
CS60007 Algorithm Design and Analysis 2018
Assignment 1

Palash Dey and Swagato Sanyal
Indian Institute of Technology, Kharagpur

Please submit the solutions of the problems 6, 11, 12 and 13 (written in red
color). You are strongly encouraged to do all the problems for your own practice.
The deadline is August 13, 2018.

This is a preliminary version and may contain errors. Please send an email to the
instructors if you find any error. Thank you for your cooperation.

1. There is a sequence of n activities a1,a2, . . . ,an with corresponding utilities
u1,u2, . . . ,un. You wish to perform all these n activities according to this sequence
within k days. If you perform the activities from ai to aj for some 1 6 i 6 j 6 n on
the j-th day, then your utility Uj for the j-th day is max{u` : i 6 ` 6 j}. Your total
utility is

∑k
`=1U`. Design a greedy algorithm to find the sequence of activities you

will perform on every day which maximizes your total utility.

2. There are n jobs J1, J2, . . . , Jn with duration a1,a2, . . . ,an ∈ N+ and deadlines
d1,d2, . . . ,dn ∈ N respectively. All the jobs are available at the beginning (that is
at time 0). If a job J` is completed at time t` with t` > d` then the utility u` incurred
for job J` is −1 (which is a penalty); if t` 6 d`, then u` = 1 (which is a profit). You
have only one machine. So, you cannot process more than one jobs simultaneously.
Every job, once started, must run till it finishes. Design a greedy algorithm to find
the schedule for these n jobs which maximizes

∑n
`=1 u`.

3. We are given a decimal string s = (a1,a2, . . . ,an) of n digits (that is ai ∈ N and
0 6 ai 6 9) and a positive integer k. Design an algorithm for find the lexicographic
minimum string which can be obtained from s by performing at most k swaps. Note
that we are allowed to swap consecutive elements only.

4. Suppose you have to give Re N to your friend. You have enough number of
500, 200, 100, 50, 20, 10 rupee notes each at your disposal. Your goal is to give Re N
to your friend with minimum number of notes. For example, Re 600 can be changed

1

using 3 Re 200 notes as well as using 1 Re 500 note and 1 Re 100 note. However,
the later one uses minimum number of notes.

B Either prove correctness or provide counter example of the following greedy
strategy: keep picking highest denomination as much as you can!

B Provide a set of denominations for which the above greedy strategy will fail.

5. An independent set of an undirected graph G = (V,E) is a subset W ⊆ V such that
there does not exist any edge e = {u, v} ∈ E with both end points in W (that is,
|e ∩W| 6 1). An undirected graph G = (V,E) is called an interval graph if every
vertex v ∈ V can be associated with some interval Iv = [a,b) in R such that there is
an edge e between u and v if and only if Iu ∩ Iv 6= ∅. Let G be an interval graph and
{Iv : v ∈ V} be the intervals associated with its vertices. Then design an algorithm for
computing the size of a maximum independent set of G.

6. [15 marks] Let G = (V,E) be a connected, weighted graph. Let T and T′ be two
MSTs of G and α ∈ R. Then the number of edges in T of weight α is the same as the
number of edges in T′ of weight α.

7. Let G = (V,E) be a connected, weighted graph, v ∈ V be any vertex, and e be an
edge with minimum weight among all the edges that incident on v. Prove that there
exists a MST which includes the edge e.

8. Let G be a connected, weighted graph. Prove that, if all edge weights in G are distinct,
then G has exactly one MST.

9. Let G = (V,E) be a connected, weighted graph. Let S ⊂ V with S 6= ∅, S 6= V, and
e′ = argmine∈E:e={u,v},u∈S,v∈V\S{w(e)}. Then there exists a MST T where e′ ∈ T .

10. Let G = (V,E) be a connected, weighted graph and e be an edge with minimum
weight in G. Then prove that there exists a MST which includes the edge e.

11. [Independent Set of Binary Tree] Refer to the definition of Independent Set of
an undirected graph in problem 5. In this exercise you will compute a maximum
weighted independent set of a binary tree. Your algorithm will be given as input a
pointer to the root of a binary tree. Each node v has a weight w(v) and two pointers
left(v) and right(v) leading to the left and right children of v respectively; if a child
is absent, the corresponding pointer is NULL. The weight of an independent set in a
tree is the sum of the weights of the nodes in it. A maximum weight independent set
is an independent set whose weight is maximum.

(a) [4 marks] Derive a recursive relation for the weights of a maximum weight
independent set of various subtrees.

(b) [4 marks] Design an efficient algorithm to compute the weight of a maximum
weight independent set of the input tree.

