
Path Finding II :
An Õ(m

√
n) Algorithm for the Minimum Cost Flow Problem

Yin Tat Lee
MIT

yintat@mit.edu

Aaron Sidford
MIT

sidford@mit.edu

Abstract

In this paper we present an Õ(m
√
n logO(1) U) time algorithm for solving the maximum flow

problem on directed graphs with m edges, n vertices, and capacity ratio U . This improves
upon the previous fastest running time of O(mmin{m1/2, n2/3} log

(
n2/m

)
log(U)) achieved

over 15 years ago by Goldberg and Rao [10]. In the special case of solving dense directed
unit capacity graphs our algorithm improves upon the previous fastest running times of of
O(mmin{m1/2, n2/3}) achieved by Even and Tarjan [7] and Karzanov [15] over 35 years ago
and of Õ(m10/7) achieved recently by Mądry [25].

We achieve these results through the development and application of a new general interior
point method that we believe is of independent interest. The number of iterations required
by this algorithm is better than that achieved by analyzing the best self-concordant barrier of
the feasible region. By applying this method to the linear programming formulations of max-
imum flow, minimum cost flow, and lossy generalized minimum cost flow analyzed by Daitch
and Spielman [5] we achieve a running time of Õ(m

√
n logO(1)(U/ε)) for these problems as well.

Furthermore, our algorithm is parallelizable and using a recent nearly linear work polylogarith-
mic depth Laplacian system solver of Spielman and Peng [31] we achieve a Õ(

√
n logO(1)(U/ε))

depth and Õ(m
√
n logO(1)(U/ε)) work algorithm for solving these problems.

1 Introduction

The maximum flow problem and its dual, the minimum s-t cut problem, are two of the most well
studied problems in combinatorial optimization [33]. These problems are key algorithmic primi-
tives used extensively throughout both the theory and practice of computer science [1]. Numerous
problems in algorithm design efficiently reduce to the maximum flow problem [2, 34] and techniques
developed in the study of this problem have had far reaching implications [3, 2].

Study of the maximum flow problem dates back to 1954 when the problem was first posed
by Harris [32]. After decades of work the current fastest running time for solving the maximum
flow problem is due to a celebrated result of Goldberg and Rao in 1998 in which they produced a
O(mmin{m1/2, n2/3} log(n2/m) log(U)) time algorithm for weighted directed graphs with n vertices,
m edges and integer capacities of maximum capacity U [10].1 While there have been numerous
improvements in the running time for solving special cases of this problem (see Section 1.1), the
running time for solving the maximum flow problem in full generality has not been improved since
1998.

1Throughout this paper we restrict our attention to “weakly” polynomial time algorithms, that is algorithms which
may depend polylogarithmically on U . The current fastest “strongly polynomial” running time is O(nm) [30].

1

ar
X

iv
:1

31
2.

67
13

v2
 [

cs
.D

S]
 5

 M
ar

 2
01

5

In this paper we provide an algorithm that solves the maximum flow problem with a running
time of Õ(m

√
n logO(1)(U)),2 yielding the first improvement to the running time for maximum

flow in 15 years and the running time for solving dense unit capacity directed graphs in 35 years.
Furthermore, our algorithm is easily parallelizable and using [31], we obtain a Õ(m

√
n logO(1)(U))

work Õ(
√
n logO(1)(U)) depth algorithm. Using the same technique, we also solve the minimum

cost flow problem in time Õ(m
√
n logO(1)(U)) time and produce ε-approximate solutions to the

lossy generalized minimum cost flow problem in Õ(m
√
n logO(1)(U/ε)) time.

We achieve these running times through a novel extension of the work in Part I [22]. In particular,
we show how to implement and analyze an algorithm that is essentially “dual” to our approach in
[22] and we generalize this algorithm to work for a broader class of barrier functions. This extension
is nontrivial as it ultimately yields a path following algorithm that achieves a convergence rate
better than that of the best possible self-concordant barrier for feasible region. To the best of the
authors’ knowledge this is the first interior point method to break this long-standing barrier to the
convergence rate of general interior point methods [27]. Furthermore, by applying our algorithm to
the linear programming formulations of the maximum flow, minimum cost flow, and lossy generalized
minimum cost flow problems analyzed in [5], and by using both the error analysis in [5] and nearly
linear time algorithms for solving Laplacian systems [36, 18, 19, 17, 21, 23, 31], we achieve the
desired running times.

While our approach is general and the analysis is technical, for the specific case of the maximum
flow problem our linear programming algorithm has a slightly more straightforward interpretation.
The algorithm simply alternates between re-weighting costs, solving electric flow problems to send
more flow, and approximately computing the effective resistance of all edges in the graph to keep the
effective resistance of all edges in the graph fairly small and uniform. Hence, by following the path
of (almost) least (effective) resistance, we solve the maximum flow problem in Õ(m

√
n logO(1)(U)).

1.1 Previous Work

While the worst case asymptotic running time for solving the maximum flow problem has remained
unchanged over the past 15 years, there have been significant breakthroughs on specific instances of
the problem, generalizations of the problem, and the technical machinery used to solve the problem.
Here we survey some of the key results that we leverage to achieve our running times.

Although the running time for solving general directed instances of maximum flow has remained
relatively stagnant until recently [25], there have been significant improvements in the running time
for computing maximum flows on undirected graphs over the past few decades. A beautiful line
of work on faster algorithms for approximately solving the maximum flow problem on undirected
graphs began with a result of Benzcur and Karger in which they showed how to reduce approx-
imately computing minimum cuts in arbitrary undirected graphs to the same problem on sparse
graphs, i.e. those with only a nearly linear number of vertices [3]. In later work, Karger also showed
how reduce computing approximate maximum flow on dense undirected graphs to computing ap-
proximate maximum flows on sparse undirected graphs [13]. Pushing this idea further, in a series
of results Karger and Levine showed how to compute the exact maximum flow in an unweighted
undirected graph in time Õ(m+ nF) where F is the maximum flow value of the graph [12].

In 2004 a breakthrough result of Spielman and Teng [36] showed that a particular class of
linear systems, Laplacians, can be solved in nearly linear time and Christiano, Kelner, Mądry,
and Spielman [4] showed how to use these fast Laplacian system solvers to approximately solve
the maximum flow problem on undirected graphs in time Õ(mn1/3ε−11/3). Later Lee, Rao and

2Here and in the remainder of the paper we use Õ(·) to hide polylog(m) factors.

2

Srivastava [20] showed how to solve the problem in Õ(mn1/3ε−2/3) for undirected unweighted graphs.
This exciting line of work culminated in recent breakthrough results of Sherman [34] and Kelner,
Lee, Orecchia and Sidford [16] who showed how to solve the problem in time almost linear in the
number of edges in the graph, Õ(m1+o(1)ε−2), using congestion-approximators, oblivious routings,
efficient construction techniques developed by Mądry [24].

In the exact and directed setting, over the past few years significant progress has been made on
solving the maximum flow problem and its generalizations using interior point methods, a powerful
and general technique for convex optimization [14, 27]. In 2008, Daitch and Spielman [5] showed
that, by careful application of interior point techniques, fast Laplacian system solvers [36], and a
novel method for solving M-matrices, they could match (up to polylogarithmic factors) the running
time of Goldberg Rao and achieve a running time of Õ(m3/2 logO(1)(U)) not just for maximum flow
but also for the minimum cost flow and lossy generalized minimum cost flow problems. Furthermore,
very recently Mądry [25] achieved an astounding running time of Õ(m10/7) for solving the maximum
flow problem on un-capacitated directed graphs by a novel application and modification of interior
point methods. This shattered numerous barriers providing the first general improvement over the
running time of O(mmin{m1/2, n2/3}) for solving unit capacity graphs proven over 35 years ago by
Even and Tarjan [7] and Karzanov [15] in 1975.

While our algorithm for solving the maximum flow problem is new, we make extensive use of
these breakthroughs on the maximum flow problem. We use sampling techniques first discovered
in the context of graph sparsification [35], but not to sparsify a graph but rather to re-weight the
graph so that we make progress at a rate commensurate with the number of vertices and not the
number of edges. We use fast Laplacian system solvers as in [4, 20], but we use them to make
the cost of interior point iterations cheap as in [5, 25]. We then use reductions and error analysis
in Daitch and Spielman [5] as well as their solvers for M-matrices to apply our framework to flow
problems. Furthermore, as in Mądry we use weights to change the central path (albeit for a slightly
different purpose). We believe this further emphasizes the power of these tools as general purpose
techniques for algorithm design.

Year Author Running Time
1972 Edmonds and Karp [6] Õ(m2 log(U))

1984 Tardos [37] O(m4)

1984 Orlin [28] Õ(m3)

1986 Galil and Tardos [9] Õ
(
mn2

)
1987 Goldberg and Tarjan [11] Õ(mn log(U))

1988 Orlin [29] Õ(m2)

2008 Daitch and Spielman [5] Õ(m3/2 log2(U))

2013 This paper Õ(m
√
n logO(1)(U))

Figure 1.1: Here we summarize the running times of algorithms for the minimum cost flow problem.
U denotes the maximum absolute value of capacities and costs. For simplicity, we only list exact
algorithms which yielded polynomial improvements.

1.2 Our Approach

Our approach to the maximum flow problem is motivated by our work in Part I [22]. In Part I we
provided a new method for solving a general linear program written in the dual of standard form

min
~y∈Rn : A~y≥~c

~bT~y (1.1)

3

where A ∈ Rm×n, ~b ∈ Rn, and ~c ∈ Rm. We showed how to solve (1.1) in Õ(
√

rank(A) log(U/ε))

iterations while only solving Õ(1) linear systems in each iteration.3 Whereas previous comparable
linear program solvers required

√
max{m,n} iterations when A was full rank, ours only required√

min{m,n} in a fairly general regime.
Unfortunately, this result was insufficient to produce faster algorithms for the maximum flow

problem and its generalizations. Given an arbitrary minimum cost maximum flow instance there is
a natural linear program that one can use to express the problem:

min
~x ∈ Rm : AT~x = ~b
∀i ∈ [m] : li ≤ xi ≤ ui

~cT~x (1.2)

where the variables xi denote the flow on an edge, the li and ui denote lower and upper bounds on
how much flow we can put on the edge, and A is the incidence matrix associated with the graph
[5]. In this formulation, rank(A) is less than the number of vertices in the graph and using fast
Laplacian system solvers [36, 18, 19, 17, 21, 23, 31] we can solve linear systems involving A in time
nearly linear in the number of edges in the graph. Thus, if we could perform similar error analysis
as in Daitch and Spielman [5] and solve (1.2) in time comparable to that we achieve for solving
(1.1) this would immediately yield a Õ(m

√
n logO(1)(U)) algorithm for the maximum flow problem.

Unfortunately, it is not clear how to apply our previous results in this more general setting and
naive attempts to write (1.2) in the form of (1.1) without increasing rank(A) fail.

Even more troubling, achieving a faster than Õ(
√
mL) iterations interior point method for

solving general linear programs in this form would break a long-standing barrier for the convergence
rate of interior point methods. In a seminal result of Nesterov and Nemirovski [27], they provided
a unifying theory for interior point methods and showed that given the ability to construct a v-self
concordant barrier for a convex set, one can minimize linear functions over that convex set with a
convergence rate of O(

√
v). Furthermore, they showed how to construct such barriers for a variety

of convex sets and thereby achieve fast running times.
To the best of the authors knowledge, there is no general purpose interior point method that

achieves a convergence rate faster than the self concordance of the best barrier of the feasible region.
Furthermore, using lower bounds results of Nesterov and Nemirovski, it is not hard to see that any
general barrier for (1.2) must have self-concordance Ω(m). To be more precise, note the following
result of Nesterov and Nemirovski.

Theorem 1 ([27, Proposition 2.3.6]). Let Ω be a convex polytope in Rm. Suppose there is a vertices
of the polytope belongs exactly to k linearly independent (m − 1)-dimensional facets. Then, the
self-concordance of any barrier on Ω is at least k.

Consequently, even if our maximum flow instance just consisted of O(m) edges in parallel The-
orem 1 implies that a barrier for the polytope must have self-concordance at least Ω(m). Note that
this does not rule out a different reduction of the problem to minimizing a linear function over a
convex body for which there is a O(n) self-concordant barrier. However, it does reflect the difficulty
of using standard analysis of interior point methods.

1.3 Our Contributions

In this paper we provide an Õ(
√

rank(A) log(U/ε)) iteration algorithm for solving linear programs
of the form (1.2). This is the first general interior point method we aware of that converges at a

3Throughout this paper we use U to denote the width of a linear program defined in Theorem 18

4

faster rate than the self-concordance of the best barrier of the feasible region. Each iteration of our
algorithm involves solving of Õ(1) linear systems of the form ATDA~x=~d. By applying this method
to the linear program formulation of lossy generalized minimum cost flow analyzed in Daitch and
Spielman [5], we achieve a running time of Õ(m

√
n logO(1)(U/ε)) for solving this problem.

We achieve this running time by a novel extension of the ideas in [22] to work with the primal
linear program formulation (1.2) directly. Using an idea from [8], we create a 1-self concordant
barrier for each of the li ≤ x ≤ ui constraints and run a primal path following algorithm with
the sum of these barriers. While this would naively yield a O(

√
m log(U/ε)) iteration method,

we show how to use weights in a similar manner as in [22] to improve the convergence rate to
Õ(
√

rank(A) log(U/ε)).
While there are similarities between this analysis and the analysis in Part I, we cannot use that

result directly. Changing from weighted path following in the dual linear program formulation to
this primal formulation changes the behavior of the algorithm and in essentially shifts degeneracies
in maintaining weights to degeneracies to maintaining feasibility. This simplifies some parts of the
analysis and makes others make some parts of the analysis simpler and some more complicated.

On the positive side, the optimization problem we need to solve to computes the weights becomes
better conditioned. Furthermore, inverting the behavior of the weights obviates the need for r-steps
that were key to our analysis in our previous work.

On the negative side, we have to regularize the weight computation so that weight changes do
not undo newton steps on the feasible point and we have to do further work to show that Newton
steps on the current feasible point are stable. In the dual formulation it was easy to assert that
small Newton steps on the current point do not change the point multiplicatively. However, for this
primal analysis this is no longer the case and we need to explicitly bound the size of the Newton
step in both the `∞ norm and a weighted `2 norm. Hence, we measure the centrality of our points
by the size of the Newton step in a mixed norm of the form

∥∥ · ∥∥ =
∥∥ · ∥∥∞ + Cnorm

∥∥ · ∥∥
W

to keep
track of these two quantities simultaneously.

Measuring of Newton step size both with respect to the mixed norm helps to explain how our
method outperforms the self-concordance of the best barrier for the space. Self-concordance is based
on `2 analysis and the lower bounds for self-concordance are precisely the failure of the sphere to
approximate a box. While ideally we would just perform optimization over the `∞ box directly, `∞ is
ripe with degeneracies that makes this analysis difficult. Nevertheless, unconstrained minimization
over a box is quite simple and by working with this mixed norm and choosing weights to improve
the conditioning, we are taking advantage of the simplicity of minimizing `∞ over most of the
domain and only paying for the n-self-concordance of a barrier for the smaller subspace induce by
the requirement that AT~x = ~b. We hope that this analysis may find further applications.

1.4 Paper Organization

The rest of our paper is structured as follows. In Section 2 and Section 3 we cover preliminaries.
In Section 4 we introduce our path finding framework and in Section 5 we present the key lemmas
used to analyze progress along paths and in Section 6 we introduce the weight function we use to
find paths. In Section 7 provide our linear programming algorithm and in Section 8 we discuss the
requirements of the linear system solvers we use in the algorithm. In Section 9 we use these results
to achieve our desired running times for the maximum flow problem and its generalizations.

