Lecture 5 (Sept. 16): Undirected Cuts and Gomory-Hu Trees
Lecturer: Zachary Friggstad Scribe: Zachary Friggstad

We discuss some properties of cuts in an undirected graph, and work toward finding Gomory-Hu trees which
are a compact way to represent minimum s− t cuts for all pairs of vertices s, t.

5.1 Cuts in Undirected Graphs

Let G = (V,E) be an undirected graph with capacities µ : E → R≥0. For U ⊆ V let δ(U) denote all edges with
precisely one endpoint in U .

Definition 1 A cut in G is a subset ∅ ( U ( V . An s−t cut for distinct s, t ∈ V is a cut U with |U∩{s, t}| = 1.
We call U and V − U the sides of the cut.

Our definition of an s − t cut in an undirected graph differs slightly from directed graphs in that it does not
matter which side of the cut contains s. Note that δ(U) = δ(V − U) for each U ⊆ V in an undirected graph.

Definition 2 The Global Minimum Cut problem is to find a cut U with minimum capacity µ(δ(U)).

Since a cut contains at least one vertex and excludes at least one vertex, we can compute a global minimum
cut in polynomial time by trying all distinct pairs of vertices (s, t) and computing the minimum s− t cut in G.
Output the cheapest solution found. This requires O(n2) calls to a maximum flow calculation.

We can rely on fewer maximum flow calculations. Pick an arbitrary vertex s. Now, s lies on some side of the
cut and we try all n − 1 guesses for a vertex t separated from s in the global minimum cut. Computing the
n− 1 different minimum s− t cuts for various t uses only O(n) maximum flow calculations.

This idea almost works in directed graphs. Fix some s and guess all n − 1 vertices t separated from s in a
minimum cut. The main difference is that we have to compute a minimum s− t cut and a minimum t− s cut,
which uses a total of 2n− 2 maximum flow calculations.

We can do much more with O(n) maximum flow calculations. We will describe and construct an appropriate
data structure that compactly represents all minimum s − t cuts for all pairs s, t ∈ V . This lecture defined
Gomory-Hu trees and established helpful properties about such trees and, in general, about cuts in an undirected
graph. Next lecture presents the algorithm.

5.2 Gomory-Hu Trees

Throughout we will fix an undirected graph G = (V,E) with capacities µ : E → R≥0.

Definition 3 For u, v ∈ V let λu,v be the capacity of a minimum u− v cut.

There is a neat relationship between these values.
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Figure 5.1: Two examples. The upper-right tree is a GHT for the upper-left graph. The edge weights in the
tree denote the capacity of the corresponding fundamental cuts. The dashed edge in the tree corresponds to the
fundamental cut {a, b}, which is highlighted on the upper-left graph with the dashed curve. The lower example
shows that it may be F 6⊆ E.

Lemma 1 Let v1, v2, . . . , vk be any sequence of k ≥ 2 distinct vertices. Then λv1,vk
≥ min

1≤i≤k−1
λvi,vi+1

.

Proof. Let U be a minimum v1 − vk cut and suppose, by replacing U with V − U instead if necessary, that
v1 ∈ U, vk 6∈ U . Then there is some 1 ≤ i ≤ k − 1 with vi ∈ U, vi+1 6∈ U . This U is also a vi − vi+1 cut so
λvi,vi+1

≤ µ(δ(U)) = λv1,vk
.

Definition 4 Let T = (W,F ) be a tree and e ∈ F . Then set of nodes Ce of a connected component of
(W,F − {e}) is a fundamental cut for e.

There are two fundamental cuts for each edge uv of a tree, one containing u the other containing v. We often
speak of the fundamental cut of an edge when it doesn’t matter which side we pick.

Definition 5 A Gomory-Hu Tree (GHT) for (G, µ) is a tree T = (V, F ) on the same set of vertices as G
such that for every uv ∈ F , the fundamental cut Cuv is a minimum u− v cut in G (i.e. µ(δ(Cuv)) = λu,v).

