Lecture 7

Swagato Sanyal

Recall that in the lecture we derived the following recurrence for the runtime of the algorithm for finding order statisctics:

$$
\begin{equation*}
T(n) \leq a n+T(\lfloor n / 5\rfloor)+T(\lfloor 3 n / 4\rfloor) \text { for } n \geq 90 \tag{1}
\end{equation*}
$$

We wished to show that there exists a constant c such that for all $n \geq 90, T(n) \leq c n$. To do that we chose a c such that

- Base case: $T(90) \leq c \cdot 90$.
- Inductive step: $c \geq 20 a$.

We inferred that for such a choice of $c, T(n) \leq c n$ for all $n \geq 100$.

Error: That was an erroneous inference. To see this, consider the inductive step when $n=91$. Then $\lfloor n / 5\rfloor=18$ and $\lfloor 3 n / 4\rfloor=68$. In our inductive step deduction we assumed that $T(18) \leq c \cdot 18$ and $T(68) \leq c \cdot 68$. However, we chose c so that only the inequalities $T(90) \leq c \cdot 90$ and $c \geq 20 a$ are satisfied. So we cannot make such assumptions.

Fix: One way to resolve this is choosing c such that for each $n^{\prime}=1,2, \ldots, 90, T\left(n^{\prime}\right) \leq c \cdot n^{\prime}$, i.e., $c \geq T\left(n^{\prime}\right) / n^{\prime}$. All these 90 constraints, and the constraint $c \geq 20 a$ can be satisfied by choosing a large enough c. Notice that for such a choice of c the following is true:

$$
T(n) \leq c \cdot n \quad \text { for all } n \geq 1
$$