Some of the analysis in this paper is similar to our previous work in Part I [22] and when the
analysis is nearly the same we often omit details. We encourage the reader to look at Part I [22]
for more detailed analysis and longer expositions of the machinery we use in this paper. Note that
throughout this paper we make no attempt to reduce polylogarithmic factors in our running times.

5

2 Notation

Here we introduce various notation that we will use throughout the paper. This section should
be used primarily for reference as we reintroduce notation as needed later in the paper. (For a
summary of linear programming specific notation we use, see Appendix A.)

Variables: We use the vector symbol, e.g. ~x, to denote a vector and we omit the symbol when
we denote the vectors entries, e.g. ~x = (x1, x2, . . .). We use bold, e.g. A, to denote a matrix. For
integers z ∈ Z we use [z] ⊆ Z to denote the set of integers from 1 to z. We let ~1i denote the vector
that has value 1 in coordinate i and is 0 elsewhere.

Vector Operations: We frequently apply scalar operations to vectors with the interpretation
that these operations should be applied coordinate-wise. For example, for vectors ~x, ~y ∈ Rn we let
~x/~y ∈ Rn with [~x/~y]i

def
= (xi/yi) and log(~x) ∈ Rn with [log(~x)]i = log(xi) for all i ∈ [n] .

Matrix Operations: We call a symmetric matrix A ∈ Rn×n positive semidefinite (PSD) if
~xTA~x ≥ 0 for all ~x ∈ Rn and we call A positive definite (PD) if ~xTA~x > 0 for all ~x ∈ Rn. For a
positive definite matrix A ∈ Rn×n we denote let ‖ · ‖A : Rn → R denote the norm such that for
all ~x ∈ Rn we have

∥∥~x∥∥
A

def
=
√
~xTA~x. For symmetric matrices A,B ∈ Rn×n we write A � B to

indicate that B −A is PSD (i.e. ~xTA~x ≤ ~xTB~x for all ~x ∈ Rn) and we write A ≺ B to indicate
that B −A is PD (i.e. that ~xTA~x < ~xTB~x for all ~x ∈ Rn). We define � and � analogously. For
A,B ∈ Rn×m, we let A ◦B denote the Schur product, i.e. [A ◦B]ij

def
= Aij ·Bij for all i ∈ [n] and

j ∈ [m], and we let A(2) def
= A ◦A. We use nnz(A) to denote the number of nonzero entries in A.

For any norm ‖ · ‖ and matrix M, the operator norm of M is defined by
∥∥M∥∥ = sup‖~x‖=1

∥∥M~x
∥∥.

Diagonal Matrices: For A ∈ Rn×n we let diag(A) ∈ Rn denote the vector such that diag(A)i =
Aii for all i ∈ [n]. For ~x ∈ Rn we let diag(~x) ∈ Rn×n be the diagonal matrix such that
diag(diag(~x)) = ~x. For A ∈ Rn×n we let diag(A) be the diagonal matrix such that diag(diag(A)) =

diag(A). For ~x ∈ Rn when the meaning is clear from context we let X ∈ Rn×n denote X
def
= diag(~x).

Multiplicative Approximations: Frequently in this paper we need to convey that two vectors
~x and ~y are close multiplicatively. We often write ‖X−1(~y − ~x)‖∞ ≤ ε to convey the equivalent
facts that yi ∈ [(1 − ε)xi, (1 + ε)xi] for all i or (1 − ε)X � Y � (1 + ε)X. At times we find it
more convenient to write ‖ log ~x − log ~y‖∞ ≤ ε which is approximately equivalent for small ε. In
Lemma 37, we bound the quality of this approximation.

Matrices: We use Rm>0 to denote the vectors in Rm where each coordinate is positive and for a
matrix A ∈ Rm×n and vector ~x ∈ Rm>0 we define the following matrices and vectors

• Projection matrix PA(~x) ∈ Rm×m: PA(~x)
def
= X1/2A(ATXA)−1ATX1/2.

• Leverage scores ~σA(~x) ∈ Rm: ~σA(~x)
def
= diag(PA(~x)).

• Leverage matrix ΣA(~x) ∈ Rm×m: ΣA(~x)
def
= diag(PA(~x)).

• Projection Laplacian ΛA(~x) ∈ Rm×m: ΛA(~x)
def
= ΣA(~x)−PA(~x)(2).

The definitions of projection matrix and leverage scores are standard when the rows of A are
reweighed by the values in vector ~x.

Convex Sets: We call a set U ⊆ Rk convex if for all ~x, ~y ∈ Rk and all t ∈ [0, 1] it holds that
t · ~x + (1 − t) · ~y ∈ U . We call U symmetric if ~x ∈ Rk ⇔ −~x ∈ Rk. For any α > 0 and convex set

6

U ⊆ Rk we let αU def
= {~x ∈ Rk|α−1~x ∈ U}. For any p ∈ [1,∞] and r > 0 we refer to the symmetric

convex set {~x ∈ Rk|‖~x‖p ≤ r} as the `p ball of radius r.

Calculus: For f : Rn → R differentiable at x ∈ Rn, we let ∇f(~x) ∈ Rn denote the gradient of
f at ~x, i.e. [∇f(~x)]i = ∂

∂xi
f(~x) for all i ∈ [n]. For f ∈ Rn → R twice differentiable at x ∈ Rn, we

let ∇2f(~x) denote the hessian of f at x, i.e. [∇f(~x)]ij = ∂2

∂xi∂xj
f(~x) for all i, j ∈ [n]. Often we will

consider functions of two vectors, g : Rn1×n2 → R, and wish to compute the gradient and Hessian
of g restricted to one of the two vectors. For ~x ∈ Rn1 and ~y ∈ Rn2 we let ∇~x~g(~a,~b) ∈ Rn1 denote
the gradient of ~g for fixed ~y at point {~a,~b} ∈ Rn1×n2 . We define ∇~y, ∇2

~x~x, and ∇
2
~y~y similarly. For

h : Rn → Rm differentiable at ~x ∈ Rn we let J(~h(~x)) ∈ Rm×n denote the Jacobian of ~h at ~x where
for all i ∈ [m] and j ∈ [n] we let [J(~h(~x))]ij

def
= ∂

∂xj
h(~x)i. For functions of multiple vectors we use

subscripts, e.g. J~x, to denote the Jacobian of the function restricted to the ~x variable.

3 Preliminaries

3.1 The Problem

The central goal of this paper is to efficiently solve the following linear program

min
~x ∈ Rm : AT~x = ~b
∀i ∈ [m] : li ≤ xi ≤ ui

~cT~x (3.1)

where A ∈ Rm×n, ~b ∈ Rn, ~c ∈ Rm, li ∈ R ∪ {−∞}, and ui ∈ R ∪ {+∞}.4 We assume that that
for all i ∈ [m] the domain of variable xi, dom(xi)

def
= {x : li ≤ x ≤ ui}, is non-degenerate. In

particular we assume that dom(xi) is not the empty set, a singleton, or the entire real line, i.e.
li < ui and either li 6= −∞ or ui 6= +∞. Furthermore we make the standard assumptions that
A has full column rank, and therefore m ≥ n, and we assume that the interior of the polytope,
Ω0 def

= {~x ∈ Rm : AT~x = ~b, li < xi < ui}, is non-empty.5

The linear program (3.1) is a generalization of standard form, the case where for all i ∈ [m]
we have li = 0 and ui = +∞. While it is well known that all linear programs can be written in
standard form, the transformations to rewrite (3.1) in standard form may increase the rank of A
and therefore we solve (3.1) directly.

3.2 Coordinate Barrier Functions

Rather than working directly with the different domain of the xi we take a slightly more general
approach and for the remainder of the paper assume that for all i ∈ [m] we have a barrier function,
φi : dom(xi)→ R, such that

lim
x→li

φi(x) = lim
x→ui

φi(x) = +∞.

More precisely, we assume that each φi is a 1-self-concordant barrier function.
4Typically (3.1) is written as A~x = ~b rather than AT~x = ~b. We chose this formulation to be consistent with the

dual formulation in [22] and to be consistent with the standard use of n to denote the number of vertices and m to
denote the number of edges in a graph in the linear program formulation of flow problems.

5For techniques to relax these assumptions see Appendix E of Part I [22].

7

Definition 2 (1-Self-Concordant Barrier Function [26]). A thrice differentiable real valued barrier
function φ on a convex subset of R is called a 1-self-concordant barrier function if∣∣φ′′′(x)

∣∣ ≤ 2(φ′′(x))3/2 for all x ∈ dom(φ) (3.2)

and ∣∣φ′(x)
∣∣ ≤√φ′′(x) for all x ∈ dom(φ). (3.3)

The first condition (3.2) bounds how quickly the second order approximation to the function
can change and the second condition (3.3) bounds how much force the barrier can exert.

The existence of a self-concordant barrier for the domain is a standard assumption for interior
point methods [27]. However, for completeness, here we show how for each possible setting of the li
and ui there is an explicit 1-self-concordant barrier function we can use:

• Case (1): li finite and ui = ∞: Here we use a log barrier defined as φi(x)
def
= − log(x − li).

For this barrier we have

φ′i(x) = − 1

x− li
, φ′′i (x) =

1

(x− li)2
, and φ′′′i (x) = − 2

(x− li)3

and therefore clearly |φ′′′i (x)| = 2(φ′′i (x))3/2 , |φ′i(x)| =
√
φ′′i (x), and limx→li φi(x) =∞.

• Case (2): li = −∞ and ui finite: Here we use a log barrier defined as φi(x)
def
= − log(ui − x).

For this barrier we have

φ′i(x) =
1

ui − x
, φ′′i (x) =

1

(ui − x)2
, and φ′′′i (x) = − 2

(ui − x)3

and therefore clearly |φ′′′i (x)| = 2(φ′′i (x))3/2, |φ′i(x)| =
√
φ′′i (x), and limx→ui φi(x) =∞.

• Case (3): li finite and ui finite: Here we use a trigonometric barrier6 defined as φi(x)
def
=

− log cos(aix + bi) for ai = π
ui−li and bi = −π

2
ui+li
ui−li . Note for this choice as x → ui we have

aix+bi → π
2 and as x→ li we have aix+bi → −π

2 and in both cases φi(x)→∞. Furthermore,

φ′i(x) = ai tan (aix+ bi) , φ′′i (x) =
a2
i

cos2(aix+ bi)
, and φ′′′i =

2a3
i sin(aix+ bi)

cos3(aix+ bi)
.

Therefore, we have∣∣φ′′′i (x)
∣∣ =

∣∣∣∣2a3
i sin(aix+ bi)

cos3(aix+ bi)

∣∣∣∣ ≤ 2a3
i

| cos(aix+ bi)|3
= 2(φ′′(x))3/2

and |φ′i(x)| ≤ ai
|cos(aix+bi)| =

√
φ′′i (x).

For the remainder of this paper we will simply assume that we have a 1 self-concordant barrier φi
for each of the dom(φi) and not use any more structure about the barriers.

While there is much theory regarding properties of self-concordant barrier functions we will
primarily use two common properties about self-concordant barriers functions. The first property,
Lemma 3, shows that the Hessian of the barrier cannot change to quickly, and the second property,
Lemma 4 we use to reason about how the force exerted by the barrier changes over the domain.

6The authors are unaware of this barrier being used previously. In [8] they considered a similar setting of 0, 1, or
2 sided constraints in (3.1) however for the finite li and ui case they considered either the the barrier − log(ui−xi)−
log(xi − li), for which the proof of condition (3.3) in Definition 2 is more subtle or the barrier − log(min{ui − x, x−
li})+min{ui− xi, xi− li}/((ui− li)/2 which is not thrice differentiable. The “trigonometric barrier” we use arises as
the (unique) solution of the ODE φ′′′ = 2 (φ′′)

3/2 such that the function value goes to infinity up at ui and li.

8

Lemma 3 ([26, Theorem 4.1.6]). Suppose φ is a 1-self-concordant barrier function. For all s ∈
dom(φ) if r def

=
√
φ′′(s) |s− t| < 1 then t ∈ dom(φ) and

(1− r)
√
φ′′(s) ≤

√
φ′′(t) ≤

√
φ′′(s)

1− r
.

Lemma 4 ([26, Theorem 4.2.4]). Suppose φ is a 1-self-concordant barrier function. For all x, y ∈
dom(φ) , we have

φ′(x) · (y − x) ≤ 1.

4 Weighted Path Finding

In this paper we show how (3.1) can be solved using weighted path finding.7 Our algorithm is
essentially “dual” to the algorithm in Part I [22] and our analysis holds in a more general setting. In
this section we formally introduce this weighted central path (Section 4.1) and define key properties
of the path (Section 4.2) and the weights (Section 4.3) that we will use to produce an efficient path
finding scheme.

4.1 The Weighted Central Path

Our linear programming algorithm maintains a feasible point ~x ∈ Ω0, weights ~w ∈ Rm>0, and
minimizes the following penalized objective function

min
AT ~x=~b

ft(~x, ~w) where ft(~x, ~w)
def
= t · ~cT~x+

∑
i∈[m]

wiφi(~xi) (4.1)

for increasing t and small ~w. For every fixed set of weights, ~w ∈ Rm>0 the set of points ~x~w(t) =
arg min~x∈Ω0 ft(~x, ~w) for t ∈ [0,∞) form a path through the interior of the polytope that we call the
weighted central path. We call ~x~w(0) a weighted center of the polytope and note that limt→∞ ~x~w(0)
is a solution to the linear program.

While all weighted central paths converge to a solution of the linear program, different paths may
have different algebraic properties either increasing or decreasing the difficult of a path following
scheme (see Part 1 [22]). Consequently, our algorithm alternates between advancing down a central
path (i.e. increasing t), moving closer to the weighted central path (i.e. updating ~x), and picking a
better path (i.e. updating the weights ~w).

Ultimately, our weighted path finding algorithm follows a simple iterative scheme. We assume
we have a feasible point {~x, ~w} ∈ {Ω0 × Rm>0} and a weight function ~g(~x) : Ω0 → Rm>0, such that for
any point ~x ∈ Rm>0 the function ~g(~x) returns a good set of weights that suggest a possibly better
weighted path. Our algorithm then repeats the following.

1. If ~x close to arg min~y∈Ω ft (~y, ~w), then increase t.

2. Otherwise, use projected Newton step to update ~x and move ~w closer to ~g(~x).

3. Repeat.

In the remainder of this section we present how we measure both the quality of a current feasible
point {~x, ~w} ∈ {Ω0 × Rm>0} and the quality of the weight function. In Section 4.2 we derive and
present both how we measure how close {~x, ~w} is to the weighted central path and the step we take
to improve this centrality. Then in Section 4.3 we present how we measure the quality of a weight
function, i.e. how good the weighted paths it finds are.

7See Part I [22] for more motivation regarding weighted paths.

9

4.2 Measuring Centrality.

Here we explain how we measure the distance from ~x to the minimum of ft (~x, ~w) for fixed ~w.
This distance is a measure of how close ~x is to the weighted central path and we refer to it as the
centrality of ~x, denote δt(~x, ~w). Whereas in Part I [22] we simply measured centrality by the size of
the Newton step in the Hessian norm, here we use a slightly more complicated definition in order
to reason about multiplicative changes in the Hessian (See Section 1.3).

To motivate our centrality measure we first compute a projected Newton step for ~x. For all
~x ∈ Ω0, we define ~φ(~x) ∈ Rm by ~φ(~x)i = φi(~xi) for i ∈ [m]. We define ~φ′(~x), ~φ′′(~x), and ~φ′′′(~x)
similarly and let Φ,Φ′,Φ′′,Φ′′′ denote the diagonal matrices corresponding to these matrices. Using
this, we have8

∇xft(~x, ~w) = t · ~c+ ~w~φ′(~x) and ∇xxft(~x, ~w) = WΦ′′(~x) .

