
CS60007 Algorithm Design and Analysis 2018
Supplemental Material for Approximation Algorithms

Palash Dey
Indian Institute of Technology, Kharagpur

November 5, 2018

Warning: This is a preliminary version and may contain error. If you find any error, please report it to
me.

1 Introduction

Assuming P 6= NP, there does not exist any polynomial time algorithm for any NP-complete problem. There
can be different approaches to tackle it. For example, (i) one could design various heuristics which will
output reasonable solution in quick (polynomial) time (ii) one could design polynomial time approximation
algorithms which is guaranteed to output an “approximate” solution (iii) one could design polynomial time
algorithms which will output exact solution (that is, solves the problem exactly; not approximately) for
certain range of parameters (for example, there exists a polynomial time algorithm for the VERTEX COVER

problem if the vertex cover we are looking for is of size at most O(logn) where n is the number of vertices in
the graph). In this material, we will discuss on the approach of finding an approximate solution. The notion
of an approximation factor will be central to our exposition.

Definition 1 (Approximation Factor1 for a Minimization Problem). Let P be a minimization problem and
α : N −→ R>1 be any function from the set of natural numbers to the set of real numbers with value at least 1.
An algorithm A for the problem P is called an α factor approximation algorithm if, for every instance of Π of P
of “parameter” n, we have ALG(Π) 6 α(n)OPT(Π) where ALG(Π) and OPT(Π) are the values of the output of
the algorithm and optimal solution for the instance Π respectively.

Similarly, we can define approximation factor for a maximization problem.

Definition 2 (Approximation Factor for a Maximization Problem). Let P be a maximization problem and
α : N −→ [0, 1] be any function from the set of natural numbers to the set of real numbers with values in [0, 1].
An algorithm A for the problem P is called an α factor approximation algorithm if, for every instance of Π of P
of “parameter” n, we have ALG(Π) > α(n)OPT(Π) where ALG(Π) and OPT(Π) are the values of the output of
the algorithm and optimal solution for the instance Π respectively.

In the above definitions, the notion of the parameter depends on the problem at hand. For example,
for the 3−SAT problem, the parameter could be the number of variables or the number of clauses or the
maximum number of clauses any variable appears etc.; for the VERTEX COVER problem, the parameter could

1Also called approximation ratio.

1

be the number of vertices or the number of edges or the diameter of the graph or the maximum degree of
any node in the graph etc.

2 Approximation Algorithms

In this section, we will see some concrete examples of approximation algorithms. In principle, design of
approximation algorithm is more along the line of design polynomial time algorithms– here too, our goal
is to design a polynomial time algorithm which approximates the optimal solution well (since we usually
design approximation algorithms for NP-hard problems, we do not hope to have an algorithm which solves
the problem exactly). One of the starting point in designing polynomial time exact algorithm2 is to study the
structure of an optimal solution to find a “foothold” which can be exploited to come up with a polynomial
time algorithm. Similarly, one of the starting point for designing approximation algorithm is to study the
structure of an optimal solution to find a good lower bound if the problem is a minimization problem (a
good upper bound if the problem is a maximization problem) which can be exploited to come up with an
approximation algorithm. Let us see few concrete examples.

2.1 Approximation Algorithm for TRAVELLING SALESMAN PROBLEM

From CLRS.

2.2 Randomized Approximation Algorithm for EXACT3−SAT

In the EXACT3−SAT problem, we are given a collection of CNF clauses each is a logical OR of 3 distinct
literals over a set of variables. The objective is to find a Boolean assignment of variables which satisfies a
maximum number of clauses. Formally, the problem is defined as follows.

EXACT3−SAT
Input: A collection {Cj : j ∈ [m]} of m clauses each is a logical OR of exactly 3 different literals over a set
{xi : i ∈ [n]} of n Boolean variables.
Output: Output a Boolean assignment of variables which satisfies a maximum number of clauses.

Our randomized algorithm does the following: for each i ∈ [n], assign xi to be TRUE or FALSE with equal
probability independent of everything else. That is, we toss a fair coin; assign xi to TRUE if the coin comes
up head; otherwise we assign xi to FALSE. We claim that the expected number of clauses satisfied by the
assignment output by the algorithm is 7

8m.

Lemma 3. The expected number of clauses satisfied by the assignment output by the algorithm is 7
8m which is

at least 7
8 OPT(Π) where OPT(Π) is the optimal number of clauses satisfied in an instance Π.

Proof. Let f : xi : i ∈ [n] −→ {TRUE, FALSE} be the assignment output by the algorithm (which depends on
the randomness used by the algorithm). We define a random variable Yj for j ∈ [m] to be 1 if f satisfies the
clause Cj and 0 otherwise. Since each Cj is the logical OR of exactly 3 different literals, the random variable
Yj is distributed as follows for every j ∈ [m]3.

Yj =

{
1 with probability at least 7

8

0 with probability at most 1
8

2An algorithm for some problem is called exact if the algorithm finds exact solution of every instance of the problem.
3Do you see why the probability of Yj = 1 is not exactly 7

8 ?

2

Thus we have E[Yj] > 7
8 . We also define a random variable Z denoting the number of clauses satisfied by

f. Then we have the following.

Z =

m∑
j=1

Yj

⇒ E[Z] =
m∑
j=1

E[Yj] >
m∑
j=1

7
8
=

7
8
m

The following structural result immediately follows from Lemma 3. The argument uses the well known
probabilistic method.

Corollary 4. In any EXACT3−SAT instance, there exists an assignment which satisfies at least 7
8 fraction of the

number of clauses.

