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Proof of Correctness of the Kruskal’s Algorithm for Finding
an MST

The proof of correctness of the Kruskal’s algorithm follows immediately from the following
more general result.

Lemma 1. Let G = (V,E) be an undirected weighted graph, e1, e2, . . . , en−1 the edges in G in
the order they are picked by the Kruskal’s algorithm. Then, for every 1 6 k 6 n − 1, there
exists an MST of G which includes e1, e2, . . . , ek.

Proof. We prove it by induction on k. For k = 1, the statement follows from the home task
given in the class. Let us assume the result for k. That is, let us assume that there exists an
MST Tk of G which includes e1, e2, . . . , ek. If Tk already includes ek+1, then we have nothing
to prove. So let us assume without loss of generality that Tk does not include ek+1. Let us
consider the subgraph H = Tk ∪ {ek+1}. Let C be the cycle in H. The cycle C includes the
edge ek+1 since Tk is a tree. The cycle C also includes an edge f ∈ E[G] \ {e1, e2, . . . , ek} by
the definition of ek+1 (that the Kruskal’s algorithm picks it in the (k+1)-th iteration). Also
by the definition of ek+1, we have wt(ek+1) 6 wt(f). Hence the weight of the spanning
tree Tk+1 = H\{f} is at most the weight of Tk. Thus Tk+1 is also an MST of G and it includes
e1, e2, . . . , ek+1. This completes the proof of the Lemma.
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