Therefore, a Newton step for ~x is given by

~ht(~x, ~w) = −
(
WΦ′′(~x)

)−1/2
PAT (WΦ′′(~x))−1/2

(
WΦ′′(~x)

)−1/2∇xft(~x, ~w)

= −Φ′′(~x)−1/2P~x,~wW−1Φ′′(~x)−1/2∇xft(~x, ~w) (4.2)

where PAT (WΦ′′(~x))−1/2 is the orthogonal projection onto the kernel of AT (WΦ′′(~x))−1/2 and P~x,~w

is the orthogonal projection onto the kernel of AT (Φ′′(~x))−1/2 with respect to the norm ‖ · ‖W, i.e.

P~x,~w
def
= I−W−1Ax

(
AT
xW−1Ax

)−1
AT
x for Ax

def
= Φ′′(~x)−1/2A . (4.3)

As with standard convergence analysis of Newton’s method, we wish to keep the Newton step size

in the Hessian norm, i.e.
∥∥~ht(~x, ~w)

∥∥
WΦ′′(~x)

=
∥∥√~φ′′(~x)~ht(~x, ~w)

∥∥
W
, small and the multiplicative

change in the Hessian,
∥∥√~φ′′(~x)~ht(~x, ~w)

∥∥
∞, small (See Lemma 4). While in the unweighted case

we can bound the multiplicative change by the change in the hessian norm (since ‖ · ‖∞ ≤ ‖ · ‖2),
here we would like to use small weights and this comparison would be insufficient.

To track both these quantities simultaneously, we define the mixed norm for all ~y ∈ Rm by

‖~y‖~w+∞
def
=
∥∥~y∥∥∞ + Cnorm

∥∥~y∥∥
W

(4.4)

for some Cnorm > 0 that we define later. Note that ‖·‖~w+∞ is indeed a norm for ~w ∈ Rm>0 as in this
case both

∥∥ · ∥∥∞and
∥∥ · ∥∥

W
are norms. However, rather than measuring centrality by the quantity∥∥√~φ′′(~x)~ht(~x, ~w)

∥∥
~w+∞ =

∥∥∥∥P~x,~w

(
∇xft(~x,~w)

~w
√
~φ′′

)∥∥∥∥
~w+∞

, we instead find it more convenient to use the

following idealized form

δt(~x, ~w)
def
= min

~η∈Rn

∥∥∥∥∥∥∇xft(~x, ~w)−A~η

~w

√
~φ′′(~x)

∥∥∥∥∥∥
~w+∞

.

We justify this definition by showing these two quantities differ by at most a multiplicative factor
of
∥∥P~x,~w

∥∥
~w+∞ as follows

δt(~x, ~w) ≤
∥∥∥∥√~φ′′(~x)~ht(~x, ~w)

∥∥∥∥
~w+∞

≤
∥∥P~x,~w

∥∥
~w+∞ · δt(~x, ~w). (4.5)

This a direct consequence of the more general Lemma 36 that we prove in the appendix.
We summarize this section with the following definition.

8Recall that ~w~φ′(~x) denotes the entry-wise multiplication of the vectors ~w and ~φ′(~x).

10

Definition 5 (Centrality Measure). For {~x, ~w} ∈ {Ω0×Rm>0} and t ≥ 0, we let ~ht(~x, ~w) denote the
projected newton step for ~x on the penalized objective ft given by

~ht(~x, ~w)
def
= − 1√

~φ′′(~x)
P~x,~w

∇xft(~x, ~w)

~w

√
~φ′′(~x)

where P~x,~w is the orthogonal projection onto the kernel of AT (Φ′′)−1/2 with respect to the norm∥∥ · ∥∥

W
(see 4.4). We measure the centrality of {~x, ~w} by

δt(~x, ~w)
def
= min

~η∈Rn

∥∥∥∥∥∥∇xft(~x, ~w)−A~η

~w

√
~φ′′(~x)

∥∥∥∥∥∥
~w+∞

(4.6)

where for all ~y ∈ Rm we let ‖~y‖~w+∞
def
=
∥∥~y∥∥∞ + Cnorm

∥∥~y∥∥
W

for some Cnorm > 0 we define later.

4.3 The Weight Function

With the Newton step and centrality conditions defined, the specification of our algorithm becomes
more clear. Our algorithm is as follows

1. If δt(~x, ~w) is small, then increase t.

2. Set ~x(new) ← ~x+ ~ht(~x, ~w) and move ~w(new) towards ~g(~x(new)).

3. Repeat.

To prove this algorithm converges, we need to show what happens to δt (~x, ~w) when we change t,
~x, ~w. At the heart of this paper is understanding what conditions we need to impose on the weight
function ~g(~x) : Ω0 → Rm>0 so that we can bound this change in δt(~x, ~w) and hence achieve fast
converge rates. In Lemma 7 we show that the effect of changing t on δt is bounded by Cnorm and∥∥~g(~x)

∥∥
1
, in Lemma 8 we show that the effect that a Newton Step on ~x has on δt is bounded by∥∥P~x,~g(~x)

∥∥
~g(~x)+∞, and in Lemma 9 and 10 we show the change of ~w as ~g(~x) changes is bounded by∥∥G(~x)−1G′(~x)(Φ′′(~x))−1/2

∥∥
~g(~x)+∞.

Hence for the remainder of the paper we assume we have a weight function ~g(~x) : Ω0 → Rm>0

and make the following assumptions regarding our weight function. In Section 6 we prove that such
weight function exists.

Definition 6 (Weight Function). A weight function is a differentiable function from ~g : Ω0 → Rm>0

such that for constants c1(~g), cγ(~g), and cδ(~g), we have the following for all ~x ∈ Ω0:

• Size : The size c1(~g) =
∥∥~g(~x)

∥∥
1
.

• Slack Sensitivity : The slack sensitivity cγ(~g) satisfies 1 ≤ cγ(~g) ≤ 5
4 and

∥∥P~x,~w

∥∥
~w+∞ ≤ cγ(~g)

for any ~w such that 4
5~g (~x) ≤ ~w ≤ 5

4~g (~x).

• Step Consistency : The step consistency cδ(~g) satisfies cδ(~g) · cγ(~g) < 1 and∥∥∥G(~x)−1G′(~x)(Φ′′(~x))−1/2
∥∥∥
~g(~x)+∞

≤ cδ ≤ 1.

• Uniformity : The weight function satisfies
∥∥~g(~x)

∥∥
∞ ≤ 2.

11

5 Progressing Along Weighted Paths

In this section, we provide the main lemmas we need for an Õ(
√

rank(A) log(U/ε)) iterations
weighted path following algorithm for (3.1) assuming a weight function satisfying Definition 4.3. In
Section 5.1, 5.2, and 5.3 we show how centrality, δt(~x, ~w), is affected by changing t, ~x ∈ Ω0, and
~w ∈ Rm>0 respectively. In Section 5.4 we then show how to use these Lemmas to improve centrality
using approximate computations of the weight function, ~g : Ω0 → Rm>0.

5.1 Changing t

Here we bound how much centrality increases as we increase t. We show that this rate of increase
is governed by Cnorm and

∥∥~w∥∥
1
.

Lemma 7. For all {~x, ~w} ∈ {Ω0 × Rm>0}, t > 0 and α ≥ 0, we have

δ(1+α)t(~x, ~w) ≤ (1 + α)δt(~x, ~w) + α

(
1 + Cnorm

√∥∥~w∥∥
1

)
.

Proof. Let ~ηt ∈ Rn be such that

δt(~x, ~w) =

∥∥∥∥∥∥∇xft(~x, ~w) + A~ηt

~w

√
~φ′′(~x)

∥∥∥∥∥∥
~w+∞

=

∥∥∥∥∥∥ t · ~c+ ~w~φ′(~x) + A~ηt

~w

√
~φ′′(~x)

∥∥∥∥∥∥
~w+∞

.

Applying this to the definition of δ(1+α)t and using that ‖·‖~w+∞ is a norm then yields

δ(1+α)t(~x, ~w) = min
~η∈Rn

∥∥∥∥∥∥(1 + α)t · ~c+ ~w~φ′(~x) + A~η

~w

√
~φ′′(~x)

∥∥∥∥∥∥
~w+∞

≤

∥∥∥∥∥∥(1 + α)t · ~c+ ~w~φ′(~x) + A(1 + α)~ηt

~w

√
~φ′′(~x)

∥∥∥∥∥∥
~w+∞

≤ (1 + α)

∥∥∥∥∥∥ t · ~c+ ~w~φ′(~x) + A~ηt

~w

√
~φ′′(~x)

∥∥∥∥∥∥
~w+∞

+ α

∥∥∥∥∥∥ ~w~φ′(~x)

~w

√
~φ′′(~x)

∥∥∥∥∥∥
~w+∞

= (1 + α)δt(~x, ~w) + α

∥∥∥∥∥∥

~φ′(~x)√
~φ′′(~x)

∥∥∥∥∥∥
∞

+ Cnorm

∥∥∥∥∥∥
~φ′(~x)√
~φ′′(~x)

∥∥∥∥∥∥
W

Using that |φ′i(~x)| ≤

√
φ′′i (~x) for all i ∈ [m] and ~x ∈ Rm by Definition 2 yields the result.

5.2 Changing ~x

Here we analyze the effect of a Newton step on ~x on centrality. We show for sufficiently central
{~x, ~w} ∈ {Ω0 × Rm>0} and ~w sufficiently close to ~g(~x) Newton steps converge quadratically.

Lemma 8. Let {~x0, ~w} ∈ {Ω0 × Rm>0} such that δt(~x0, ~w) ≤ 1
10 and 4

5~g (~x) ≤ ~w ≤ 5
4~g (~x) and

consider a Newton step ~x1 = ~x0 + ~ht(~x, ~w). Then, δt(~x1, ~w) ≤ 4 (δt(~x0, ~w))2 .

12

Proof. Let ~φ0
def
= ~φ(~x0) and let ~φ1

def
= ~φ(~x1). By the definition of ~ht(~x0, ~w) and the formula of P~x0, ~w

we know that there is some ~η0 ∈ Rn such that

−
√
~φ′′0
~ht(~x0, ~w) =

t · ~c+ ~w~φ′0 −A~η0

~w

√
~φ′′0

.

Therefore, A~η0 = ~c+ ~wφ′0 + ~wφ′′0ht(~x0, ~w). Recalling the definition of δt this implies that

δt(~x1, ~w) = min
~η∈Rn

∥∥∥∥∥∥ t · ~c+ ~w~φ′1 −A~η

~w

√
~φ′′1

∥∥∥∥∥∥
~w+∞

≤

∥∥∥∥∥∥ t · ~c+ ~w~φ′1 −A~η0

~w

√
~φ′′1

∥∥∥∥∥∥
~w+∞

≤

∥∥∥∥∥∥ ~w(~φ′1 − ~φ′0)− ~w~φ′′0
~ht(~x0, ~w)

~w

√
~φ′′1

∥∥∥∥∥∥
~w+∞

=

∥∥∥∥∥∥(~φ′1 − ~φ′0)− ~φ′′0~ht(~x0, ~w)√
~φ′′1

∥∥∥∥∥∥
~w+∞

By the mean value theorem, we have ~φ′1 − ~φ′0 = ~φ′′(~θ)~ht(~x0, ~w) for some ~θ between ~x0 and ~x1

coordinate-wise. Hence,

δt(~x1, ~w) ≤

∥∥∥∥∥∥
~φ′′(~θ)~ht(~x0, ~w)− ~φ′′0~ht(~x0, ~w)√

~φ′′1

∥∥∥∥∥∥
~w+∞

=

∥∥∥∥∥∥
(
~φ′′(~θ)− ~φ′′0

)
√
~φ′′1

√
~φ′′0

(
√
φ′′0
~ht(~x0, ~w))

∥∥∥∥∥∥
~w+∞

≤

∥∥∥∥∥∥
~φ′′(~θ)− ~φ′′0√
~φ′′1

√
~φ′′0

∥∥∥∥∥∥
∞

·
∥∥∥∥√φ′′0~ht(~x0, ~w)

∥∥∥∥
~w+∞

.

To bound the first term, we use Lemma 3 as follows∥∥∥∥∥∥
(
~φ′′(~θ)− ~φ′′0

)
√
~φ′′1

√
~φ′′0

∥∥∥∥∥∥
∞

≤

∥∥∥∥∥ ~φ′′(~θ)~φ′′0
− ~1

∥∥∥∥∥
∞

·

∥∥∥∥∥∥
√
~φ′′0√
~φ′′1

∥∥∥∥∥∥
∞

≤

∣∣∣∣∣
(

1−
∥∥∥∥√~φ′′0

~ht(~x0, ~w)

∥∥∥∥
∞

)−2

− 1

∣∣∣∣∣ ·
(

1−
∥∥∥∥√~φ′′0

~ht(~x0, ~w)

∥∥∥∥
∞

)−1

.

Using (4.5), i.e. Lemma 36, the bound cγ ≤ 2, and the assumption on δt(~x0, ~w), we have∥∥∥∥√~φ′′0
~ht(~x0, ~w)

∥∥∥∥
∞
≤
∥∥∥∥√~φ′′0

~ht(~x0, ~w)

∥∥∥∥
~w+∞

≤ cγ · δt(~x0, ~w) ≤ 1

5
.

Using
(
(1− t)−2 − 1

)
· (1− t)−1 ≤ 4t for t ≤ 1/5, we have∥∥∥∥∥∥

(
~φ′′(~θ)− ~φ′′0

)
√
~φ′′1

√
~φ′′0

∥∥∥∥∥∥
∞

≤ 4

∥∥∥∥√~φ′′0ht(~x0, ~w)

∥∥∥∥
∞
.

Combining the above formulas yields that δt(~x1, ~w) ≤ 4 (δt(~x0, ~w))2 as desired.

13

5.3 Changing ~w

In the previous subsection we used the assumption that the weights, ~w, were multiplicatively close
to the output of the weight function, ~g(~x), for the current point ~x ∈ Ω0. In order to maintain this
invariant when we change ~x we will need to change ~w to move it closer to ~g(~x). Here we bound
how much ~g(~x) can move as we move ~x (Lemma 9) and we bound how much changing ~w can hurt
centrality (Lemma 10). Together these lemmas will allow us to show that we can keep ~w close to
~g(~x) while still improving centrality (Section 5.4).

Lemma 9. For all t ∈ [0, 1], let ~xt
def
= ~x0 + t~∆x for ~∆x ∈ Rm, ~xt ∈ Ω0, ~gt = ~g(~xt) and ε =∥∥∥∥√~φ′′0

~∆x

∥∥∥∥
~g0+∞

≤ 0.1. Then

‖log (~g1)− log (~g0)‖~g0+∞ ≤ cδε(1 + 4ε) ≤ 0.2

and for all s, t ∈ [0, 1] and for all ~y ∈ Rm we have

‖~y‖~gs+∞ ≤ (1 + 2ε) ‖~y‖~gt+∞ . (5.1)

Proof. Let ~q : [0, 1]→ Rm be given by ~q(t) def
= log (~gt) for all t ∈ [0, 1]. Then, we have

~q′(t) = G−1
t G′t~∆x.

Let Q(t)
def
= ‖~q(t)− ~q(0)‖~g0+∞ . Using Jensen’s inequality we have that for all u ∈ [0, 1],

Q(u) ≤ Q(u)
def
=

ˆ u

0

∥∥∥∥G−1
t G′t

(
~φ′′t

)−1/2
∥∥∥∥
~g0+∞

∥∥∥∥√~φ′′t
~∆x

∥∥∥∥
~g0+∞

dt.