Proof. In the proof of Lemma 3, we have seen that E[Z] > 7
8m. On the other hand, we have the following

expression for E[Z]. As defined in the proof of Lemma 3, f is the assignment output by the algorithm.

E[Z] =
m∑
`=1

Pr
[
f satisfies exactly ` clauses

]
× `

For the sake of finding a contradiction, let us assume that there exists an instance Π of EXACT3−SAT for
which there does not exist any assignment which satisfies at least 7

8 fraction of the number of clauses in Π,
then we have the following which is a contradiction.

7
8
m 6 E[Z] =

m∑
`=1

Pr
[
f satisfies exactly ` clauses

]
× ` =

(7
8m)−1∑
`=1

Pr
[
f satisfies exactly ` clauses

]
× ` < 7

8
m

The second equality follows from the assumption that there does not exist any assignment in Π which
satisfies at least 7

8 fraction of the number of clauses (hence the probability that the assignment f satisfies at
least 7m

8 clauses is 0).

2.3 Notion of PTAS, EPTAS, and FPTAS

One of the primary goal of approximation algorithm design is to obtain an algorithm with approximation
factor as close to 1 as possible. Notice that, a polynomial time approximation algorithm with approximation
factor 1 is equivalent to having an exact polynomial time algorithm for the problem which we do not hope to
achieve for an NP-complete problem (since that would imply P = NP). So it would be excellent if we have
a polynomial time approximation with approximation factor (1 + ε) for a minimization problem ((1 − ε) for
a maximization problem) for any arbitrary constant ε > 0. The notion of PTAS formalizes this concept.

Definition 5 (Polynomial Time Approximation Scheme (PTAS)). An algorithm is called a polynomial time
approximation scheme (PTAS for short) for a problem if it takes a parameter ε > 0 as input in addition to the
usual input and outputs a solution with approximation factor (1 + ε) for a minimization problem and (1 − ε)

for a maximization problem in time O(nf(1/ε)) where n is the length of input and f(1/ε) is any computable
function.

3

For example, the Euclidean Travelling Salesman problem where the input is a set of n points (which are
the vertices) in a d-dimensional Euclidean space for some constant d and the distance between vertices are
the corresponding Euclidean distances and one need to find a tour of minimum weight which covers every
vertex, admits a PTAS – the running time of the algorithm is O(n(logn)(O(

√
d/ε))d−1

). As we can immediately
observe that the running time of a PTAS can increase rapidly as we decrease ε. It would be better if ε does
not appear in the exponent of n in the running time of our algorithm. EPTAS formalizes this notion.

Definition 6 (Efficient Polynomial Time Approximation Scheme (EPTAS)). An algorithm is called an efficient
polynomial time approximation scheme (EPTAS for short) for a problem if it takes a parameter ε > 0 as input in
addition to the usual input and outputs a solution with approximation factor (1+ε) for a minimization problem
and (1−ε) for a maximization problem in time f(1/ε)O(nO(1)) where n is the length of input and f(1/ε) is any
computable function.

For example, the Feedback Vertex Set problem on planar graphs where the input is a planar directed
graph and we need to find a minimum set of vertices whose removal makes the graph acyclic, admits a
EPTAS. Still the dependence on ε in case of an EPTAS can be arbitrarily bad; for example an algorithm with
running time 2221/ε

O(n) is an EPTAS. However, the running time grows rapidly when we decrease ε. To
address this, the notion of FPTAS has been proposed.

Definition 7 (Fully Polynomial Time Approximation Scheme (FPTAS)). An algorithm is called an fully poly-
nomial time approximation scheme (FPTAS for short) for a problem if it takes a parameter ε > 0 as input in
addition to the usual input and outputs a solution with approximation factor (1+ε) for a minimization problem
and (1 − ε) for a maximization problem in time O(1/ε)O(1)O(nO(1)) where n is the length of input.

For example, the Subset Sum, Knapsack problems admit FPTAS.

2.4 PTAS for SUBSET SUM

From CLRS.

3 Approximation Lower Bounds

In this section we will refute existence of algorithms of certain approximation guarantees.

3.1 No FPTAS for SET COVER

We will prove that the SET COVER problem does not admit an FPTAS assuming P 6= NP. In the SET COVER

problem, the input is a universe U of size n, a collection C of m subsets of U, and the objective is to find a
minimum number of subsets in C whose union is U.

Theorem 8. There does not exist an FPTAS for the SET COVER problem assuming P 6= NP.

Proof. For the sake of finding a contradiction, let us assume that there exists a (1 + ε) factor approximation
algorithm A for the SET COVER problem with running time O(1/ε)O(1)O(nO(1)). We set ε = 1

2m in the
algorithm A. The running time of the algorithm A with ε = 1

2m is O(nO(1)) with is a polynomial in n. By the
definition of an approximation factor, if ALG and OPT denote the number of sets returned by the algorithm
and the number of sets in an optimal solution respectively, then we have the following.

OPT 6 ALG 6 (1 + ε)OPT = (1 +
1

2m
)OPT = OPT +

OPT
2m

6 OPT +
1
2

4

The last inequality follows from the observation that OPT 6 m. Since both ALG and OPT are integers,
the above inequality implies ALG=OPT. Hence the algorithm A with ε = 1

2m solves the SET COVER problem
exactly in polynomial amount of time which contradicts our assumption that P 6= NP since SET COVER is a
NP-complete problem.

5

	Introduction
	Approximation Algorithms
	Approximation Algorithm for Travelling Salesman Problem
	Randomized Approximation Algorithm for Exact3-SAT
	Notion of PTAS, EPTAS, and FPTAS
	PTAS for Subset Sum

	Approximation Lower Bounds
	No FPTAS for Set Cover

