
CS60007 Algorithm Design and Analysis 2018
Assignment 2

Palash Dey and Swagato Sanyal
Indian Institute of Technology, Kharagpur

Please submit the solutions of problem 1, 5, 6, and 20. The deadline is September
4, 2018 in the class.

General Instructions

B Please prove correctness of every algorithm you design.

B Please compute running time of every algorithm you design.

B If not explicitly specified otherwise, please assume that the graphs under considera-
tion are finite, weighted, and directed graphs which does not contain any self loop.

Notation

B N = {0, 1, 2, 3, ...} is the set of natural numbers. R is the set of real numbers.

B For n ∈ N, [n] = {i ∈ N : 1 6 i 6 n}.

B For a,b ∈ R with a < b, we define [a,b] = {x ∈ R : a 6 x 6 b}, [a,b) = {x ∈ R : a 6
x < b}, (a,b] = {x ∈ R : a < x 6 b}, (a,b) = {x ∈ R : a < x < b}.

This is a preliminary version and may contain errors. Please send an email to the
instructors if you find any error. Thank you for your cooperation.

1

1. [10 Marks] Let G be a different kind of graph where we have weights on vertices
instead of weights on edges. Let us define the weight of a path to be the sum of
the weights of the vertices on the path. Can there exist any algorithm for the sin-
gle source shortest path problem in this graph? If there exists any such algorithm,
describe it. Otherwise prove why there cannot be any such algorithm.

2. Design an algorithm to find, for all pairs of vertices u and v, the number of paths
from u to v.

3. Reduce the following generalization of the maximum flow problem to the basic max-
imum flow problem.

(a) (Vertex capacities) In this generalization, every vertex v also have a capac-
ity c(v). A feasible flow in this setting is a flow which satisfies the following
constraint (which says that flow into any vertex can be at most its capacity) in
addition to non-negativity, capacity, and conservation constraints:∑

(u,v)∈E

f(u, v) 6 c(v) for every vertex v

The problem is to find a maximum flow in this setting.

(b) (Multiple source-sink pairs) In this generalization, we are given multiple
source-sink pairs (s1, t1), (s2, t2), . . . , (sk, tk) for some positive integer k. Ev-
erything remains same from the basic flow problem except we now do not want
flow conservation property to hold at any vertex in {si, ti : i ∈ [k]}. The problem
is to find a maximum flow in this setting.

(c) (Demands on edges) In this generalization, we are also given a demand d(e)
for every edge e. A feasible flow in this setting is a flow which satisfies the
following constraint (which says that flow in any edge is at least its demand) in
addition to non-negativity, capacity, and conservation constraints:

f(e) > d(e) for every edge e

The problem is to find if there exists a feasible flow in this setting.

(d) (Supplies and demands on nodes) In this generalization, we are also given a
demand d(v) for every vertex v. A feasible flow in this setting is a flow which
satisfies the following constraint in addition to non-negativity and capacity:∑

(u,v)∈E

f(u, v) −
∑

(v,w)∈E

f(v,w) = c(v) for every vertex v

The problem is to find if there exists a feasible flow in this setting.

2

4. Consider the following problem. You are given a flow network with unit-capacity
edges: It consists of a directed graph G = (V,E), a source s ∈ V, and a sink t ∈ V;
and ce = 1 for every e ∈ E. You are also given a parameter k. The goal is to delete k

edges so as to reduce the maximum s − t flow in G by as much as possible. In other
words, you should find a set of edges F ⊂ E so that |F| = k and the maximum s − t

flow in G = (V,E \ F) is as small as possible subject to this. Give a polynomial-time
algorithm to solve this problem. This problem is taken from [KT06].

5. [15 Marks] Prove using flows that the number of edge disjoint s− t paths in a graph
G is the same as the size of minimum s− t cut. This is known as Menger’s Theorem.

6. [10+2 Marks] Prove that the number of minimum cuts in an n vertex graph is at
most

(
n
2

)
. Given an example of a graph where the number of minimum cuts is

(
n
2

)
.