Using Lemma 3 and ε ≤ 1
10 , we have for all t ∈ [0, 1],∥∥∥∥√~φ′′t
~∆x

∥∥∥∥
~g0+∞

≤
∥∥∥∥√~φ′′t /

√
~φ′′0

∥∥∥∥
∞

∥∥∥∥√~φ′′0
~∆x

∥∥∥∥
~g0+∞

≤
(

1−
∥∥∥∥√~φ′′0

~∆x

∥∥∥∥
∞

)−1 ∥∥∥∥√~φ′′0
~∆x

∥∥∥∥
~g0+∞

≤ ε

1− ε
.

Thus, we have

Q(u) ≤ ε

1− ε

ˆ u

0

∥∥∥∥G−1
t G′t

(
~φ′′t

)−1/2
∥∥∥∥
~g0+∞

dt. (5.2)

Note that Q is monotonically increasing. Let θ = supu∈[0,1]

{
Q(u) ≤ cδε(1 + 4ε)

}
. Since Q(θ) ≤ 1

2 ,
we know that for all s, t ∈ [0, θ], we have∥∥∥∥~g(~xs)− ~g(~xt)

~g(~xt)

∥∥∥∥
∞
≤
∥∥~q(s)− ~q(t)∥∥∞ +

∥∥~q(s)− ~q(t)∥∥2

∞

and therefore

‖~gs/~gt‖∞ ≤
(

1 +
∥∥~q(s)− ~q(t)∥∥∞ +

∥∥~q(s)− ~q(t)∥∥2

∞

)2
≤ (1 + cδε(1 + 4ε))2

14

Consequently,

‖~y‖~gs+∞ ≤ (1 + cδε(1 + 4ε)) ‖~y‖~gt+∞ ≤ (1 + 2ε) ‖~y‖~gt+∞ .

Using (5.2), we have for all u ∈ [0, θ],

Q(u) ≤ Q(u) ≤ ε

1− ε

ˆ u

0

∥∥∥∥G−1
t G′t

(
~φ′′t

)−1/2
∥∥∥∥
~g0+∞

dt

≤ ε

1− ε

ˆ u

0
(1 + 2ε)

∥∥∥∥G−1
t G′t

(
~φ′′t

)−1/2
∥∥∥∥
~gt+∞

dt

≤ ε

1− ε
(1 + 2ε) cδθ

< cδε(1 + 4ε).

Consequently, we have that θ = 1 and we have the desired result with Q(1) ≤ cδε(1 + 4ε) < 1
5 .

Lemma 10. Let ~v, ~w ∈ Rm>0 such that ε = ‖log(~w)− log(~v)‖~w+∞ ≤ 0.1. Then for ~x ∈ Ω0 we have

δt(~x,~v) ≤ (1 + 4ε)(δt(~x, ~w) + ε).

Proof. Let ~ηw be such that

δt(~x, ~w) =

∥∥∥∥∥∥~c+ ~w~φ′(~x)−A~ηw

~w

√
~φ′′(~x)

∥∥∥∥∥∥
~w+∞

(5.3)

Furthermore, the assumption shows that (1 + ε)−2 ~wi ≤ ~vi ≤ (1 + ε)2 ~wi for all i. Using these, we
bound the energy with the new weights as follows

δt(~x,~v) = min
η

∥∥∥∥∥∥~c+ ~v~φ′(~x)−A~η

~v

√
~φ′′(~x)

∥∥∥∥∥∥
~v+∞

≤

∥∥∥∥∥∥~c+ ~v~φ′(~x)−A~ηw

~v

√
~φ′′(~x)

∥∥∥∥∥∥
~v+∞

≤ (1 + ε)

∥∥∥∥∥∥~c+ ~v~φ′(~x)−A~ηw

~v

√
~φ′′(~x)

∥∥∥∥∥∥
~w+∞

≤ (1 + ε) ·

∥∥∥∥∥∥~c+ ~w~φ′(~x)−A~ηw

~v

√
~φ′′(~x)

∥∥∥∥∥∥
~w+∞

+

∥∥∥∥∥∥(~v − ~w)~φ′(~x)

~v

√
~φ′′(~x)

∥∥∥∥∥∥
~w+∞

≤ (1 + ε)3 δt(~x, ~w) + (1 + ε) ·

∥∥∥∥∥∥
~φ′(~x)√
~φ′′(~x)

∥∥∥∥∥∥
∞

·
∥∥∥∥(~v − ~w)

~v

∥∥∥∥
~w+∞

Using that |φ′i(~x)| ≤
√
φ′′i (~x) for all i ∈ [m] by Definition 2 and using Lemma 37 we have that

δt(~x,~v) ≤ (1 + ε)3δt(~x, ~w) + (1 + ε)2ε

≤ (1 + 4ε) (δt(~x, ~w) + ε) .

15

5.4 Centering

In the previous subsection, we saw how much the weight function, ~g(~x), can change after a Newton
step on ~x and we bounded how much we can move the weights without affecting centrality too
much. Here we study how to correctly move the weights even when we cannot compute the weight
function exactly. Our solution is based on “the chasing ~0 game” defined in Part I [22]. We restate
the main result from Part I [22] on this game and in Theorem 12 show how to use this result to
improve centrality and maintain the weights even when we can only compute the weight function
approximately.

Theorem 11 ([22]). For ~x0 ∈ Rm and 0 < ε < 1
5 , consider the two player game consisting of

repeating the following for k = 1, 2, . . .

1. The adversary chooses U (k) ⊆ Rk, ~u(k) ∈ U (k), and sets ~y(k) = ~x(k) + ~u(k).

2. The adversary chooses ~z(k) such that
∥∥~z(k) − ~y(k)

∥∥
∞ ≤ R

3. The adversary reveals ~z(k) and U (k) to the player.

4. The player chooses ~∆(k) ∈ (1 + ε)U (k) and sets ~x(k+1) = ~y(k) + ~∆(k).

Suppose that each U (k) is a symmetric convex set that contains an `∞ ball of radius rk and is
contained in a `∞ ball of radius Rk ≤ R and consider the strategy

~∆(k) = (1 + ε) arg min
~∆∈U(k)

〈
∇Φµ(~z(k)), ~∆

〉
where µ = ε

12R and Φµ(~x) =
∑

i (eµxi + e−µxi). Let τ = maxk
Rk
rk

and suppose Φµ(~x(0)) ≤ 12mτ
ε .

This strategy guarantees that for all k we have

Φµ(~x(k+1)) ≤
(

1− ε2rk
24R

)
Φµ(~x(k)) + εm

Rk
2R
≤ 12mτ

ε
.

In particular, we have
∥∥~x(k)

∥∥
∞ ≤

12R
ε log

(
12mτ
ε

)
.

We can think updating weight is playing this game, we want to make sure the error between
~w and ~g(~x) is close to 0 while the adversary control the next point ~g(~x) and the noise in the
approximate ~g(~x). Theorem 11 shows that we can control the error to be small in `∞ if we can
approximate ~g(~x) with small `∞ error.

Formally, we will measure its distance from the optimal weights in log scale by
~Ψ(~x, ~w)

def
= log(~g (~x))− log(~w). (5.4)

Our goal will be to keep
∥∥∥~Ψ(~x, ~w)

∥∥∥
~w+∞

≤ K for some error K that is just small enough to not

impair our ability to decrease δt linearly and not to impair our ability to approximate ~g. We will
attempt to do this without moving ~w too much in ‖·‖~w+∞.

(~x(new), ~w(new)) = centeringInexact(~x, ~w,K)

1. ck = 1
1−cδcγ ,R = K

48ck log(400m) , δt = δt(~x, ~w) and ε = 1
2ck

.

2. ~x(new) = ~x− 1√
~φ′′(~x)

P~x,~w

(
t~c−~w~φ′(~x)

~w
√
~φ′′(~x)

)
.

3. Let U = {~x ∈ Rm | ‖~x‖~w+∞ ≤
(

1− 7
8ck

)
δt}

4. Find ~z such that
∥∥~z − log(~g(~x(new)))

∥∥
∞ ≤ R.

5. ~w(new) = exp
(

log(~w) + (1 + ε) arg min~u∈U

〈
∇Φ ε

12R
(~z − log (~w)), ~u

〉)
16

The minimization problem in step 5 is simply a projection onto the convex set U and it can be
done in Õ(1) depth and Õ(m) work. See section B.2 for details.

Theorem 12. Assume that 24m1/4 ≥ ck
def
= 1

1−cδcγ ≥ 5, 1 ≤ Cnorm ≤ 2ck and K ≤ 1
20ck

. Let
~Ψ(~x, ~w)

def
= log(~g (~x))− log(~w). Suppose that

δ
def
= δt(~x, ~w) ≤ K

48ck log (400m)
and Φµ(~Ψ(~x, ~w)) ≤ (400m)2

where µ = ε
12R = 2 log (400m) /K. Let (~x(new), ~w(new)) = centeringInexact(~x, ~w,K), then

δt(~x
(new), ~w(new)) ≤

(
1− 1

4ck

)
δ and Φµ(~Ψ(~x(new), ~w(new))) ≤ (400m)2 .

Also, we have
∥∥ log(~g(~x(new)))− log(~w)

∥∥
∞ ≤ K.

Proof. By Lemma 9, inequality (4.5), cδcγ ≤ 1 and cγ ≤ 5
4 (see Def 6), we have∥∥∥log

(
~g(~x(new))

)
− log (~g(~x))

∥∥∥
~g(~x)+∞

≤ cδcγδ(1 + 4cγδ)

≤ cδcγδ + 5δ2

≤
(

1− 15

16ck

)
δ.

Using K ≤ 1
20ck

, we have∥∥∥∥ ~w − ~g (~x)

~g (~x)

∥∥∥∥
∞
≤
∥∥ log (~w)− log (~g (~x))

∥∥
∞ +

∥∥ log (~w)− log (~g (~x))
∥∥2

∞ ≤
21

20
K ≤ 1

16ck
.

Hence, we have ∥∥∥log
(
~g(~x(new))

)
− log (~g(~x))

∥∥∥
~w+∞

≤
(

1 +
1

16ck

)(
1− 15

16ck

)
δ

≤
(

1− 7

8ck

)
δ.

Therefore, we know that for the Newton step, we have ~Ψ(~x(new), ~w)− ~Ψ(~x, ~w) ∈ U where U is the
symmetric convex set given by

U
def
= {~x ∈ Rn | ‖~x‖~w+∞ ≤ C}

where C =
(

1− 7
8ck

)
δ. Note that from our assumption on δ, we have

C ≤ δ ≤ K

48ck log (400m)
= R.

It ensures that U are contained in some `∞ ball of radius R. Therefore, we can play the chasing 0
game on ~Ψ(~x, ~w) attempting to maintain the invariant that

∥∥~Ψ(~x, ~w)
∥∥
∞ ≤ K without taking steps

that are more than 1 + ε times the size of U where we pick ε = 1
2ck

so to not interfere with our
ability to decrease δt linearly.

17

However, to do this with the chasing 0 game, we need to ensure that R satisfying the following

12R

ε
log

(
12mτ

ε

)
≤ K

where here τ is as defined in Theorem 11.
To bound τ , we need to lower bound the radius of `∞ ball it contains. Since by assumption∥∥~g(~x)
∥∥
∞ ≤ 2 and

∥∥~Ψ(~x, ~w)
∥∥
∞ ≤

1
8 , we have that

∥∥~w∥∥∞ ≤ 3. Hence, we have

∀u ∈ Rm :
∥∥~u∥∥2

∞ ≥
1

3m

∥∥~u∥∥2

~w
.

Consequently, if
∥∥~u∥∥∞ ≤ δ

5Cnorm
√
m
, then ~u ∈ U . So, we have that U contains a box of radius

δ
5Cnorm

√
m

and since U is contained in a box of radius δ, we have that

τ ≤ 5Cnorm
√
m ≤ 10ck

√
m.

Using ck ≤ 24m1/4, we have

12R

ε
log

(
12mτ

ε

)
≤ 24ckR log

(
240m3/2c2

k

)
≤ 48ckR log (400m) = K.

and
12mτ

ε
≤ 240m3/2c2

k ≤ (400m)2.

This proves that we meet the conditions of Theorem 11. Consequently,
∥∥~Ψ(~x(new), ~w(new))

∥∥
∞ ≤ K

and Φα(~Ψ(~x(new), ~w(new))) ≤ (400m)2.
Since K ≤ 1

4 , Lemma 8 shows that

δt(~x
(new), ~w) ≤ 4 (δt(~x, ~w))2 .

The step 5 shows that∥∥∥log(~w)− log(~w(new))
∥∥∥
~w+∞

≤
(

1 +
1

2ck

)(
1− 7

8ck

)
δ

≤
(

1− 3

8ck

)
δ.

Using δ ≤ 1
80ck

, the Lemma 10 shows that

δt(~x
(new), ~w(new)) ≤

(
1 + 4

(
1− 3

8ck

)
δ

)(
δt(~x

(new), ~w) +

(
1− 3

8ck

)
δ

)
≤ (1 + 4δ)

(
4δ2 +

(
1− 3

8ck

)
δ

)
≤

(
1− 3

8ck

)
δ + 4δ2 + 16δ3 + 4δ2

≤
(

1− 1

4ck

)
δ.

18

6 Weight Function

In this section we present the weight function that we use to achieve our Õ(
√

rank(A) log(U/ε))
iteration linear program solver. This weight function is similar to the one we used in Part I [22]. Due
to subtle differences in the analysis we provide many of proofs of properties of the weight function
in full. For further intuition on the weight function or proof details see Part I [22].

We define the weight function ~g : Ω0 → Rm>0 for all ~x ∈ Rm>0 as follows

~g(~x)
def
= arg min

~w∈Rm>0

f̂(~x, ~w) where f̂(~x, ~w)
def
= ~1T ~w +

1

α
log det

(
AT
xW−αAx

)
− β

∑
i∈[m]

logwi. (6.1)

where here and in the remainder of the subsection we let Ax
def
= (Φ′′(~x))−1/2A and the parameters

α, β are chosen later such that the following hold

α ∈ [1, 2) , β ∈ (0, 1) , and β1−α ≤ 2 . (6.2)

Here we choose β small and α just slightly larger than 1.9

We start by computing the gradient and Hessian of f̂(~x, ~w) with respect to ~w.

Lemma 13. For all ~x ∈ Ω0 and ~w ∈ Rm>0, we have

∇wf̂(~x, ~w) =
(
I−ΣW−1 − βW−1

)
~1 and ∇2

wwf̂(~x, ~w) = W−1 (Σ + βI + αΛ) W−1

where Σ
def
= ΣAx (~w−α) and Λ

def
= ΛAx (~w−α).

Proof. Using Lemma 38 and the chain rule we compute the gradient of ∇wf̂(~x, ~w) as follows

∇wf̂(~x, ~w) = ~1 +
1

α
ΣWα

(
−αW−α−1

)
− βW−1~1

=
(
I−ΣW−1 − βW−1

)
~1.

Next, using Lemma 38 and chain rule, we compute the following for all i, j ∈ [m]

∂(∇wf̂(~x, ~w))i
∂ ~wj

= −
~wiΛij ~w

α
j

(
−α~w−α−1

j

)
−Σij~1i=j

~w2
i

+ β~1i=j
{
~w−2
i

}
=

Σij

~wi ~wj
+ α

Λij

~wi ~wj
+
β~1i=j
~w2
i

. (Using that Σis diagonal)

Consequently, ∇2
wwf̂(~x, ~w) = W−1 (Σ + βI + αΛ) W−1 as desired.

Lemma 14. For all ~x ∈ Ω0, the weight function ~g(~x) is a well defined with

β ≤ gi(~s) ≤ 1 + β and
∥∥~g(~x)

∥∥
1

= rank(A) + β ·m.

