CS60007 Algorithm Design and Analysis 2018
Supplementary for Lecture 6

Palash Dey
Indian Institute of Technology, Kharagpur

August 1, 2018

Let G be a weighted and undirected® graph with weight function w : &[] — R.
We define d(u,v) to be the distance from u to v in G for u,v € V[G]. Let {(v,1) be the
label of vertex v € 'V at the beginning of the i-th iteration in the Dijkstra’s algorithm and
d(v) = £(v,1) if the Dequeue operation returns vertex v in the iteration i. We have the
following property about £(v, i). Let s € V[G] be the vertex from which we need to find the
distance to every other vertices in §. Then we have the following result.

Lemma 1. For every i € [n] and v € VI[G], we have d(s,v) < £(v,1).

Proof. We will prove it by induction on i. For 1 = 1, the result follows from the observation
that vi = s,{(s,1) = 0,£(v, 1) = oo for every v € V[G] \ {s}.

Let us now assume the statement for i and prove it for i + 1. The results holds for
every vertex in V' = {v € V[9] : {(v,i) = {(v,i+ 1)} from Induction hypothesis. Hence,
if V[G] = V’, then we have nothing to prove. So let us assume that V[G] # V'. Let
w € V[G] \ V' be any vertex in V[G] \ V. Then we have {(w,i+ 1) = {(x,1) + w({x, w}) for
some x € V[G] \ {w}. Now we have the following:

d(s,w) < d(s,x) +w({x,w}) <x,1) +w({x,w}) =¢(w,i+1)

The first inequality follows from the definition of distance and the second inequality fol-
lows from the Induction hypothesis for the vertex x. This concludes the proof of the
lemma. 0

LAll the results claimed here extend to directed graphs too with analogous argument. We choose to
restrict ourselves to undirected graphs only for simplicity.

1



Using Lemma 1, we now prove the correctness of the Dijkstra’s algorithm. Let v; be the
vertex which Dequeue returns in the i-th iteration of the loop in the Dijkstra’s algorithm.

Theorem 2. If all the edge weights of the graph G are positive, then we have d(vi) = d(s, v;)
for every i € In] which is the same as saying that d(v) = d(s, V) for every v € V[G].

Proof. We can assume without loss of generality that every vertex is reachable from s.
If not, then let V' C V[G] be the set of vertices in G which are unreachable from s. We
have d(s,v) = oo for every v € V' (because there is no path from s to v in §) and the
result follows form Lemma 1. So we can restrict our attention only to the vertices that are
reachable from s in G.

We observe that d(v;) = £(v;i,1). Hence, we have d(v;) > d(s,v;) due to Lemma 1.

We now prove that d(v;) < d(s,v;) for every i € [n] using Induction on i. The base case
follows immediately from the observation that v; = s and we have d(v;) = 0 < d(s,v;)
since all the edge weights are positive.

Let us now assume the statement for i and prove it for i + 1. If £(v;,1,1) = oo, then let
W ={v € V[S] : {(v,1) = oo}. Clearly, W # () since v;,; € W by our assumption. However,
this implies that there is no edge in the cut (W, V[G] \ W). In particular every vertex in W
is unreachable from s in § which contradicts our assumption that G is connected. So, we
have {(vi;1,1) < co. Let p = (wo(=s),us, Uy, ..., ux(=viy1)) be a shortest path from s to
Vit1 in G. We claim that u; € {vi,v,,...,v;} for every 0 < j < k — 1. Suppose not, then
there exists a vertex u; with 0 < t < k — 1 such that u; € {vi,va,...,vi}. We observe the
following chain of inequalities:

Clug, 1) < Oue—, 1) Fw{ue, ue}) = duwe—1) +wl{ue—1, ue}) < d(s, vigr) < (i, 1)

The first inequality follows from the update procedure (which is the same as ‘re-
laxation’ in the CLRS book) of the algorithm, the equality follows from the fact that
Ui 1 € {v1,va,...,Vvi}, the third inequality follows from the assumption that the weight
of every edge in G is positive, and the third inequality follows from Lemma 1. However
it contradicts our choice of v; ; since £(u, 1) < €(viy1,1) and ug, vigr € {vi,va,..., Vil
Hence we have u; € {vi,v,,...,v;} for every 0 < j < k — 1. Since, { values are always
decreased when it is updated for any vertex, we have £(v;,1,1) < d(s,vii1)-

Hence, we have d(v;) < d(s,v;) for every i € [n] which concludes the proof of correct-
ness of the Dijkstra’s algorithm. O

Can you find the places in the proof of Theorem 2 where we have used the fact that the
weight of every edge in the input graph is positive? Can you find an example with one negative
weight edge and no negative weight cycle where Dijkstra’s algorithm fails?