7. Let G be an undirected and weighted graph. For any two vertices u, v ∈ V with u 6= v,
a pair (A,V\A) is called a u− v cut if u ∈ A and v /∈ A. The capacity of (A,V\A) is
the number of edges in G with one end point in A and other end point not in A. Let
us denote the capacity of a minimum u− v cut by f(u, v). Then prove the following:

(a) For every u, v,w ∈ V, we have

f(u, v) > min{f(u,w), f(w, v)}

(b) For every u, v,w1,w2, . . . ,wr ∈ V, we have

f(u, v) > min{f(u,w1), f(w1,w2), f(w2,w3), . . . , f(wr, v)}

8. Give an algorithm to find the number of vertex disjoint paths in a directed graph
between two given nodes.

9. Prove or disprove the following statements:

(a) If all capacities are even integers then there exists a maximum s− t flow f such
that f(e) is even for every e ∈ E.

(b) If all capacities are odd integers then there exists a maximum s − t flow f such
that f(e) is odd for every e ∈ E.

10. Let G be a graph with integral capacities. Let f be a maximum flow in G and e be any
edge in G.

(a) We increase the capacity of e by 1. Let the resulting graph be H1.

(b) We decrease the capacity of e by 1. Let the resulting graph be H2.

Design a O(m+ n) algorithm to compute a maximum flow in H1 and H2.

3

11. Prove or disprove the following statement: if the capacities of all the edges are ratio-
nal numbers in a graph, then Ford-Fulkerson algorithm terminates.

12. Construct graphs with following properties:

(a) Exponentially (as function of n) many minimum cuts and a unique maximum
flow.

(b) Many maximum flows and a unique minimum cut.

(c) Many maximum flows and many minimum cuts.

13. Prove or disprove the following statement: Let (A,V\A) be a minimum s− t cut in a
graph G. We now increase the capacity of every edge in G by 1. The resulting graph
be H. Then (A,V \A) is a minimum s− t cut in H too.

14. König’s Theorem states that the size of maximum matching in a bipartite graph is
the same as the size of a minimum vertex cover. Prove König’s Theorem using flow
arguments.

15. Give an example of a network where Ford-Fulkerson algorithm does not even con-
verge to some maximum flow.

16. (Flow Decomposition) Let f be a flow in a graph G. Then prove that there exists
feasible flows f1, f2, . . . , fk and s−t paths p1,p2, . . . ,pk with the following properties:

(a) k 6 m

(b) val(f) =
∑k

i=1 val(fi)

(c) For every i ∈ [k], e ∈ E[G], fi(e) > 0 if and only if e belongs to pi

Design an efficient algorithm to find a flow decomposition of a given flow.

17. Recall the linear time algorithm for finding any order statistic done in the lecture.
Remember that to compute the median we partitioned the inputs into blocks of size
5? Is the choice of 5 important? What is the complexity when the block size is chosen
to be (a)3, (b)7? If you claim that the complexity is super-linear for a particular
choice of block size, argue that there exists an input that forces the algorithm to run
in super-linear time.

18. Suppose that an algorithm uses only comparisons to find the i-th smallest element
in a set of n elements. Show that it can also find the i − 1 smaller elements and the
n− i larger elements without performing any additional comparisons.

19. Describe an O(n)-time algorithm that, given a set S of n distinct numbers and a
positive integer k 6 n, determines the k numbers in S that are closest to the median
of S.

4

20. You are given as input n distinct numbers x1, . . . , xn and their respective weights
w1, . . . ,wn. The weights are positive real numbers and they add up to 1, i.e.,∑n

i=1 wi = 1. The weighted lower median (wlm) is defined to be xk where
k ∈ {1, . . . ,n} is the unique index that satisfies

(a)
∑

xi<xk
wi <

1
2 , and

(b)
∑

xi>xk
wi 6 1

2 .

(i) [3 marks] prove that wlm is well-defined, i.e., for each input x1, . . . , xn and
w1, . . . ,wn there is a unique k for which the above two conditions (a) and (b)
are satisfied.

(ii) [5 marks] Give an algorithm that computes wlm using sorting and runs in worst-
case O(n logn) time.

(iii) [7 marks] Suppose you are given access to an algorithm MEDIAN that takes
in n distinct numbers x1, . . . , xn, computes their (lower) median, and runs in
O(n) time (we have seen such an algorithm in the lecture). Using MEDIAN as
a black-box 1 design an algorithm that computes wlm and runs in worst-case
O(n) time.

References

[KT06] Jon Kleinberg and Eva Tardos. Algorithm design. Pearson Education India, 2006.

1your algorithm is allowed to call MEDIAN on various inputs, but is not allowed to modify MEDIAN any
any way.

5