Furthermore, for all ~x ∈ Ω0, the weight function obeys the following equations

G(~x) = (Σ + βI)~1 , and G′(~x) = −G(~x) (G(~x) + αΛ)−1 Λ
(
Φ′′(~x)

)−1
Φ′′′(~x)

where Σ
def
= ΣAx (~g−α(~x)), Λ

def
= ΛAx (~g−α(~x)), and G′(~x) is the Jacobian matrix of ~g at ~x.

9Note that this formula is different than the formula we used in [22].

19

Proof. By Lemma 38 we have that Σ � Λ � 0. Therefore, by Lemma 13, we have that∇2
wwf̂(~x, ~w) �

βW−2 and f̂(~x, ~w) is convex. Using the formula for the gradient in Lemma 13, we see that that for
all i ∈ [m] it is the case that [

∇wf̂(~x, ~w)
]
i

=
1

wi
(wi −Σii − β) .

Using that 0 ≤ σi ≤ 1 for all i by Lemma 38 and β ∈ (0, 1) by (6.2), we see that if ~wi ∈ (0, β)

then
[
∇wf̂(~x, ~w)

]
i
is strictly negative and if ~wi ∈ (1 + β,∞) then

[
∇wf̂(~x, ~w)

]
i
is strictly positive.

Therefore, for any ~x ∈ Ω0, the ~w that minimizes this convex function f̂(~x, ~w) lies between the box
between β to 1 + β. Since f̂ is strongly convex in this region, the minimizer is unique.

The formula for G(~x) follows by setting ∇wf̂(~x, ~w) = ~0 and the size of g(~x) follows from the fact
that

∥∥~σ∥∥
1

= tr (PAx (~g−α(~x))). Since PAx (~g−α(~x)) is a projection onto the image of G(~x)−α/2Ax

and since ~g(~x) > ~0 and ~φ′′(~x) > ~0, we have that the dimension of the image of G(~x)−α/2Ax is the
rank of A. Hence, we have that

∥∥~g(~x)
∥∥

1
= rank(A) + β ·m.

By Lemma 38 and chain rule, we get the following for all i, j ∈ [m]

∂(∇~wf̂(~x, ~w))i
∂~xj

= −~w−1
i Λij

~φ′′j (~x)
(
−(~φ′′j (~x))−2~φ′′′j (~x)

)
= ~w−1

i Λij(~φ
′′
j (~x))−1~φ′′′j (~x).

Consequently, J~x(∇~wf̂(~x, ~w)) = W−1Λ (Φ′′(~x))−1 Φ′′′(~x) where J~x denotes the Jacobian matrix
of the function ∇~wf̂(~x, ~w) with respect to ~x. Since we have already know that J~w(∇~wf̂(~x, ~w)) =
∇2
~w~wft(~x, ~w) = W−1 (Σ + βI + αΛ) W−1 is positive definite (and hence invertible), by applying

the implicit function theorem to the specification of ~g(~x) as the solution to ∇~wf̂(~x, ~w) = ~0, we have

G′(~x) = −
(
J~w(∇wf̂(~x, ~w))

)−1 (
J~x(∇~wf̂(~x, ~w))

)
= −G(~x) (G(~x) + αΛ)−1 Λ

(
Φ′′(~x)

)−1
Φ′′′(~x).

Now we show the step consistency of ~g.

Lemma 15 (Step Consistency). For all ~x ∈ Ω0 and ~y ∈ Rm, and

B
def
= G(~x)−1G′(~x)(~φ(~x)′′)−1/2,

we have

‖B~y‖G(~x) ≤
2

1 + α

∥∥~y∥∥
G(~x)

and
∥∥B~y∥∥∞ ≤ 2

1 + α

(∥∥~y∥∥∞ +
1 + 2α

1 + α

∥∥~y∥∥
G(~x)

)
.

Therefore

‖B‖~g+∞ ≤
2

1 + α

(
1 +

2

Cnorm

)
.

Proof. Fix an arbitrary ~x ∈ Ω0 and let ~g def
= ~g(~x), ~σ def

= ~σAx (~g−α(~x)), Σ
def
= ΣAx (~g−α(~x)), P

def
=

PAx (~g−α(~x)), Λ
def
= ΛAx (~g−α(~x)). Also, fix an arbitrary ~y ∈ Rm and let ~z def

= B~y.
By Lemma 14, G′ = −G (G + αΛ)−1 Λ (Φ′′)−1 Φ′′′ and therefore

B = −G−1
(
G (G + αΛ)−1 Λ

(
Φ′′
)−1

Φ′′′
) (

Φ′′
)−1/2

= (G + αΛ)−1 (2Λ) diag

(
−~φ′′′

2(~φ′′)3/2

)
.

20

Let C
def
= (G + αΛ)−1 (2Λ) and let ~y′ def= diag

(
−~φ′′′

2(~φ′′)3/2

)
~y. By the self concordance of ~φ (Definition

2) we know that
∥∥~y′∥∥ ≤ ∥∥~y∥∥ for both

∥∥ · ∥∥
G

and
∥∥ · ∥∥∞ . Since ~z = B~y = C~y′, it suffices to bound∥∥C~y′∥∥ in terms of

∥∥~y′∥∥ for the necessary norms.
Letting Λ̄

def
= G−1/2ΛG−1/2, we simplify the equation further and note that∥∥C∥∥

G
=
∥∥G1/2 (G + αΛ)−1 (2Λ) G−1/2

∥∥
2

=
∥∥ (I + αΛ̄

)−1 (
2Λ̄
) ∥∥

2
.

Now, for any eigenvector, ~v, of Λ̄ with eigenvalue λ, we see that ~v is an eigenvector of (I+αΛ̄)−1(2Λ̄)
with eigenvalue 2λ/(1 + αλ). Furthermore, since 0 � Λ̄ � I, we have that

∥∥C∥∥
G
≤ 2/(1 + α) and

hence
∥∥~z∥∥

G
≤ 2(1 + α)−1

∥∥~y′∥∥
G
≤ 2(1 + α)−1

∥∥~y∥∥
G

as desired.
To bound

∥∥~z∥∥∞, we use that (G + αΛ)~z = 2Λ~y′, Λ = Σ−P(2), and G = Σ + βI to derive

(1 + α) Σ~z + β~z − αP(2)~z = 2Σ~y′ − 2P(2)~y′.

Looking at the ith coordinate of both sides and using that ~σi ≥ 0, we have

((1 + α)~σi + β) |~zi|

≤α
∣∣∣[P(2)~z]i

∣∣∣+ 2~σi
∥∥~y′∥∥∞ + 2

∣∣∣[P(2)~y′]i

∣∣∣
≤α~σi

∥∥~z∥∥
Σ

+ 2~σi
∥∥~y′∥∥∞ + 2~σi

∥∥~y′∥∥
Σ

(Lemma 38)

≤2~σi
∥∥~y′∥∥∞ + ~σi

(
2α

1 + α
+ 2

)∥∥~y′∥∥
G

(Σ � Gand
∥∥~z∥∥

G
≤ 2(1 + α)−1

∥∥~y′∥∥
G
)

Hence, we have

|~zi| ≤
2

1 + α

∥∥~y′∥∥∞ +
1

1 + α

(
2α

1 + α
+ 2

)∥∥~y′∥∥
G

≤ 2

1 + α

[∥∥~y′∥∥∞ + 2
∥∥~y′∥∥

G

]
.

Therefore,
∥∥B~y∥∥∞ =

∥∥~z∥∥∞ ≤ 2(1 + α)−1(
∥∥~y′∥∥∞ + 2

∥∥~y′∥∥
G

). Finally, we note that

‖B~y‖~g+∞ =
∥∥B~y∥∥∞ + Cnorm

∥∥B~y∥∥
G

(Definition)

≤ 2

1 + α

∥∥~y∥∥∞ +
2

1 + α
· 2
∥∥~y∥∥

G
+

2

1 + α
Cnorm

∥∥~y∥∥
G

≤ 2

1 + α

(
1 +

2

Cnorm

)
‖~y‖~g+∞ .

Theorem 16. Choosing parameters

α = 1 +
1

log2

(
2m

rank(A)

) , β =
rank(A)

2m
, and Cnorm = 18 log2

(
2m

rank(A)

)
yields

c1(~g) = 2 rank(A) , cγ(~g) = 1 +
1

9 log2

(
2m

rank(A)

) , and cδ(~g) = 1− 2

9 log2

(
2m

rank(A)

) .
In particular, we have

cγ(~g)cδ(~g) ≤ 1− 1

9 log2

(
2m

rank(A)

) .
21

Proof. The bounds on c1(~g) and cδ(~g) follow immediately from Lemma 14 and Lemma 15. Now, we
estimate the cγ(~g) and let 4

5~g ≤ ~w ≤ 5
4~g. Fix an arbitrary ~x ∈ Ω0 and let ~g def

= ~g(~x). Recall that by
Lemma 14, we have ~g ≥ β. Furthermore, since ~g−1 = ~gα−1~g−α and βα−1 ≥ 1

2 , the following holds

4

10
~g−αi ≤ 4

5
βα−1~g−αi ≤ 4

10
~g−1
i ≤ ~w−1

i (6.3)

for all i. Applying this and using the definition of PAx yields

Ax(AT
xW−1Ax)−1AT

x �
10

4
Ax(AT

xG−αAx)−1AT
x =

10

4
Gα/2PAx(~g−α)Gα/2 . (6.4)

Hence, we have

~σi

(
1

~w~φ′′

)
~wi

=
~1Ti Ax(AT

xW−1Ax)−1AT
x
~1i

~w2
i

≤ 10

4

~1Ti Gα/2PAx(~g−α)Gα/2~1i
~w2
i

≤ 10

4

(
5

4

)2 ~σi

(
1

~gα~φ′′

)
~g−2α
i

< 4.

Since P~x,~w is an orthogonal projection in
∥∥ · ∥∥

~w
, we have

∥∥P~x,~w

∥∥
~w→~w

= 1. Let P~x,~w
def
= I−P~x,~w, we

have ∥∥P~x,~w

∥∥
~w→∞ = max

i∈[m]
max∥∥~y∥∥

~w
≤1

~1Ti P~x,~w~y

≤ max
i∈[m]

∥∥ (~w)−1/2 P
T
~x,~w
~1i
∥∥2

= max
i∈[m]

√
~1iW−1Ax (AT

xW−1Ax)−1 AT
xW−1~1i.

= max
i∈[m]

√√√√σi

(
1

~w~φ′′

)
wi

≤ 2.

For any ~y, we have ∥∥P~x,~w~y
∥∥
~w+∞ ≤

∥∥P~x,~w~y
∥∥
∞ + Cnorm

∥∥P~x,~w~y
∥∥
~w

≤ ‖~y‖∞ +
∥∥P~x,~w~y

∥∥
∞ + Cnorm ‖~y‖~w

≤ ‖~y‖∞ + (2 + Cnorm) ‖~y‖~w

≤ Cnorm + 2

Cnorm
‖~y‖~w+∞ .

Hence, we have cγ ≤ Cnorm+2
Cnorm

. Thus, we have picked Cnorm = 18
α−1 and have cγ ≤ 1 + α−1

9 .

6.1 Computing and Correcting Weight Function

Here we discuss how to compute the weight function using gradient descent and dimension reduction
techniques as in [35] for approximately computing leverage scores. The algorithm and the proof is
essentially the same as in Part I [22], modified to the subtle changes in the weight function.

22

Theorem 17 (Weight Computation and Correction). There is an algorithm, computeWeight(~x, ~w(0),K),
that given K < 1 and {~x(0), ~w(0)} ∈ {Ω0×Rm>0} such that

∥∥W−1
(0)(~g(~x)− ~w(0))

∥∥
∞ ≤

1
48 the algorithm

returns ~w ∈ Rm>0 such that ∥∥G(~x)−1(~g(~x)− ~w)
∥∥
∞ ≤ K

with probability (1− 1
m)O(log2(m/K)) using only Õ(log3(1/K)/K2) linear system solves.

Without the initial weight ~w(0), there is an algorithm, computeInitialWeight(~x,K), that re-
turns a weight with same guarantee with constant probability using only Õ(

√
rank (A) log3(1/K)/K2)

times linear system solves.

Proof. Let Q = {~w :
∥∥W−1

(0)(~w − ~w(0))
∥∥
∞ ≤

1
48}. From our assumption, ~g(~x) ∈ Q. For any ~w ∈ Q,

it is easy to see that
4

5
W−1 � ∇2

~w~wf̂(~x, ~w) � 4W−1.

Therefore, in this region Q, the function is well conditioned and gradient descent converges to the
minimizer of f̂ quickly. Note that a gradient descent step projected on Q can be written as

~w(j) = median
((

1− 1

48

)
~w(0),

3

4
~w(j−1) +

1

4
~σAx

((
~w(k)

)−α)
+
β

4
,

(
1 +

1

48

)
~w(0)

)
.

Similarly to [22], one can show that the iteration is stable under noise induced by approximate lever-
age score computation and therefore yields the desired approximation of ~g(~x) assuming we can com-
pute ~σAx with small multiplicative `∞ error. Since such leverage scores can be computed with high
probability by solving Õ(1) linear systems [35] we have that there is an algorithm computeWeight
as desired.

To compute the initial weight, we follow the approach in Part I [22]. Note that if β = 100, then
~w = 100 is a good approximation of ~g(~x). Consequently, we can repeatedly use computeWeight to
compute the ~g(~x) for a certain β and then decrease β by a factor of 1−

√
rank A. This algorithm

converges in Õ
(√

rank A
)
iterations yielding the desired result.

7 The Algorithm

Here we show how to use the results of previous sections to solve (3.1) using exact linear system
solver. In the next section we will discuss how to relax this assumption. The central goal of this
section is to develop an algorithm, LPSolve, for which we can prove the following theorem

Theorem 18. Suppose we have an interior point ~x0 ∈ Ω0 for the linear program (3.1).Then, the al-
gorithm LPSolve outputs ~x such that ~cT~x ≤ OPT+ε in Õ

(√
rank(A) (Tw + nnz(A)) log (U/ε)

)
work

and Õ
(√

rank(A)Td log (U/ε)
)
depth where U = max

(∥∥∥ ~u−~l
~u−~x0

∥∥∥
∞
,
∥∥∥ ~u−~l
~x0−~l

∥∥∥
∞
,
∥∥~u−~l∥∥∞,∥∥~c∥∥∞) and

Tw and Td is the work and depth needed to compute
(
ATDA

)−1
~q for input positive definite diagonal

matrix D and vector ~q.

We break this proof into several parts. First we provide Lemma 19, and adaptation of a proof
from [26, Thm 4.2.7] that allows us to reason about the effects of making progress along the weighted
central path. Then we provide Lemma 20 that we use to bound the distance to the weighted central
path in terms of centrality. After that in Lemma 20, we analyze a subroutine, pathFollowing, for
following the weighted central path. Using these lemmas we conclude by describing our LPSolve
algorithm and proving Theorem 18.

23

Lemma 19 ([26, Theorem 4.2.7]). Let x∗ ∈ Rm denote an optimal solution to (3.1) and ~xt =
arg min ft (~x, ~w) for some t > 0 and ~w ∈ Rm>0. Then the following holds

~cT~xt(~w)− ~cT~x∗ ≤
∥∥~w∥∥

1

t
.

Proof. By the optimality conditions of (3.1) we know that ∇xft(~xt(~w)) = t · ~c + ~w~φ′(~xt(~w)) is
orthogonal to the kernel of AT . Furthermore since ~xt(~w)− ~x∗ ∈ ker(AT) we have(

t · ~c+ ~w~φ′(~xt(~w))
)T

(~xt(~w)− ~x∗) = 0.

Using that φ′i(xt(~w)i) · (x∗i − xt(~w)i) ≤ 1 by Lemma 4 then yields

~cT (~xt(~w)− ~x∗) =
1

t

∑
i∈[m]

wi · φ′i(xt(~w)i) · (x∗i − xt(~w)i) ≤
∥∥~w∥∥

1

t
.