2

(c) [4 marks] Modify your algorithm to also compute a maximum weight indepen-
dent set of the input tree, in addition to its weight.

(d) [3 marks] Discuss running times of your algorithms.

12. Suppose a trader has a container vehicle capable of shipping at most W amount of
goods (W is an integer). Suppose that he has n items {1, . . . ,n}. Each item i has a
price vi and an integral weight wi. The trader wants to ship a set S ⊆ {1, . . . ,n} of
items of highest possible total price subject to the constraint that the total weight of
the items is at most W.

(a) [1.5 marks] Mathematically formulate the constraint of the trader.

(b) [1.5 marks] Mathematically formulate the objective that the trader wants to
maximize subject to his constraint.

(c) [4 marks] For an integer W, let c(i,W) be the maximum total price of a set of
items in {1, . . . , i} with total weight at most W. Derive a recursive relation for
c(i,W).

(d) [4 marks] Design an efficient algorithm for computing c(n,W).

(e) [3 marks] Modify your algorithm to also find a set of items that correspond to
c(n,W).

(f) [1 marks] Discuss running times of your algorithms.

13. Consider the following properties of an undirected graph G with n vertices.

(a) G is connected.

(b) G is acyclic.

(c) G has n− 1 edges.

Prove that if G satisfies any two of the above three properties, then G also satisfies
the third property, i.e.,

(i) [2 marks] if G satisfies properties (a) and (b), then G satisfies property (c),

(ii) [2 marks] if G satisfies properties (a) and (c), then G satisfies property (b),

(iii) [2 marks] if G satisfies properties (b) and (c), then G satisfies property (a).

As you must know, graphs satisfying these three properties are called trees.

14. We are given two English strings s1 and s2 of length n each. Design a dynamic pro-
gramming based algorithm to find the minimum number of the following operations
that one requires to perform on s1 to convert it into s2.

B Insert any symbol at any position of the string.

3

B Delete any symbol from the string.

B Replace any symbol in the string by another symbol.

15. A string s is called a sub-sequence of another string t if s can be obtained from t

by deleting some symbols from s. Design a dynamic programming based algorithm
which finds a longest common sub-sequence of two input strings.

16. Design a dynamic programming based algorithm which finds a subset of a set of
integers (given as an array of integers as input) which has maximum sum of its
elements.

17. Design a dynamic programming based algorithm for problem 4 which works for any
set of denominations.

18. There are n jobs J1, J2, . . . , Jn with start and end times s1, s2, . . . , sn ∈ N and dead-
lines t1, t2, . . . , tn ∈ N respectively with t` > s` for every ` ∈ [n]. The weight of the
job J` is w` ∈ N for ` ∈ [n]. You have only one machine. So, you cannot process more
than one jobs simultaneously. Every job, once started, must run till it finishes. De-
sign a dynamic programming based algorithm for the problem of scheduling a subset
S ⊆ {J` : ` ∈ [n]} of jobs which maximizes

∑
J`∈Sw`.

19. Suppose we have a stick of length n ∈ N+. Design a dynamic programming based
algorithm to break the stick into at least 2 pieces of integral lengths which maximizes
the product of the lengths of the pieces.

20. Suppose we have a stick of length n ∈ N+. Let p : N+ −→ N+ be a function which
maps every positive integer ` to the utility of a stick of length `. Design a dynamic
programming based algorithm to break the stick into pieces which maximizes the
total utility (the sum of utilities of the pieces).

Solutions

Problem 6: For the sake of contradiction, let us assume that there exist two mini-
mum spanning trees T1 and T2 of a graph G and α ∈ R such that the number of
edges of weight α in T1 and T2 are not the same. Let us consider the set S = {T :
T is a minimum spanning tree of G and there exists α ∈ R such that the number of edges
of weight α in T1 and T are not the same}. By our assumption S is not an empty set since
we have T2 ∈ S. Also since the input graph G is finite, S is also a finite set. Let T′ be a
minimum spanning tree in S for which |T1∆T

′| is minimum possible where T1∆T
′ denotes

symmetric difference of the set of edges of T1 and T′. Such a T′ always exists since S is a
non-empty and finite set. Let e ∈ T1 \ T′ be any edge in T1 \ T′. Let us consider the sub-
graph F = T′ ∪ {e} of G. Since T′ is a tree, there exists a unique cycle C in F. Moreover, the
C contains the edge {e}. Let the two components of T1 \ {e} be H1 and H2. Since the cycle

