
CS60029: Randomised Algorithm Design Autumn, 2023

Problem Set 1
Tail Inequalities and Applications

1. Suppose that n balls are independently and uniformly distributed in n bins.

(a) Show that for large n, the expected number of empty bins approximates to n/e.

(b) Consider m balls being distributed in n bins. What is the expected number of empty bins?

2. Let X be a random variable with expectation µ and standard deviation σ. Show that, for any
t ∈ R+

(a) Pr[X − µ ≥ tσ] ≤ 1

1 + t2
.

(b) Pr[|X − µ| ≥ tσ] ≤ 2

1 + t2
.

(c) How do the above compare with the bounds obtained by Chebyshev’s inequality?

3. Let X be a non-negative integer-valued random variable with positive expectation. Prove the
following inequalities.

(a) Pr[X = 0] ≤ E[X2]−E[X]2

E[X]2
.

(b)
E[X]2

E[X2]
≤ Pr[X 6= 0] ≤ E[X].

4. The weak law of large numbers states that, for random variables {Xi}ni=1 distributed identically
and independently with expectation µ and variance σ2, we have for any ε > 0,

lim
n→∞

Pr

[∣∣∣∣∑n
i=1Xi

n
− µ

∣∣∣∣ < ε

]
= 1.

Prove the weak law of large numbers using Chebbyshev’s inequality.

5. Derive the simpler forms of Chernoff bounds (as shown below) from the bounds we obtained in
class.

Pr[X > (1 + δ)µ] ≤ e−δ
2µ/(2+δ) for δ ≥ 0, (1)

Pr[X < (1− δ)µ] ≤ e−δ
2µ/2 for δ ∈ (0, 1]. (2)

Pr[|X − µ| ≥ δµ] ≤ e−δ
2µ/3 for δ ∈ (0, 1]. (3)

6. Consider the following occupancy problem (related to the coupon collector’s problem): There are
n bins and n players, each player having an infinite supply of balls. The bins are all initially
empty. There are a sequence of rounds: in each round, each player throws a ball into an empty
bin chosen independently at random from all currently empty bins. Let the random variable Y be
the number of rounds before every bin is non-empty. Determine the expected value of Y . What
can you say about the tail of Y ’s distribution?



7. (a) [Chernoff Bound for a Special Case] Let X1, X2, . . . , Xn be independently distributed
random variables with

Pr[Xi = 1] = Pr[Xi = −1] =
1

2
.

Let X =
∑n
i=1Xi. Show that for any a > 0,

Pr[X > a] ≤ e− a2

2n .

(b) [Set Balancing] A set S of m objects, each having zero or more of n potential features
is specified by an n × m matrix A over {0, 1}, where aij = 1 iff j-th object has the i-th

feature. A partition of the set into S1, S2 is given by a vector ~b ∈ {−1, 1}m, with 1 (resp.

-1) in position j indicating the presence of object j in S1 (resp. S2). If we let c = A~b,

then |ci| denotes the imbalance in feature i. The imbalance of a partition ~b is given by

‖A~b‖∞ = maxi∈[n] |ci|. The set balancing problem is to find a partition ~b that minimizes

the imbalance ‖A~b‖∞. Consider the following algorithm: choose entries of ~b uniformly and
independently at random from {−1, 1}, completely ignoring A. Show that

Pr[‖A~b‖∞ >
√

4m lnn] ≤ 2

n
.

Use the bound from the previous part.

8. [Permutation Routing] Let n be a positive integer and let N = 2n. A hypercube is a undirected
graph over the vertices {0, 1, 2, . . . , N − 1}. Vertices x, y ∈ {0, 1, 2, . . . , N − 1} are connected by
an edge if and only if the Boolean representations of x and y differ in exactly one bit position.
In the permutation routing problem, every vertex in the hypercube has exactly one packet to
send to some other vertex and receives exactly one packet. The problem hence has an associated
permutation π on the set {0, 1, 2, . . . , N − 1} such that every vertex x sends a packet to π(x) and
receives a packet from π−1(x).

Every node can send and receive simultaneously. However, at each time step (time is discrete for
this problem), at most one packet can be sent along an edge. Hence if some vertex wants to send
two packets along the same edge, one packet has to wait till the next time step. The objective of
the permutation routing problem is to route all the packets in minimum number of time steps.

A natural algorithm for this problem is bit fixing. Consider a packet that needs to be sent from
x (its current location) to y. Let x = (xn−1, xn−2, . . . , x0)2 and let y = (yn−1, yn−2, . . . , y0)2.
Let i be the minimum index such that xi 6= yi (such an i is guaranteed to exist if x 6= y). Let
x′ = (xn−1, . . . , xi+1, yi, xi−1, . . . , x0)2. Then the packet is sent along the edge {x, x′}. Observe
that the routing algorithm does not consider other packets for deciding its route. Such routing
algorithms are called oblivious routing algorithm. Then prove the following.

(a) [Bit fixing is not good in worst case] Give an instance of the problem where bit fixing
algorithm takes Ω(

√
N/n) time steps.

(b) [2-Phase routing via random intermediate destination] The idea to bypass worst case
instances is to first route packets to a random intermediate instances and then route them
to the actual destinations. Formally, for every vertex x, let σ(x) denote a random element
chosen from {0, 1, 2, . . . , N − 1}. Now for every x, we first route the packet for x from x to
σ(x) and then from σ(x) to π(x) using bit fixing. Prove that, on every instance, the expected
number of time steps that the modified algorithm takes is O(n).
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