
CS60007 Algorithm Design and Analysis 2018
Assignment 3

Palash Dey and Swagato Sanyal
Indian Institute of Technology, Kharagpur

Please submit the solutions of problem 1, 2, 9, 21 and 20. The deadline is October
25, 2018 in the class.

General Instructions

B Please prove correctness of every algorithm you design.

B Please compute running time of every algorithm you design.

B If not explicitly specified otherwise, please assume that the graphs under considera-
tion are finite, weighted, and directed graphs which does not contain any self loop.

B We have not defined some standard problems. You are expected to find the problem
statements (from Google say) by yourself.

1. Recall the linear programming formulation of the max-flow problem that we used in
the lecture to prove the max-flow min-cut theorem. We turned the max-flow problem
into a circulation problem by adding an edge from t to s of infinite capacity. In this
exercise you will redo the proof of the max-flow min-cut theorem using the following
more natural linear programming formulation of max-flow. Assume that s does not
have any incoming edge and t does not have any outgoing edge.

maximize
∑

v:(s,v)∈E fs,v

subject to:
for each edge e, fe 6 ce, (capacity constraints)

for each vertex v /∈ {s, t},
∑

(u,v)∈E

fu,v −
∑

(v,w)∈E

fv,w = 0, (flow-conservation constraints)

for each edge e, fe > 0. (non-negativity constraints)

Call this LP L.
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(a) [1 marks] Turn the equality constraints to ‘less than or equal to’ constraints, by
observing that the constraint X = 0 is equivalent to the pair of constraints X 6 0
and −X 6 0.

(b) [4 marks] Compute the dual of L. Call it L ′. Make sure you handle various
types of edges (depending on whether or not one or more of the endpoints are
in {s, t}) appropriately.

(c) [2 marks] Each equality constraint in the primal L was split into two inequality
constraints. Note that in the dual L ′, the dual variables corresponding to these
two constraints always appear together. More specifically, the difference of these
dual variables appears in L ′. Argue that if each such difference is replaced by
a single variable without non-negativity constraint, the value of L ′ does not
change.

(d) [3 marks] Prove that the coefficient matrix of L (and hence of L ′) is totally
unimodular.

Hint: Recall that in class we showed that the coefficient matrix of the bipartite
matching LP is totally unimodular. Can you find a proof along the same lines?

(e) [5 marks] Prove the max-flow min-cut theorem. Try to find a proof along the
lines of the proof done in the class.

2. [15 marks] Let G = (V,E) be an undirected graph. A max-cut of G is defined to be a
partition (A,V \A) of vertices such that A 6= V, ∅, that has maximum number of cut
edges |{(u, v) ∈ E | u ∈ A, v ∈ B}|1. Prove that the value of the following 0-1 integer
program is equal to the size of a max-cut of G.

maximize
∑

e∈E γe

subject to:

for each edge e = (u, v),γe 6

{
µu + µv,
2 − (µu + µv).

γe,µv ∈ {0, 1}.

Hint: Split the proof into two parts:

B Prove that the value of the program 6 the size of a max-cut as follows: for any
cut of the graph, show that there exists a feasible point of the above program
for which the value of the objective function is at most the size of the cut.

B Prove that the size of a max-cut 6 the value of the program as follows: for any
feasible point of the above program, show that there exists a cut whose size is
at most the value of the objective function on this point.

1Do not confuse it with an s-t cut. G is undirected, uncapacitated, and do not have special vertices s, t.
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3. Prove that if there exists a polynomial time algorithm for any NP-complete problem,
then P=NP.

4. Recall the subset-sum problem: Given a multiset of integers w1, . . . ,wn and a target
integer W, does there exist a subset S of {1, . . . ,n} such that

∑
i∈Swi = W? Design

a dynamic programming algorithm for the subset-sum problem that runs in time
O(nW).

5. Comment on the following ‘reasoning’:

Subset-sum is known to be an NP-complete problem. By the problem 4, subset-sum
has a polynomial time algorithm. Thus, it is proved that P=NP.

6. The Component Grouping problem is defined as follows: Given a graph G that is not
connected, and an integer k, does there exist a set of connected components of G
whose union has exactly k vertices? Now consider the following claim.

Component Grouping is NP-complete.
We present to you the following as a proof of this claim.

Alleged proof: Component grouping is easily seen to be in NP. Now, the subset-sum
problem reduces to Component grouping as follows: for each integer wi, introduce
a distinct path in the graph with wi vertices. The final graph is the collection of
these paths. These paths are the various connected components of this graph. Set
the parameter k to the target sum W in the subset-sum instance.

