CS60007 Algorithm Design and Analysis 2018 Supplementary for Lecture 1

Palash Dey
Indian Institute of Technology, Kharagpur

July 19, 2018

Lemma 1. Let $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ be an undirected weighted graph, $\mathcal{S} \subset \mathcal{V}$ a subset of vertices with $\mathcal{S} \neq \emptyset$ and $\mathcal{S} \neq \mathcal{V}, e \in \mathcal{E}$ an edge of minimum weight in the cut $(\mathcal{S}, \mathcal{V} \backslash \mathcal{S})$. Then there exists a minimum spanning tree of \mathcal{G} which includes the edge e.

Proof. Let \mathcal{T} be a minimum spanning tree of \mathcal{G} and $e=\{u, v\}$. If \mathcal{T} already includes e, then we have nothing to prove. So, let us assume that \mathcal{T} does not include the edge e. Let us consider the subgraph $\mathcal{F}=\mathcal{T} \cup\{e\}$ of \mathcal{G}. By the definition of trees, there exists a cycle \mathcal{C} in \mathcal{F} which includes the edge e. Now, since $\mathcal{C} \cap \mathcal{S} \neq \emptyset$ and $\mathcal{C} \cap(\mathcal{V} \backslash \mathcal{S}) \neq \emptyset$, there exists an edge f in \mathcal{C} other than e that belongs to the cut $(\mathcal{S}, \mathcal{V} \backslash \mathcal{S})$. By the definition of e, we have weight of f is at least the weight of e. Also, $\mathcal{T}^{\prime}=\mathcal{F} \backslash\{f\}$ is a spanning tree of \mathcal{G} since \mathcal{T} is a spanning tree of \mathcal{G}. We observe that the weight of \mathcal{T}^{\prime} is at most the weight of \mathcal{T} since the weight of e is at most the weight of f. However, since \mathcal{T} is a minimum spanning tree of \mathcal{G}, \mathcal{T}^{\prime} is also a minimum spanning tree of \mathcal{G}. This proves the result since \mathcal{T}^{\prime} includes e.