Lemma 20. For δt(~x(1), ~g(~x(1))) ≤ 1
960c2k log(400m)

and ~xt
def
= arg min ft (~x, ~w) we have∥∥∥∥√~φ′′(~xt)

(
~x(1) − ~xt

)∥∥∥∥
∞
≤ 16cγckδt(~x

(1), ~g(~x(1))).

Proof. We use Theorem 12 with exact weight computation and start with ~x(1) and ~w(1) = ~g(~x(1)).
In each iteration, δt is decreased by a factor of

(
1− 1

4ck

)
. (4.5) shows that

∥∥√~φ′′(~x(k))
(
~x(k+1) − ~x(k)

)∥∥
∞ ≤ cγδt(~x

(k), ~w(k)).

The Lemma 3 shows that∥∥∥log
(
~φ′′(~x(k))

)
− log

(
~φ′′(~x(k+1))

)∥∥∥
∞
≤

(
1− 2cγδt(~x

(k), ~w(k))
)−1

≤ e4cγδt(~x(k), ~w(k)).

Therefore, for any k, we have∥∥∥log
(
~φ′′(~x(1))

)
− log

(
~φ′′(~x(k))

)∥∥∥
∞
≤ e4cγ

∑
δt(~x(k), ~w(k))

≤ e32ckcγδt(~x
(1),~g(~x(1)))

≤ 2.

Hence, for any k, we have∥∥∥∥√~φ′′(~xt)
(
~x(1) − ~x(k)

)∥∥∥∥
∞
≤

∑
2cγδt(~x

(k), ~w(k))

≤ 16cγckδt(~x
(1), ~g(~x(1))).

It is clear now ~x(k) forms a Cauchy sequence and converges to ~xt because δt continuous and ~xt is
the unique point such that δt = 0.

24

Next, we put together the results of Section 5 and analyze the following algorithm for following
the weighted central path.

(~x(final), ~w(new)) = pathFollowing(~x, ~w, tstart, tend, ε)

1. ck = 9 log2

(
2m

rank(A)

)
, t = tstart,K = 1

20ck
.

2. While (t < tend if tstart < tend) or (t > tend if tstart > tend)
2a. (~x(new), ~w(new)) = centeringInexact(~x, ~w,K)
where it use the function computeWeight to find the approximation of ~g(~x).

2b. t← t

(
1± 1

105c4k log(400m)
√

rank(A)

)
where the sign of ± is the sign of tend − tstart

2c. ~x← ~x(final), ~w ← ~w(new).
3. Repeat 4ck log (1/ε) times
3a. (~x, ~w) = centeringInexact(~x, ~w,K)
where it use the function computeWeight to find the approximation of ~g(~x).
4. Output (~x, ~w).

Theorem 21. Suppose that

δtstart(~x, ~w) ≤ 1

960c2
k log (400m)

and Φµ(~Ψ(~x, ~w)) ≤ (400m)2 .

where µ = 2 log (400m) /K. Let (~x(final), ~w(new)) = pathFollowing(~x, ~w, tstart, tend), then

δtend(~x(final), ~w(new)) ≤ ε and Φµ(~Ψ(~x(final), ~w(new))) ≤ (400m)2 .

Furthermore, pathFollowing(~x, ~w, tstart, tend) takes time Õ
(√

rank(A)
(∣∣∣log

(
tend
tstart

)∣∣∣+ log (1/ε)
)

(T +m)
)

where T is the time needed to solve on linear system.

Proof. This algorithm maintains the invariant that δt(~x, ~w) ≤ 1
960c2k log(400m)

and Φα(~Ψ(~x, ~w)) ≤
(400m)2 on each iteration in the beginning of the step (2a). Theorem 12 shows that∥∥ log(~g(~x(new)))− log(~w)

∥∥
∞ ≤ K ≤

1

20ck
. (7.1)

Thus, the weight satisfies the condition of Theorem 17 and the algorithm centeringInexact can
use the function computeWeight to find the approximation of ~g(~x(new)). Consequently,

δt(~x
(final), ~w(new)) ≤

(
1− 1

4ck

)
δt and Φα(~Ψ(~x(final), ~w(new))) ≤ (400m)2 .

Using Lemma 7, (7.1) and Theorem 16,we have

δt(~x
(final), ~w(new)) ≤ 1

960c2
k log (400m)

.

Hence, we proved that for every step (2c), we have the invariant. The δt < ε bounds follows from
the last loop.

25

~x(final) = LPSolve(~x, ε)

Input: an initial point ~x.
1. β = rank(A)

2m , ~w = computeInitialWeight(~x, 1
105 log5(400m)

), d = −~wiφ′i(~x).
2. t1 = (1010U2m3)−1, t2 = 3m/ε, ε1 = 1

2000c2k log(400m)
, ε2 = ε

1003m3U2 .

3. (~x(new), ~w(new)) = pathFollowing(~x, ~w, 1, t1, ε1) with cost vector ~d.
4.(~x(final), ~w(final)) = pathFollowing(~x(new), ~w(new), t1, t2, ε2) with cost vector ~c.
5. Output ~x(final).

Proof of Theorem 18. By Theorem 17, we know step 1 gives an weight∥∥G(~x)−1(~g(~x)− ~w)
∥∥
∞ ≤

1

105 log5 (400m)
.

By the definition of ~d, we have ~x is the minimum of

min ~dT~x−
∑

~wiφi(~x) given AT~x = ~b.

Therefore, (~x, ~w) satisfies the assumption of theorem 21 because δt = 0 and Φα is small enough.
Hence, we have

δt1(~x(new), ~w(new)) ≤ 1

2000c2
k log (400m)

and Φα(~Ψ(~x(new), ~w(new))) ≤ (400m)2.

Lemma 4 shows that
∥∥φ′i(~x)

∥∥
∞ ≤ U and hence

∥∥~c − ~d
∥∥
∞ ≤ 2U. Also, Lemma 3 shows that

min~y

√
~φ′′(~y) ≥ 1

U . Therefore, we have

δ~ct1(~x(new), ~w(new)) = min
~η∈Rn

∥∥∥∥∥∥ t1~c+ ~w~φ′(~x(new))−A~η

~w(new)
√
~φ′′(~x(new))

∥∥∥∥∥∥
~w(new)+∞

≤ min
~η∈Rn

∥∥∥∥∥∥ t1
~d+ ~w~φ′(~x(new))−A~η

~w(new)
√
~φ′′(~x(new))

∥∥∥∥∥∥
~w(new)+∞

+ t1

∥∥∥∥∥∥ ~c− ~d

~w(new)
√
~φ′′(~x(new))

∥∥∥∥∥∥
~w(new)+∞

≤ δ
~d
t1(~x(new), ~w(new)) + 4U2t1

∥∥∥~1∥∥∥
~w+∞

= δ
~d
t1(~x(new), ~w(new)) + 100mU2t1.

Since we have chosen t1 small enough, we have δ~ct1(~x(new), ~w(new)) is small enough to satisfy the
assumption of Theorem 21. So, we only need to prove how large t2 should be and how small ε2
should be in order to get ~x such that ~cT~x ≤ OPT + ε. By Lemma 19 and

∥∥~w(final)
∥∥ ≤ 3m, we have

~cT~xt2 ≤ OPT +
3m

t2
.

Also, Lemma 20 shows that we have∥∥∥∥√~φ′′(~xt2)
(
~x(final) − ~xt2

)∥∥∥∥
∞
≤ 32ε2ck.

Using min~y

√
~φ′′(~y) ≥ 1

U , we have
∥∥~x(final) − ~xt2∥∥∞ ≤ 32ε2ckU and hence our choice of t2 and ε2

gives the result

~cT~x(final) ≤ OPT +
3m

t2
+ 32ε2ckU

2 ≤ OPT + ε.

26

8 Linear System Solver Requirements

Throughout our preceding analysis of weighted path finding we assumed that linear systems related
to A could be solved exactly. In this section, we relax this assumption and discuss the effect of
using inexact linear algebra in our algorithms.

Proving stability of the algorithms in this paper is more difficult than the “dual” algorithms in
Part I [22] for two reasons. First, naively each iteration of interior point requires a linear system to
be solved to to Õ(poly(ε/U)) accuracy and if we need to solve each linear system independently then
the overall running time of our algorithm would depends on log2(U/ε) and improving this requires
further insight. Second, here we need to maintain equality constraints which further complicates
the analysis.

For the remainder of this section we assume that we have an algorithm Sx,w(~q) such that for
any vector ~q the algorithm Sx,w(~q) outputs a vector in Rn such that∥∥∥Sx,w(~q)−

(
AT
xW−1Ax

)−1
~q
∥∥∥

AT
xW−1Ax

≤ εS
∥∥∥(AT

xW−1Ax

)−1
~q
∥∥∥

AT
xW−1Ax

where εS = 1/md for some sufficiently large, but fixed, d. Our goal in this section is is to show that
implementing such a Sx,w(~q) suffices for our algorithms (Section 8.1, 8.2, 8.3, 8.4). In Section 8.5,
we show that the vector ~q satisfies some stability properties that allows us to construct efficient
solver Sx,w(~q) in later section.

8.1 The normal force A~η.

To see the problem of using inexact linear system solvers more concretely, recall that we defined a
Newton steps on ~x ∈ Ω0 in Section 5.4 by

~x(new) := ~x− 1√
~φ′′(~x)

P~x,~w

 t~c+ ~w~φ′(~x)

~w

√
~φ′′(~x)

= ~x− 1√

~φ′′(~x)

(
I−W−1Ax

(
AT
xW−1Ax

)−1
AT
x

) t~c+ ~w~φ′(~x)

~w

√
~φ′′(~x)

 .

One naive way to implement this step is to replace
(
AT
xW−1Ax

)−1 with the algorithm Sx,w .

Unfortunately, this does not necessarily work well as the norm of the vector (t~c− ~w~φ′(~x))/~w

√
~φ′′(~x)

can be as large as Ω(log(U/ε)) because the current point ~x can be very close to boundary. For certain
linear programs, the parameter t need to be exponentially large and therefore for this approach to
work we would need to use exponentially small εK . The dual problem does not has this problem
because the optimality conditions enforce ∇f is small. However, for the primal problem we are
solving, the equality constraints puts a normal force into the systems. Therefore, even when we are
very close to the optimal point, ∇f can be very large due to the normal force.

To circumvent this issue, we note that if we approximately know the normal force, then we can
subtract it off from the system and only deal with a vector of reasonable size. In this section, we
try to maintain such normal force A~η. Recall that our algorithm measures the quality of ~x by

δt(~x, ~w)
def
= min

~η∈Rn

∥∥∥∥∥∥∇xft(~x, ~w)−A~η

~w

√
~φ′′(~x)

∥∥∥∥∥∥
~w+∞

.

27

We can think δt is the size of net force of the system, i.e. the result of subtracting the normal force
A~η from the total force ∇f . If δt is small, we know the contact force ∇xft(~x, ~w) − A~η is small.
Therefore, the following formula gives a more stable way to compute ~x(new):

~x(new) := ~x−

(
t~c+ ~w~φ′(~x)−A~η

~w~φ′′(~x)

)
+

1

~w

√
~φ′′(~x)

AxSx,w

AT
x

 t~c+ ~w~φ′(~x)−A~η

~w

√
~φ′′(~x)

 .

Furthermore, since P~x,~wW−1Ax = 0, subtracting A~η from ∇xft does not affect the step. Therefore,
if we can find that ~η, then we have a more stable algorithm.

First , we show that there is an explicit ~η∗ that can be computed in polynomial time.

Lemma 22 (~η∗ is good). For all (~x, ~w) in the algorithm and t > 0, we define the normal force

~η∗t (~x, ~w) = (AT
xW−1Ax)−1AT

xW−1
√

Φ′′(~x)
−1
∇xft(~x, ~w).

Then, we have ∥∥∥∥∥∥∇xft(~x, ~w)−A~η∗t (~x, ~w)

~w

√
~φ′′(~x)

∥∥∥∥∥∥
~w+∞

≤ 2δt(~x, ~w).

Proof. Using (4.5) we have∥∥∥∥√~φ′′(~x)~ht(~x, ~w)

∥∥∥∥
~w+∞

≤
∥∥P~x,~w

∥∥
~w+∞ · δt(~x, ~w).

The result follows from the definition of ~ht(~x, ~w), i.e.

−
√
~φ′′(~x)~ht(~x, ~w) =

∇xft(~x, ~w)−A~η∗t (~x, ~w)

~w

√
~φ′′(~x)

and the fact the
∥∥P~x,~w

∥∥
~w+∞ ≤ 2 during the algorithm.

The following lemma shows that we can improve ~η effectively using Sx,w.

Lemma 23 (~η maintenance). For all (~x, ~w) appears in the algorithm and t > 0, we define

~η(new) = ~η + Sx,w

(
AT
xW−1

√
Φ′′(~x)

−1
(∇xft(~x, ~w)−A~η)

)
and

~η∗t (~x, ~w) = (AT
xW−1Ax)−1AT

xW−1
√

Φ′′(~x)
−1
∇xft(~x, ~w).

If εS ≤ 1
2 , we have ∥∥∥∥∥∥A

(
~η(new) − ~η∗t (~x, ~w)

)
~w

√
~φ′′(~x)

∥∥∥∥∥∥
W

≤ εS

∥∥∥∥∥∥A (~η − ~η∗t (~x, ~w))

~w

√
~φ′′(~x)

∥∥∥∥∥∥
W

.

28

Proof. By the definition of ~η(new) and ~η∗(~x, ~w), we have∥∥∥∥∥∥A
(
~η(new) − ~η∗t (~x, ~w)

)
~w

√
~φ′′(~x)

∥∥∥∥∥∥
W

=
∥∥∥~η(new) − ~η∗t (~x, ~w)

∥∥∥
AT
xW−1Ax

=
∥∥∥~η − ~η∗t (~x, ~w) + Sx,w

(
AT
xW−1

√
Φ′′(~x)

−1
(∇xft(~x, ~w)−A~η)

)∥∥∥
AT
xW−1Ax

=
∥∥(~η∗(~x, ~w)− ~η)− Sx,w

(
AT
xW−1Ax (~η∗t (~x, ~w)− ~η)

)∥∥
AT
xW−1Ax

≤ εS ‖~η − ~η∗t (~x, ~w)‖AT
xW−1Ax

= εS

∥∥∥∥∥∥A (~η − ~η∗t (~x, ~w))

~w

√
~φ′′(~x)

∥∥∥∥∥∥
W

.

Using the Lemma 23 we show how to maintain a good ~η throughout our algorithm LPSolve.

Lemma 24 (Finding ~η). Assume εS = 1/md for a sufficiently large constant d. Throughout the
algorithm we can maintain ~η such that∥∥∥∥∥∥A (~η − ~η∗t (~x, ~w))

~w

√
~φ′′(~x)

∥∥∥∥∥∥
2

W

≤ 1 .

by calling Sx,w an amortized constant number of times per iteration.

Proof. We use ~η∗t (~x, ~w), defined in (22), as the initial ~η. Since we compute this only once, we can
compute a very precise ~η∗t (~x, ~w) for the initial points by gradient descent and preconditioning by
Sx,w.

Lemma 23 shows that we can move ~η closer to ~η∗t (~x, ~w) using Sx,w. Therefore, it suffices to show
that during each step of the algorithm, ~η does not move far from ~η∗t (~x, ~w) by O(poly(n)), or if it
does, we can find ~η(new) that does not.

We prove this by considering the three cases of changing of t, changing of ~w and changing of ~x
separately.