Is the above proof correct? Now, following is a polynomial time algorithm for solving
Component Grouping. By DFS, find the sizes of the various connected components
of the graph. Let there be ` connected components whose sizes are n1, . . . ,n`. Note
that k can be assumed to be at most n, as the size of the union of some connected
components can be at most n. Thus we obtain a subset-sum instance where the
integers are n1, . . . ,n` and the target sum is k. Finally, use the dynamic programming
algorithm from the previous problem to solve this subset-sum instance in O(` · k) =
O(n2) time.

Have we proved that P=NP?

7. Let us define a complexity class PC as follows: A decision problem A ∈ PC if and
only if the following two conditions are satisfied:

B A ∈ P,

B For every language B ∈ P, B 6p A.

Prove that PC=P.
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8. Given a graph G = (V,E) and independence set A is a set of vertices no two of which
are connected by an edge, i.e., for each u, v ∈ A, (u, v) /∈ E. The Independence set
decision problem IS is defined as follows: For a graphG and an integer k, IS(G,k)= 1
if G has an independent set of size at least k, and 0 otherwise. Prove that IS is NP-
complete.

Hint: Reduce from vertex cover.

9. [15 marks] The Circuit-SAT problem is defined as follows. The input is a Boolean
circuit consisting of binary2 AND, OR and NOT gates. The output is 1 if there exists a
truth assignment to the input variables of the circuit such that the circuit evaluates to
TRUE, and 0 otherwise. Prove that Circuit-SAT is NP-Complete, by reducing it from
some NP-complete problem done in the class (i.e., SAT, 3SAT, Vertex Cover, Subset
Sum).

10. In this problem you will reduce Circuit-SAT to SAT as follows. The input to the
reduction is a Boolean circuit consisting of binary AND, OR and NOT gates.

B For every wire in the circuit, introduce a Boolean variable.

B For each AND gate do the following. Let the variables corresponding to the input
wires of the gate be z1, z2 and the variable corresponding to the output wire be z.
Introduce the following clauses: (z∨z1∨z2), (z∨z1∨z2), (z∨z1∨z2), (z∨z1∨z2).
Verify for yourself that AND of these 4 clauses is equivalent to the condition
z = (z1 ∧ z2).

B For each OR gate do the following. Let the variables corresponding to the in-
put wires be w1,w2 and the variable corresponding to the output wire be w.
Introduce a set of clauses such that their AND is equivalent to the condition
w = (w1 ∨w2).

B For each NOT gate do the following: Let the variables corresponding to the
input and output wires be x1 and x2 respectively. Introduce a set of clauses
whose AND is equivalent to the condition x2 = x1.

The SAT instance that you output is the collection of all the clauses constructed in
the above steps. Prove that it is a valid reduction, i.e., the resultant SAT formula is
satisfiable if and only if the original Boolean circuit has a satisfying assignment. Do
you see that the reduction runs in polynomial time?

11. We saw that the activity selection problem is solvable by a simple greedy algorithm.
In this problem you will show that a similar but more general scheduling problem is
NP-complete. However, unlike the activity selection problem where we had to output
a schedule, this is a decision problem. There are n jobs. For the i-th job, i = 1, . . . ,n,

2that is with two inputs.
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we are given a release time ri where it is first available for processing, a deadline
di by which it must be completed, and a processing duration ti. Assume that all the
parameters are non-negative integers. In order to complete job i, it must be started
at or after time ri, it must be given a contiguous time slot of ti units, and it must
finish by time di. The machine can run only one job at a time. The problem is to
find out if the jobs can be scheduled such that all of them are completed before their
respective deadlines. Prove that this problem is NP-complete.

In the following questions, you are asked to reduce various problems to other problems.
The problems can all be easily verified to be in NP. The problems from which you are asked
to reduce are all known to be NP-complete.

12. Reduce 3-Dimensional Matching to Exact Set Cover by 3 Sets.

13. Reduce 3-Dimensional Matching to 4-Dimensional Matching.

14. Reduce Subset Sum to Partition.

15. Reduce Partition to Knapsack.

16. Reduce Partition to Bin Packing.

17. Reduce Vertex Cover to Set Cover.

18. Reduce Set Cover to Hitting Set.

19. Reduce Vertex Cover to Integer Programming.

20. Reduce Vertex Cover to Dominating Set.

21. [15 marks] Reduce from 3SAT to Max-cut.

22. [15 marks] Reduce from 3SAT to Not All Equal 3SAT.

23. Reduce from Hamiltonian Cycle to Hamiltonian Path.

24. Reduce from Hamiltonian Path to Hamiltonian Cycle.

25. Reduce from Hamiltonian Cycle to Travelling Salesman.

26. Reduce from Hamiltonian Cycle to Longest Path.

27. Reduce from 3SAT to Graph 3-Colorability.

28. Reduce Clique to Subgraph Isomorphism.
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