4

C includes e, there exists an edge f ∈ C \ {e} with one end point in H1 and the other end
point in H2. Clearly f /∈ T1 since otherwise there would be an edge (namely f) between
H1 and H2 in T1 \ {e}. We claim that w(f) 6 w(e). Indeed, otherwise, F1 = F \ {f} is a
spanning tree of G of weight less than T′ which contradicts our assumption that T′ is an
minimum spanning tree of G. So we have w(f) 6 w(e). We also have w(f) > w(e) since
otherwise (T1 \ {e})∪ {f} would be a spanning tree of G of weight less than T1 contradicting
our assumption that T1 is an minimum spanning tree of G. Hence we have w(f) = w(e).
However, then F1 is a spanning tree of G of weight same as T′ and thus itself an minimum
spanning tree of G. Moreover, for every positive integer α, the number of edges of weight
α in F1 and T′ are the same. Hence we have F1 ∈ S. However, we have |T1∆F1| < |T1∆T

′|

which contradicts our choice of T′. This concludes the proof of the statement.

Problem 11

(a) Let v be either NULL, or a pointer to a vertex of the tree. Let MIND(v) be defined as
follows:

MIND(v) =

{
0 if v is NULL,
the size of a maximum independent set of the subtree rooted at v otherwise.

Clearly,
MIND(v) = 1 if v is a leaf.

Now, let v be an internal node, and let v` and vr be its left and right children respec-
tively. If v is NULL, assume that v` and vr are both NULL.

case 1: A maximum independent set of the subtree rooted at v does not include v.
Then, it is the union of maximum independent sets of the subtrees rooted at v`
and vr.

MIND(v) =MIND(v`) +MIND(vr).

case 2: A maximum independent set of the subtree rooted at v includes v. Then, it
is the union of {v} and maximum independent sets of the subtrees rooted at the
grandchildren of v. Note that some of the grandchildren may be NULL.

MIND(v) = 1+MIND((v`)`)+MIND((v`)r)+MIND((vr)`)+MIND((vr)r).

Combining the two subcases above, we get the following recurrence relation for
MIND(v).

MIND(v) =



0 if v is NULL,

1 if v is a leaf,

max{MIND(v`) +MIND(vr),
1 +MIND((v`)`) +MIND((v`)r)+
MIND((vr)`) +MIND((vr)r)} otherwise

5

Notice that in the recursive expression of MIND(v) only vertices whose heights are
strictly less than that of v are used.

(b) The above recurrence reveals an optimal substructure property. Notice that a recur-
sive algorithm based on part (a) will suffer from the “overlapping subproblems”. So,
how about trying dynamic programming? We are given the root pointer. So it may be
convenient to retain the recursive structure of our algorithm, and do memoization.
Let r be the input root pointer. Let MIND(v) be a global table, with one entry for
each vertex. FINDMIND(r) returns the size of a maximum independent set of the
input tree.

Algorithm 1 FINDMIND(r)
1: Do a breadth-first traversal on the tree. For each vertex v, MIND(v)← 0.
2: return IND(r).

Algorithm 2 IND(v)

1: if v = NULL then
2: return 0.
3: end if
4: if MIND(v) > 0 then
5: return MIND(v).
6: end if
7: MIND(v) ← max{IND(v`) + IND(vr), 1 + IND((v`)`) + IND((v`)r) + IND((vr)`) +
IND((vr)r)}.

8: return MIND(v).

(c) For each v maintan the information of whether or not v is included in the maximum
independent set of the subtree rooted at v that your algorithm computes. Let it be
stored in the global table ININD. INDmod is the modified IND function. INDmod

fills up the table ININD. Finally, output the set of vertices v for which ININD[v] = 1.

(d) Running time is O(|V |).

Problem 12

(a)
∑

i∈Swi 6W.

(b)
∑

i∈S vi.

(c) Let T be a set of items from {1, . . . , i} with total weight at most W of maximum total
price, i.e.,

∑
j∈T vj = c(i,W).

6

Algorithm 3 INDmod(v)

1: if v = NULL then
2: return 0.
3: end if
4: if MIND(v) > 0 then
5: return MIND(v).
6: end if
7: val1← IND(v`) + IND(vr).
8: val2← 1 + INDmod((v`)`) + INDmod((v`)r) + INDmod((vr)`) + INDmod((vr)r).
9: if val1 > val2 then

10: ININD[v]← 0.
11: MIND(v)← val1.
12: return MIND(v).
13: end if
14: ININD[v]← 1.
15: MIND(v)← val2.
16: return MIND(v).

case1: i /∈ T : In this case T is also a set of items from {1, . . . , i− 1} with total weight
at most W of maximum total price. Thus c(i,W) = c(i− 1,W).

case 2: i ∈ T : In this case, wi 6 W and T \ {i} is a set of items from {1, . . . , i − 1}
with total weight at most W − wi of maximum total price. Thus, c(i,W) =
vi + c(i− 1,W −wi).

