A Randomized Approximation Algorithm for MAX 3-SAT

CS 511

Iowa State University

December 8, 2008

Note. This material is based on Kleinberg \& Tardos, Algorithm Design, Chapter 13, Section 4, and associated slides.

MAX 3-SAT

Given: A 3-SAT formula $\phi\left(x_{1}, \ldots, x_{n}\right)=C_{1} \wedge \cdots \wedge C_{k}$
Goal: Find a truth assignment that satisfies as many clauses as possible.

MAX 3-SAT

Example

$$
\begin{array}{ll}
C_{1}=\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) & C_{2}=\left(x_{2} \vee x_{3} \vee \bar{x}_{4}\right) \\
C_{3}=\left(\bar{x}_{1} \vee x_{2} \vee \bar{x}_{4}\right) & C_{4}=\left(x_{1} \vee \bar{x}_{3} \vee x_{4}\right)
\end{array}
$$

Random assignment: $x_{1}=0, x_{2}=1, x_{3}=0, x_{4}=1$
$\Rightarrow 3$ clauses are satisfied.
Optimal assignment: $x_{1}=x_{2}=x_{3}=x_{4}=1$
\Rightarrow all clauses are satisfied.

MAX 3-SAT

Theorem (MAX 3-SAT is NP-hard)
If MAX 3-SAT can be solved in polynomial time, then so can 3-SAT.

Proof.

- Suppose there is a polynomial-time algorithm A for MAX 3-SAT.
- Let formula φ be an instance of 3-SAT.
- Run A on input φ.
- If the assignment returned by A satisfies all clauses of φ, then return YES; else return NO.

A Randomized Approximation Algorithm

Approx-Max3SAT (ϕ)
for $i=1$ to n
do Flip a fair coin
if Heads then $x_{i} \leftarrow 1$ else $x_{i} \leftarrow 0$
return x

Observation
The running time of Approx-Max3SAT is $O(n)$

Theorem
Approx-Max3SAT is 7/8-approximate.

Proof.

- Define the random variable

$$
Z_{j}= \begin{cases}1 & \text { if clause } C_{j} \text { is satisfied } \\ 0 & \text { otherwise }\end{cases}
$$

- Then, $Z=\sum_{j=1}^{k} Z_{j}$ is the number of clauses satisfied.
- The expected number of clauses satisfied is

$$
E[Z]_{\text {linearity }}^{=} \sum_{j=1}^{k} E\left[Z_{j}\right]_{Z_{j} \text { is } 0 / 1}^{=} \sum_{j=1}^{k} \operatorname{Pr}\left(C_{j} \text { is satisfied }\right)=\frac{7}{8} k
$$

A Randomized Approximation Algorithm: Implications

Corollary (Lower Bound on Number of Satisfiable Clauses)

For any instance of 3-SAT, there exists a truth assignment that satisfies at least $7 / 8$ of the clauses.

Proof.

A random variable is at least its expectation some of the time.

Corollary
 Any instance of 3-SAT with at most 7 clauses is satisfiable.

Proof.

Follows from the lower bound on number of satisfiable clauses

The Probabilistic Method

- The lower bound on number of satisfiable clauses is an example of the probabilistic method.
- We showed the existence of a non-obvious property of 3-SAT by showing that a random construction produces it with positive probability.

An Alternative Randomized Algorithm

Johnson's Algorithm
 Repeatedly generate random truth assignments until one of them satisfies at least $7 k / 8$ clauses.

Theorem
Johnson's algorithm is a 7/8-approximation algorithm that runs in expected polynomial time.

Lemma (Waiting Time Bound)

Consider a series of independent trials where each trial succeeds with probability p and fails with probability $1-p$. Then, the expected number of trials until the first success is $1 / p$.

Proof.

- Let N be the number of trials until first success.
- The probability that j trials are needed is

$$
\operatorname{Pr}(N=j)=p(1-p)^{j-1}
$$

- The expected number of trials until first success is

$$
E[N]=\sum_{j=1}^{\infty} j \cdot \operatorname{Pr}(N=j)=\sum_{k=1}^{\infty} j \cdot p(1-p)^{j-1}=\frac{1}{p}
$$

Lemma (Satisfaction Probability)

The probability that a random assignment satisfies at least $7 k / 8$ clauses is at least $1 /(8 k)$.

Proof.

Let p_{j} be probability that exactly j clauses are satisfied; let p be probability that $\geq 7 k / 8$ clauses are satisfied.

$$
\begin{aligned}
\frac{7}{8} k=E[Z]=\sum_{0 \leq j \leq k} j p_{j} & =\sum_{0 \leq j<7 k / 8} j p_{j}+\sum_{7 k / 8 \leq j \leq k} j p_{j} \\
& \leq\left(\frac{7}{8} k-\frac{1}{8}\right) \sum_{0 \leq j<7 k / 8} p_{j}+k \sum_{7 k / 8 \leq j \leq k} p_{j} \\
& \leq\left(\frac{7}{8} k-\frac{1}{8}\right) \cdot 1+k p
\end{aligned}
$$

Solving for p yields $p \geq 1 /(8 k)$.

Theorem

Johnson's algorithm is a 7/8-approximation algorithm that runs in expected polynomial time.

Proof.

- Approximation ratio is guaranteed, if algorithm stops.

Algorithm only stops if it finds an assignment that satisfies $7 / 8$ of the clauses.
Recall: Such an assignment must exist.

- By the Satisfaction Probability Lemma, the probability of finding this assignment in the current iteration is $\geq 1 /(8 k)$.
- By the Waiting Time Bound, the expected number of iterations to find the assignment $\leq 8 k$.