Two examples are shown in Figure 5.1. Note that it is not necessarily true that F ⊆ E, as in the second example
in the figure.

It is not clear that a graph necessarily has an associated GHT. We will show this is indeed the case and we can
compute it using O(n) calls to a maximum flow algorithm, plus some relatively simple processing.
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While the definition seems to only give information about minimum cuts for every pair u, v ∈ V that appear as
an edge of T , the following shows how to easily find a minimum u, v cut for every pair of nodes.

Lemma 2 Let T = (V,W ) be a GHT for G. For any distinct u, v ∈ V let Puv denote the edges on the unique
path between u and v on T . Let ab ∈ Puv achieve min

ab∈Puv
λa,b. Then λu,v = λa,b and the fundamental cut Cab

is also a minimum u− v cut.

Proof. On one hand, Lemma 1 shows λu,v ≥ λa,b by considering the sequence of nodes on the u− v path in T .

On the other hand, λu,v ≤ λa,b because the fundamental cut Cab is also a u − v cut and (by definition of a
GHT) has capacity λa,b.

Putting these two bounds togeter, we see λu,v = λa,b. Also, Cab is a minimum u − v cut because it is a u − v
cut with capacity λa,b.

5.2.1 Submodularity of Cuts

To motivate the algorithm that finds (and demonstrates existence of) a GHT, we further explore properties of
cuts.

Theorem 1 (Submodularity of Cuts) For A,B ⊆ V we have µ(δ(A))+µ(δ(B)) ≥ µ(δ(A∩B))+µ(δ(A∪B)).

Proof. We count how many times each e ∈ E contributes to both sides of the claimed bound. So consider
some e = uv.

• If uv ∈ δ(A ∩ B) with, say, u ∈ A ∩ B then either v 6∈ A or v 6∈ B. This means either uv ∈ δ(A) or
uv ∈ δ(B).

• If uv ∈ δ(A ∪ B) with, say, v 6∈ A ∪ B then either u ∈ A or u ∈ B. This means either uv ∈ δ(A) or
uv ∈ δ(B).

• Finally, if uv ∈ δ(A ∩ B) and uv ∈ δ(A ∪ B) with, say, u ∈ A ∩ B then v 6∈ A and v 6∈ B so uv ∈ δ(A)
anduv ∈ δ(B).

This allows us to prove a sort of nested property of some cuts. This will be exploited heavily in the construction
of a Gomory-Hu tree.

Lemma 3 Let s, t ∈ V be distinct vertices and A a minimum s − t cut. Let u, v 6∈ A be distinct vertices (it
could be that either u or v equals either s or t). Then there is a minimum u−v cut B with A ⊆ B or A∩B = ∅.

Note the statement is slightly redundant: if we have some minimum u − v cut B has A ⊆ B then V − B is a
minimum u− v cut with A ∩B = ∅ and vice-versa.

Proof. Let B be some minimum u− v cut. We suppose A 6⊆ B and A∩B 6= ∅, otherwise we are done. We will
show how to modify B to get another minimum u− v cut with the desired properties.

Without loss of generality (by renaming if necessary), we suppose s ∈ A. If s 6∈ B then we replace B with
V −B. Finally, again by renaming u and v if necessary we assume u ∈ B.
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By submodularity of cuts we have

µ(δ(A)) + µ(δ(B)) ≥ µ(δ(A ∩B)) + µ(δ(A ∪B)). (5.1)

By assumption, s ∈ A∩B and t 6∈ A∩B so the fact that A is a minimum s−t cut means µ(δ(A)) ≤ µ(δ(A∩B)).
By this and (5.1),

µ(δ(A ∪B)) ≤ µ(δ(B)). (5.2)

Now, u ∈ A∪B and v 6∈ A∪B so A∪B is a u− v cut. Then (5.2) shows A∪B is a minimum u− v cut which
clearly contains A.