For the changes of t, the proof of Lemma 7 shows that∥∥∥∥∥∥∇xft(1+α)(~x, ~w)− (1 + α)A~η

~w

√
~φ′′(~x)

∥∥∥∥∥∥
~w+∞

≤ (1 + α)

∥∥∥∥∥∥∇xft(~x, ~w)−A~η

~w

√
~φ′′(~x)

∥∥∥∥∥∥
~w+∞

+ α

(
1 + Cnorm

√∥∥~w∥∥
1

)

≤ 2

∥∥∥∥∥∥∇xft(~x, ~w)−A~η

~w

√
~φ′′(~x)

∥∥∥∥∥∥
~w+∞

+O(poly(m)).

Using the induction hypothesis ∥∥∥∥∥∥A (~η − ~η∗t (~x, ~w))

~w

√
~φ′′(~x)

∥∥∥∥∥∥
2

W

≤ 1 ,

29

we have∥∥∥∥∥∥∇xft(1+α)(~x, ~w)− (1 + α)A~η

~w

√
~φ′′(~x)

∥∥∥∥∥∥
~w+∞

≤ 2

∥∥∥∥∥∥∇xft(~x, ~w)−A~η∗t (~x, ~w)

~w

√
~φ′′(~x)

∥∥∥∥∥∥
~w+∞

+O(poly(m)) .

Now, using Lemma 22, δt ≤ 1, we have∥∥∥∥∥∥∇xft(1+α)(~x, ~w)− (1 + α)A~η

~w

√
~φ′′(~x)

∥∥∥∥∥∥
~w+∞

= O(poly(m)).

Using Lemma 22 again, we have∥∥∥∥∥∥
A
(
~η∗
t(new)

(~x, ~w)− (1 + α)~η
)

~w

√
~φ′′(~x)

∥∥∥∥∥∥
~w+∞

≤

∥∥∥∥∥∥∇xft(1+α)(~x, ~w)− (1 + α)A~η

~w

√
~φ′′(~x)

∥∥∥∥∥∥
~w+∞

+

∥∥∥∥∥∥∇xft(1+α)(~x, ~w)− ~η∗
t(new)

(~x, ~w)

~w

√
~φ′′(~x)

∥∥∥∥∥∥
~w+∞

= O(poly(m)).

Therefore, we can set ~η(new) = (1 + α)~η and this yields ~η∗
t(new)

(~x, ~w) is polynomial close to ~η(new).
For the changes of ~w, the proof of Lemma 10 shows that∥∥∥∥∥∥∇xft(~x, ~w

(new))−A~η

~w(new)
√
~φ′′(~x)

∥∥∥∥∥∥
~w+∞

≤ (1 + 4ε)

∥∥∥∥∥∥∇xft(~x, ~w)−A~η

~w

√
~φ′′(~x)

∥∥∥∥∥∥
~w+∞

+ ε

 .

Hence, by similar argument above, we have∥∥∥∥∥∥A
(
~η∗(~x, ~w(new))− ~η

)
~w(new)

√
~φ′′(~x)

∥∥∥∥∥∥
~w+∞

= O(poly(m)).

Therefore, we can set ~η(new) = ~η and this gives ~η∗(~x, ~w(new)) is polynomial close to ~η(new).
For the changes of ~x, the proof of Lemma 8 shows that∥∥∥∥∥∥∇xft(~x

(new), ~w)−A~η∗(~x(new), ~w)

~w

√
~φ′′(~x(new))

∥∥∥∥∥∥
~w+∞

≤ 4 (δt(~x, ~w))2 = O(poly(m)).

It is easy to show that∥∥∥∥∥∥A
(
~η∗(~x(new), ~w)− ~η

)
~w

√
~φ′′(~x(new))

∥∥∥∥∥∥
~w+∞

≤

∥∥∥∥∥∥∇xft(~x
(new), ~w)−A~η∗(~x(new), ~w)

~w

√
~φ′′(~x(new))

∥∥∥∥∥∥
~w+∞

+

∥∥∥∥∥∥∇xft(~x
(new), ~w)−A~η∗(~x(new), ~w)

~w

√
~φ′′(~x(new))

∥∥∥∥∥∥
~w+∞

+

∥∥∥∥∥∥A
(
~η∗(~x(new), ~w)− ~η

)
~w

√
~φ′′(~x(new))

∥∥∥∥∥∥
~w+∞

≤ poly(m).

30

Therefore, we can set ~η(new) = ~η and this gives ~η∗(~x(new), ~w) is polynomial close to ~η(new).
Consequently, in all cases, we can find ~η(new) such that gives ~η*(new) is polynomial close to ~η(new).

Applying Lemma 23, we can then obtain a ~η such that it is close to ~η(new) in
∥∥ ·∥∥

w
norm. Note that

in the first iteration we need to call Sx,w O(log(U/ε)) time. Therefore, in average, we only call Sx,w
constant many times in average per iteration.

8.2 An efficient ~x step

Having such “normal vector” ~η, we can implement ~x step efficiently. Note that here we crucially use
the assumption εS < C/m2.

Lemma 25 (Efficient ~x step). For all (~x, ~w) in the algorithm and t > 0 let

~x(new) = ~x− 1√
~φ′′(~x)

(
I−W−1Ax

(
AT
xW−1Ax

)−1
AT
x

) t~c+ ~w~φ′(~x)

~w

√
~φ′′(~x)

and

~x(apx) = ~x−

(
t~c+ ~w~φ′(~x)−A~η

~w~φ′′(~x)

)
+

1

~w

√
~φ′′(~x)

AxSx,w

AT
x

 t~c+ ~w~φ′(~x)−A~η

~w

√
~φ′′(~x)

 .

We have ∥∥∥(Φ′′(~x)
)1/2 (

~x(new) − ~x(apx)
)∥∥∥

~w+∞
≤ Õ (mεS)

and
δt(~x

(apx), ~w) ≤
(

1 + Õ (mεS)
)
δt(~x

(new), ~w) + Õ (mεS) .

Proof. Note that

W1/2
(
Φ′′(~x)

)1/2 (
~x(new) − ~x(apx)

)
= W−1/2Ax

(
AT
xW−1Ax

)−1
AT
x

 t~c+ ~w~φ′(~x)−A~η

~w

√
~φ′′(~x)

−W−1/2AxSx,w

AT
x

 t~c+ ~w~φ′(~x)−A~η

~w

√
~φ′′(~x)

Therefore, we have∥∥∥(Φ′′(~x))1/2 (~x(new) − ~x(apx))∥∥∥

W

≤

∥∥∥∥∥∥
(
AT
xW−1Ax

)−1

AT
x

 t~c+ ~w~φ′(~x)−A~η

~w

√
~φ′′(~x)

− Sx,w

AT
x

 t~c+ ~w~φ′(~x)−A~η

~w

√
~φ′′(~x)

∥∥∥∥∥∥
AT

x W−1Ax

≤ εS

∥∥∥∥∥∥
(
AT
xW−1Ax

)−1

AT
xW−1/2

 t~c+ ~w~φ′(~x)−A~η√
~w~φ′′(~x)

∥∥∥∥∥∥
AT

x W−1Ax

= εS

∥∥∥∥∥∥ t~c+ ~w~φ′(~x)−A~η√
~w~φ′′(~x)

∥∥∥∥∥∥
W−1/2Ax(AT

x W−1Ax)
−1

AT
x W−1/2

≤ εS

∥∥∥∥∥∥ t~c+ ~w~φ′(~x)−A~η

~w

√
~φ′′(~x)

∥∥∥∥∥∥
W

≤ εS

∥∥∥∥∥∥ t~c+ ~w~φ′(~x)−A~η∗

~w

√
~φ′′(~x)

∥∥∥∥∥∥
W

+ εS

∥∥∥∥∥∥A(~η∗ − ~η)

~w

√
~φ′′(~x)

∥∥∥∥∥∥
W

≤ 2εSδt(~x, ~w) + εS .

31

where the last line comes from Lemma 22 and Lemma 24. Hence, we have∥∥∥(Φ′′(~x)
)1/2 (

~x(new) − ~x(apx)
)∥∥∥2

W
≤ 3εS.

Therefore, we have ∥∥∥(Φ′′(~x)
)1/2 (

~x(new) − ~x(apx)
)∥∥∥2

~w+∞
≤ Õ (mεS) .

For the last assertion, take ~q such that

δt(~x
(new), ~w) =

∥∥∥∥∥∥∇xft(~x
(new), ~w)−A~q

~w

√
~φ′′(~x(new))

∥∥∥∥∥∥
~w+∞

.

Following similar analysis as in Lemma 8, we have

δt(~x
(apx), ~w) ≤

∥∥∥∥∥∥∇xft(~x
(apx), ~w)−A~q

~w

√
~φ′′(~x(apx))

∥∥∥∥∥∥
~w+∞

≤

∥∥∥∥∥∥
√
~φ′′(~x(new))√
~φ′′(~x(apx))

∥∥∥∥∥∥
∞

∥∥∥∥∥∥∇xft(~x
(new), ~w)−A~q

~w

√
~φ′′(~x(new))

∥∥∥∥∥∥
~w+∞

+

∥∥∥∥∥∥∇xft(~x
(new), ~w)−∇xft(~x(apx), ~w)

~w

√
~φ′′(~x(apx))

∥∥∥∥∥∥
~w+∞

=
(

1 + Õ (mεS)
)
δt(~x

(new), ~w) + Õ (mεS) .

The above lemma shows that ~x(apx) can be used to replace ~x(new) without hurting δt too much.
Also, the step size ~x(apx)−~x is almost the same as the step size of ~x(new)−~x. Thus, we can implement
the ~x step without using

(
AT
xW−1Ax

)−1 and using Sx,w instead.
Unfortunately, there is one additional problem with the this algorithm, it does not ensure

AT~x(apx) = ~b. Therefore, we need to ensure AT~x(apx) ≈ ~b during the algorithm. Note that we
cannot make AT~x = ~b exactly using this approach and consequently we need measure the infeasi-
bility. We define

I(~x, ~w)
def
=
∥∥∥AT~x−~b

∥∥∥
(AT

xW−1Ax)−1
.

Lemma 26. For all (~x, ~w) in the algorithm define ~x(apx) as in Lemma 25. Then, we have

I(~x(apx), ~w) ≤ 2I(~x, ~w) + 3εS.

Proof. Since
∥∥∥(Φ′′(~x))1/2 (~x(apx) − ~x)

∥∥∥
∞

is small, it is easy to show∥∥∥AT~x(apx) −~b
∥∥∥(

AT

~x(apx)
W−1A

~x(apx)

)−1 ≤ 2
∥∥∥A~x(apx) −~b∥∥∥

(AT
xW−1Ax)−1

.

32

Then, note that∥∥∥AT~x(apx) −~b
∥∥∥
(AT

x W−1Ax)
−1

=

∥∥∥∥∥∥AT~x−AT

(
t~c+ ~w~φ′(~x)−A~η

~w~φ′′(~x)

)
+ AT

xWAxSx,w

AT
x

 t~c+ ~w~φ′(~x)−A~η

~w

√
~φ′′(~x)

−~b
∥∥∥∥∥∥
(AT

x W−1Ax)
−1

≤ I(~x, ~w) +

∥∥∥∥∥∥(AT
xWAx)

−1AT

(
t~c+ ~w~φ′(~x)−A~η

~w~φ′′(~x)

)
− Sx,w

AT
x

 t~c+ ~w~φ′(~x)−A~η

~w

√
~φ′′(~x)

∥∥∥∥∥∥
AT

x WAx

≤ I(~x, ~w) + εS

∥∥∥∥∥(AT
xWAx)

−1AT

(
t~c+ ~w~φ′(~x)−A~η

~w~φ′′(~x)

)∥∥∥∥∥
AT

x WAx

≤ I(~x, ~w) + εS

∥∥∥∥∥∥ t~c+ ~w~φ′(~x)−A~η

~w

√
~φ′′(~x)

∥∥∥∥∥∥
W

.

Now, we bound the last term using Lemma 22 and 24 as follows∥∥∥∥∥∥ t~c+ ~w~φ′(~x)−A~η

~w

√
~φ′′(~x)

∥∥∥∥∥∥
W

≤

∥∥∥∥∥∥ t~c+ ~w~φ′(~x)−A~η∗(~x, ~w)

~w

√
~φ′′(~x)

∥∥∥∥∥∥
W

+

∥∥∥∥∥∥A(~η∗(~x, ~w)− ~η)

~w

√
~φ′′(~x)

∥∥∥∥∥∥
W

≤ 2δt(~x, ~w) + 1 ≤ 3.

Note that when we change ~w so long as no coordinate changes by more than a multiplicative
constant then I(~x, ~w) changes by at most a multiplicative constant and thus no further proof on
the stability of I(~x, ~w) with respect to ~w is needed.

Now, we show how to improve I(~x, ~w).

Lemma 27 (Improve Feasibility). Given (~x, ~w) appears in the algorithm. Define

~x(fixed) = ~x−
√

Φ′′(~x)
−1

W−1AxSx,w

(
A~x−~b

)
.

Assume that I(~x, ~w) ≤ 0.01m−1, we have

I(~x(fixed), ~w) ≤ 2εSI(~x, ~w).

Furthermore,
∥∥∥(Φ′′(~x))1/2 (~x(fixed) − ~x)

∥∥∥
~w+∞

≤ O (mI(~x, ~w)).

Proof. Note that∥∥∥(Φ′′(~x)
)1/2

(~x(fixed) − ~x)
∥∥∥

W
=

∥∥∥Sx,w (A~x−~b
)∥∥∥

AT
xW−1Ax

≤ (1 + εS)
∥∥∥(AT

xW−1Ax

)−1
(
A~x−~b

)∥∥∥
AT
xW−1Ax

≤ 2I(~x, ~w).

Hence,
∥∥∥(Φ′′(~x))1/2 (~x(fixed) − ~x)

∥∥∥
∞
≤ 2mI(~x, ~w). By the assumption,

∥∥∥(Φ′′(~x))1/2 (~x(fixed) − ~x)
∥∥∥
∞

is very small and hence one can show that∥∥∥AT~x(fixed) −~b
∥∥∥(

AT

~x(fixed)
W−1A

~x(fixed)

)−1 ≤ 2
∥∥∥AT~x(fixed) −~b

∥∥∥
(AT

xW−1Ax)−1
.

33

Now, we note that ∥∥∥AT~x(fixed) −~b
∥∥∥

(AT
xW−1Ax)−1

=
∥∥∥(AT

xW−1Ax

)−1
(
AT~x−~b

)
− Sx,w

(
AT~x−~b

)∥∥∥
AT
xW−1Ax

≤ εSI(~x, ~w).

Since εS is sufficiently small this lemma implies that the given step improves feasibility by much
more than it hurts centrality. Therefore, by applying this step periodically throughout our algorithm
we can maintain the invariant the the infeasibility is small.

8.3 An efficient ~w step

There are two computations performed by our algorithm involving the weights. The first is in
the “chasing 0” game for centering we are given approximate weights and then need to change
the weights. However, here there is no linear system that is solved. The second place, is in the
computing of these approximate weights. However, here we just need to use approximate linear
system solvers to approximate leverage scores and we discussed how to do this in Part I [22, ArXiv
v3, Section D].

8.4 The stable algorithm

We summarize the section as follows:

Theorem 28. Suppose we have an interior point ~x ∈ Ω0 for the for the linear program (3.1)and
suppose that for any diagonal positive definite matrix D and vector ~q, we can find ~x in Tw work and
Td depth such that ∥∥∥~x− (ATDA

)−1
~q
∥∥∥

ATDA
≤ εS

∥∥∥(ATDA
)−1

~q
∥∥∥

ATDA

for εS = 1/mk for some large constant k. Then, using LPSolve we can compute ~x such that ~cT~x ≤
OPT+ε,

∥∥AT~x−~b
∥∥

ATS−2A
≤ ε, and for all i ∈ [n] li ≤ xi ≤ ui in Õ

(√
rank(A) (Tw + nnz(A)) log (U/ε)

)
work and Õ

(√
rank(A)Td log (U/ε)

)
depth where U def

= max
(∥∥∥ ~u−~l

~u−~x0

∥∥∥
∞
,
∥∥∥ ~u−~l
~x0−~l

∥∥∥
∞
,
∥∥~u−~l∥∥∞,∥∥~c∥∥∞)

and S is a diagonal matrix with Sii = min(xi − li, ui − xi).