From the above two cases we have that

c(i,W) =


0 if i = 1 and wi > W,
vi if i = 1 and wi 6W,
c(i− 1,W) if i > 1and wi > W,
max{c(i− 1,W), vi + c(i− 1,W −wi)} if i > 1and wi 6W.

(d) Use dynamic programming. A recursive program will suffer from overlapping sub-
problems. Recall that w ′

is are all integers. Let the global table T stores the solutions
of various c(i,W) ′s. The first step is initializing all its entries to −1. Then update it
using the algorithm KNAPSACK. Finally return T(n,W). We use memoization here;
but you can do iterative table-filling also.

(e) Easy. Modify the KNAPSACK algorithm to also store whether or not i is included in the
solution. Let this information be kept in the 2-dimensional global array A; A(i,w)
stores whether or not the element i is included in the optimal solution when the set
of items is {1, . . . , i} and the weight limit is W. The algorithm KNAPSACK-MODIFIED

(see pseudocode) fills up the table A. The set of items can be retrieved from the
table A as follows: First, check if A(n,W) = 1. If A(n,W) = 1, include n in the set,

7

Algorithm 4 KNAPSACK (i,W)

1: if i=0 then
2: return 0.
3: end if
4: if T(i,W) > −1 then
5: return T(i,W).
6: end if
7: val1← KNAPSACK(i− 1,W).
8: if wi > W then
9: T(i,W)← val1.

10: return T(i,W).
11: end if
12: val2← KNAPSACK(i− 1,W −wi) + vi.
13: if val1 > val2 then
14: T(i,W)← val1.
15: else
16: T(i,W)← val2.
17: end if
18: return T(i,W).

and then check if A(n − 1,W −wn) = 1 to decide whether or not to include n − 1.
If A(n,W) = 0, then do not include n in the set, and check if A(n − 1,W) = 1 to
decide whether or not to include n − 1. Continue similarly. The algorithm FINDSET

(see pseudocode) does this.

(f) Same order as the number of subproblems. O(nW).

Problem 13 Let G = (V,E).

(i) The proof is by induction on n.
Base case: n = 1. Number of edges is 0 = n− 1.
Induction step: Assume that the hypothesis is true for all graphs of at most
n − 1 vertices, for n > 1. Now consider a graph G with n vertices that satisfies
properties (a) and (b). Now consider any maximal path v1, . . . , vk in G1. Since
the graph is acyclic, from the maximality of the path it follows that the degree
of vertex v1 (also vk) is 12. Consider the subgraph G ′ of G induced by the vertex
set V \ {v1}. Note that the number of edges in G ′ is |E|− 1. Also, observe that G ′

is connected and acyclic. Since G ′ has n − 1 vertices, by inductive hypothesis,
we have that the number of edges |E|− 1 in G ′ is equal to (n− 1) − 1 = n− 2,
which implies that |E| = n− 1 and the proof is complete.

1a path is maximal if it cannot be extended any more in either direction.
2such vertices are called leaves.

8

Algorithm 5 KNAPSACK-MODIFIED (i,W)

1: if i=0 then
2: return 0.
3: end if
4: if T(i,W) > −1 then
5: return T(i,W).
6: end if
7: val1← KNAPSACK(i− 1,W).
8: if wi > W then
9: A(i,W)← 0.

10: T(i,W)← val1.
11: return T(i,W).
12: end if
13: val2← KNAPSACK(i− 1,W −wi) + vi.
14: if val1 > val2 then
15: A(i,W)← 0.
16: T(i,W)← val1.
17: else
18: A(i,W)← 1.
19: T(i,W)← val2.
20: end if
21: return T(i,W).

(ii) Proof by contradiction. Assume that G satisfies properties (a) and (c), and
G has a cycle. Then we modify G in the following way: As long as G has a
cycle, remove an edge from that cycle. Notice that these operations preserve
the connectivity of G. Thus at the end we get a graph which is connected and
acyclic, but has strictly less than n− 1 edges. This contradicts (i).

(iii) Proof by contradiction. Assume that G satisfies properties (b) and (c), and G
is not connected. Thus G has at least two connected components. Now modify
G as follows: As long as G is not connected, add an edge between two vertices
in two different connected components. Note that these operations preserve
acyclicity of G. At the end, we get a graph which is connected, acyclic and has
strictly more than n− 1 vertices. This contradicts (i).

9

Algorithm 6 FINDSET

1: weight←W.
2: S← ∅.
3: for i = n to 1 do
4: if A(i,weight) = 1 then
5: S← S ∪ {i}.
6: weight← weight−wi.
7: end if
8: end for
9: return S.

10

