CS60007 Algorithm Design and Analysis 2018 Assignment 4

Palash Dey and Swagato Sanyal Indian Institute of Technology, Kharagpur

Please submit the solutions of problem 1, 5, and 12. The deadline is November 12, 2018 in the class.

General Instructions

- ▷ Please prove correctness of every algorithm you design.
- ▷ If not stated otherwise, please ensure that your algorithm runs in polynomial time.
- ▷ If not stated otherwise, please design a deterministic algorithm.
- \triangleright If not stated otherwise, please assume that n to be the size (the number of bits) of the input instance.
- ▷ If not stated otherwise, please assume that the graphs under consideration are finite, weighted, and directed graphs which does not contain any self loop.
- ▷ We have not defined some standard problems. You are expected to find the problem statements (from Google say) by yourself.
- 1. Let n denotes the number of vertices in the graph. Prove that if there exists an k^n factor approximation algorithm for the Travelling Salesman problem for any positive integer k, then P = NP.
- 2. Design a $\frac{7}{8}$ factor approximation algorithm for the MAX3SAT problem. [Hint: try greedy approach.]
- 3. Design a $O(\log n)$ factor approximation algorithm for the Set Cover problem. [Hint: try greedy approach.]

- 4. Design a 2 factor approximation algorithm for the Vertex Cover problem. [Hint: try to find polynomial time computable lower bound on the size of a minimum vertex cover.]
- **5.** Design a 2 factor approximation algorithm for the Bin Packing problem. [Hint: This is Problem 35-1 in the CLRS book. Follow the guideline provided in CLRS.]
- 6. Design a FPTAS for the 0/1-Knapsack problem.
- 7. Prove that if there exists an α factor approximation algorithm for the Maximum Clique problem, then there exists a $\sqrt{\alpha}$ factor approximation algorithm for the Maximum Clique problem for any constant α . Deduce from this that if if there exists an α factor approximation algorithm for the Maximum Clique problem, then there exists a PTAS for the Maximum Clique problem. [Hint: Use hint from Problem 35-2 in the CLRS book.]
- 8. Prove that if there exists a FPTAS for the Vertex Cover problem, them P = NP.
- 9. Design a randomized $\frac{1}{2}$ factor approximation algorithm for the Maximum Cut problem. Deduce from this that for every graph, there exists a cut consisting of at least half the edges in the graph.
- 10. Design a deterministic $\frac{1}{2}$ factor approximation algorithm for the Maximum Cut problem. [Hint: try greedy approach.]
- 11. We know that CNF-SAT is NP-complete due to the famous Cook-Levin Theorem. Design a polynomial time algorithm for DNF-SAT.
- 12. We know that 3SAT is NP-complete. Design a polynomial time algorithm for 2SAT.