Proof. Lemma 24 shows that we can maintain ~η which is close to ~η∗ defined in Lemma 22. Lemma 25
shows that using this ~η, we can compute a more numerically stable step ~x(apx). Hence, this gives us
a way to implement ~x step using Sx,w. In the previous subsection, we explained how to implement
~w step using Sx,w.

To deal with infeasibility, Lemma 26 shows that the stable step ~x(apx) does not hurt the infea-
sibility I(~x, ~w) too much. It is also easy to show the step for ~w does not hurt the infeasibility too
much. Whenever I(~x, ~w) > 1/m2, we improve the feasibility using Lemma 27. This decreases the
infeasibility a lot while only taking a very small step as shown in Lemma 27 and consequently it
does not hurt the progress δt and Φµ.

Therefore, Theorem 18 can be implemented using the necessary inexact linear algebra. To get
the bound on

∥∥AT~x − ~b
∥∥

ATS−2A
, we use Lemma 3 to show that S � Φ′′(~x), therefore

∥∥AT~x −
~b
∥∥

ATS−2A
≤
∥∥AT~x−~b

∥∥
AT
xAx

= I(~x, ~w).

34

For some problems, we need a dual solution instead of the primal. We prove how to do this
in the following theorem. In the proof we essentially show that the normal force we maintain for
numerical stability is essentially a dual solution.

Theorem 29. Suppose we have an initial ~x0 such that AT~x0 = ~b and −1 ≤ [~x0]i ≤ 1 and suppose
that for any diagonal positive definite matrices D and vectors ~q, we can find ~x from such that∥∥∥~x− (ATDA

)−1
~q
∥∥∥

ATDA
≤ εS

∥∥∥(ATDA
)−1

~q
∥∥∥

ATDA

for εS = 1/mk for sufficiently large constant k in Tw work and Td depth. Then, there is an algorithm
that compute ~y such that

~bT~y +
∥∥A~y + ~c

∥∥
1
≤ min

~y

(
~bT~y +

∥∥A~y + ~c
∥∥

1

)
+ ε.

in Õ(
√

rank(A) (Tw + nnz(A)) log (U/ε)) work and Õ(
√

rank(A)Td log (U/ε)) depth where U
def
=

max
(∥∥∥ 2

1−~x

∥∥∥
∞
,
∥∥∥ 2
~x+1

∥∥∥
∞
,
∥∥~c∥∥∞) .

Proof. We can use our algorithm to solve the following linear program

min
AT ~x=~b,−1≤xi≤1

~cT~x

and find (~x, ~w, ~η) such that ∥∥∥∥∥∥ t~c+ ~w~φ′(~x)−A~η

~w

√
~φ′′(~x)

∥∥∥∥∥∥
~w+∞

≤ δ (8.1)

and
I(~x,~b) =

∥∥∥AT~x−~b
∥∥∥

(AT
xW−1Ax)−1

≤ δ

for some small δ and large t. To use this to derive a dual solution it seems we need to be very close
to the central path. Thus we use our algorithm to compute a central path point for a particular
t and then, we do an extra Õ(log(mU/ε)) iterations to ensure that the error δ is as small as
1/poly(mU/ε)).Let ~y = −~η/t, ~λ = ~c+ A~y and ~τ = ~λ+ 1

t ~w
~φ′(~x) where φ(x) = − log cos(πx2) because

the constraints are all −1 < xi < 1. By the definition of ~λ, we have〈
~λ, ~x

〉
= 〈~c, ~x〉+ 〈A~y, ~x〉 .

We claim that :

1.
∣∣∣〈A~y, ~x〉 − 〈~y,~b〉∣∣∣ ≤ (δ+2m

t + 2mU
)
δ.

2.
∣∣∣〈~c, ~x〉+ min~y

(〈
~b, ~y
〉

+
∥∥~c+ A~y

∥∥
1

)∣∣∣ ≤ (1
t + δ

)
poly(mU).

3.
∣∣∣〈~λ, ~x〉+

∥∥~c+ A~y
∥∥

1

∣∣∣ ≤ (δ + 1
t

)
poly(m).

Using these claims we can compute a very centered point for t = 1
δ = (mU)k/ε for sufficiently large

k and get the result 〈
~y,~b
〉

+
∥∥~c+ A~y

∥∥
1
≤ min

~y

(〈
~b, ~y
〉

+
∥∥~c+ A~y

∥∥
1

)
+ ε.

35

Claim (1): Note that∣∣∣〈A~y, ~x〉 − 〈~y,~b〉∣∣∣
≤ ‖~y‖(AT

xW−1Ax)

∥∥∥AT~x−~b
∥∥∥

(AT
xW−1Ax)−1

=
1

t

∥∥∥∥∥∥ A~η

~w

√
~φ′′(~x)

∥∥∥∥∥∥
W

I(~x,~b)

≤ 1

t

∥∥∥∥∥∥ t~c+ ~w~φ′(~x)−A~η

~w

√
~φ′′(~x)

∥∥∥∥∥∥
W

+

∥∥∥∥∥∥ t~c

~w

√
~φ′′(~x)

∥∥∥∥∥∥
W

+

∥∥∥∥∥∥ ~w~φ′(~x)

~w

√
~φ′′(~x)

∥∥∥∥∥∥
W

 δ

≤

δ
t

+

∥∥∥∥∥∥ ~c

~w

√
~φ′′(~x)

∥∥∥∥∥∥
W

+

∥∥∥~1∥∥∥
W

t

 δ.

Since φ(x) = − log cos(πx2), φ′′(x) ≥ π2/4. Thus, we have∣∣∣〈A~y, ~x〉 − 〈~y,~b〉∣∣∣ ≤ (δ + 2m

t
+ 2mU

)
δ.

Claim (2): From the proof of Theorem 21, we see that∣∣∣∣∣~cT~x− min
AT ~x=~b,−1≤xi≤1

~cT~x

∣∣∣∣∣ ≤ poly(mU)

(
1

t
+ δ

)
.

Since there is an interior point for {AT~x = ~b,−1 ≤ xi ≤ 1} and the set is bounded, the strong
duality shows that

min
AT ~x=~b,−1≤xi≤1

~cT~x

= min
~x

max
~λ(1)≥0,~λ(2)≥0,~y

~cT~x+
〈
~y,AT~x−~b

〉
+
〈
~λ(1), ~x− ~1

〉
+
〈
~λ(2),−~1− ~x

〉
= max

~y,~λ(1)≥0,~λ(2)≥0
min
~x

〈
~c+ A~y + ~λ(1) − ~λ(2), ~x

〉
−
〈
~b, ~y
〉
−
〈
~λ(1) + ~λ(2), ~1

〉
= −min

~y

〈
~b, ~y
〉

+
∥∥~c+ A~y

∥∥
1

yielding the claim.
Claim (3): Recall that ~τ = ~λ+ 1

t ~w
~φ′(~x). Hence, we have

τi = λi +
π

2t
wi tan(

π

2
xi).

Therefore, we have

xi =
2

π
tan−1

(
2t

πwi
(τi − λi)

)
.

Thus, we have 〈
~λ, ~x

〉
=

∑
i

λi
2

π
tan−1

(
2t

πwi
(τi − λi)

)
= − 2

π

∑
i

λi tan−1

(
2t

πwi
(λi − τi)

)
.

36

Thus, Lemma 39 shows that

−
∥∥~λ∥∥

1
≤
〈
~λ, ~x

〉
≤ −

∥∥~λ∥∥
1

+ 2
∥∥~τ∥∥

1
+

∥∥~w∥∥
1

t
.

Recall that
∥∥~w∥∥

1
= O(m). Also, the bound (8.1) is equivalent to

|τi| ≤
δwi
√
φ′′(xi)

t
≤
δ
√
φ′′(xi)

t
.

Lemma 31 shows that the slack of central point is larger than poly(m)/t. Therefore, Lemma 3

shows that δ
√
φ′′(xi)
t ≤ poly(m)δ. Therefore

∥∥~τ∥∥
1

= poly(m)δ. Using ~λ = ~c + A~y, we have∣∣∣〈~λ, ~x〉+
∥∥~c+ A~y

∥∥
1

∣∣∣ ≤ poly(m)
(
δ + 1

t

)
.

Remark 30. Note how this algorithm uses the initial point to certify that min~y~b
T~y +

∥∥A~y + ~c
∥∥

1
is

bounded. As usual, one can use standard technique to avoid the requirement on the initial point.

8.5 Well conditioned

For many problems, the running time of linear system solvers depend on the condition number
and/or how fast the linear systems change from iteration to iteration. The following lemma shows
that our interior point method enjoys many properties frequently exploited in other interior point
methods and therefore is amenable to different techniques for improving iteration costs. In partic-
ular, here we bound the condition number of the matrices involved which in turn, allows us to use
the fast M matrix solver in next section.

There are two key lemmas we prove in this section. First, in Lemma 31 we bound how close
the weighted central path can go to the boundary of the polytope. This allows us to reason about
how ill-conditioned the linear system we need to solver become over the course of the algorithm.
Weshows that if the slacks, i.e. distances to the boundary of the polytope, of the initial point are
polynomially bounded below and if we only change the weight multiplicatively by a polynomial
factor, then the slacks of the new weighted central path point is still polynomially bounded below.
Second, in Lemma 32 we bound how much the linear systems can change over the course of our
algorithm.

Lemma 31. For all ~w ∈ Rm>0 and t > 0 let ~xt, ~w = arg min ft (~x, ~w). For all ~x ∈ Ω0 and i ∈ [m]

let si(~x) denote the slack of constraint i, i.e. si(~x)
def
= min{ui − xi, xi − li}. For any a, b > 0 and

~w(1), ~w(2) ∈ Rm>0 and i ∈ [m] we have

si

(
~xb, ~w(2)

)
≥ min

(

minj∈[m]w
(2)
j

)
·
(

minj∈[m] sj

(
~xb, ~w(1)

))
2
(
b
a

∥∥~w(1)
∥∥

1
+
∥∥~w(2)

∥∥
1

) , 1

 si

(
~xa,~w(1)

)
. (8.2)

Proof. Fix an arbitrary i ∈ [m] and consider the straight line from ~xa,~w(1) to ~xb, ~w(2) . If this line never
reaches a point ~y such that si(~y) = 0 then si(~xb, ~w(2)) ≥ si(~xa,~w(2)) and clearly (8.2). Otherwise,
we can parameterize the the straight line by ~p(t) such that ~p(−1) = ~xa,~w(1) , si(~p(0)) = 0, and
~p(−θ) = ~xb, ~w(2) for some θ ∈ [0, 1]. Since φi(p(t))→∞ as t→ 0, Lemma 3 shows that

d2φi
dt2

∣∣∣∣
t

≥ 1

t2
.

37

Integrating then yields that.

dφi
dt

∣∣∣∣
t=−θ

≥ dφi
dt

∣∣∣∣
t=−1

+

ˆ −θ
−1

1

t2
dt

=
dφi
dt

∣∣∣∣
t=−1

+

(
1

θ
− 1

)
.

Since each of the φj is convex, we have∑
j∈[m]

w
(2)
j

dφj
dt

∣∣∣∣
t=−θ

≥
∑
j∈[m]

w
(2)
j

dφj
dt

∣∣∣∣
t=−1

+

(
min
j∈[m]

w
(2)
j

)
·
(

1

θ
− 1

)
.

Using the optimality condition of ~xb, ~w(2) and the optimality condition of ~xa,~w(1) , we have

b

a

∑
j∈[m]

w
(1)
j

dφi
dt

∣∣∣∣
t=−1

≥
∑
j∈[m]

w
(2)
j

dφi
dt

∣∣∣∣
t=−1

+

(
min
j∈[m]

w
(2)
j

)(
1

θ
− 1

)
.

Hence, (
b

a

∥∥~w(1)
∥∥

1
+
∥∥~w(2)

∥∥
1

)
max
j∈[m]

∣∣∣∣(dφjdt
∣∣∣∣
t=−1

)∣∣∣∣ ≥ (min
j∈[m]

w
(2)
j

)(
1

θ
− 1

)
.

Applying Lemma 4 again yields that for all j ∈ [m]∣∣∣∣(dφjdt
∣∣∣∣
t=−1

)∣∣∣∣ sj (~xb, ~w(1)

)
≤ 1.

Thus, we have

b

a

∥∥~w(1)
∥∥

1
+
∥∥~w(2)

∥∥
1
≥
(

min
j∈[m]

w
(2)
j

)(
1

θ
− 1

)
min
j
sj

(
~xb, ~w(1)

)
.

Hence,

θ ≥

(
minj∈[m]w

(2)
j

)
·
(

minj∈[m] sj

(
~xb, ~w(1)

))
2
(
b
a

∥∥~w(1)
∥∥

1
+
∥∥~w(2)

∥∥
1

) .

Since i ∈ [m] was arbitrary we have the desired result.

Lemma 32. Using the notations and assumptions in Theorem 28 or Theorem 29 let ATDkA be
the kth linear system that is used in the algorithm LPSolve. For all k ≥ 1, we have the following:

1. The condition number of Dk is bounded by poly(mU/ε), i.e., poly(ε/(mU))ATA � ATDkA �
poly(mU/ε)ATA

2.
∥∥ log(Dk+1)− log(Dk)

∥∥
∞ ≤ 1/10.

3.
∥∥ log(Dk+1)− log(Dk)

∥∥
ΣA(~dk)

≤ 1/10.

Proof. During the algorithm, the matrix we need to solve is of the form ATDA where D =
W−1Φ′′(~x)−1. We know that n

2m ≤ ~wi ≤ 3. In the proof of Theorem 18, we showed that ~φ′′i (~x) ≥ 1
U2 .

Also, Lemma 31 shows that the slacks is never too small and hence ~φ′′i (~x) is upper bounded by
poly(mU/ε). Thus, the condition number of D is bounded by poly(mU/ε).

38

Now, we bound the changes of D by bound the changes of Φ′′(~x) and the changes of W sepa-

rately. For the changes of Φ′′(~x), (4.5) shows that
∥∥∥∥√~φ′′(~x)~ht(~x, ~w)

∥∥∥∥
~w+∞

≤
∥∥P~x,~w

∥∥
~w+∞ δt. Since∥∥P~x,~w

∥∥
~w+∞ ≤ 2 and δt ≤ 1/80, we have∥∥∥∥√~φ′′(~x)(~x(new) − ~x)

∥∥∥∥
~w+∞

=

∥∥∥∥√~φ′′(~x)~ht(~x, ~w)

∥∥∥∥
~w+∞

≤ 1/40.

Using this on Lemma 3, we have∥∥∥log
(
~φ′′(~x(new))

)
− log

(
~φ′′(~x)

)∥∥∥
~w+∞

≤
(

1−
∥∥∥∥√~φ′′(~x)(~x(new) − ~x)

∥∥∥∥
~w+∞

)−1

− 1

≤ 1/36.

Since ~wi ≥ 1
2~σi for all i, we have∥∥∥log

(
~φ′′(~x(new))

)
− log

(
~φ′′(~x)

)∥∥∥
~σ+∞

≤ 1/20. (8.3)

For the changes of W, we look at the description of centeringInexact. The algorithm ensures
the changes of log(~w) is in (1+ε)U where U = {~x ∈ Rm | ‖~x‖~w+∞ ≤

(
1− 7

8ck

)
δt}. Since δt ≤ 1/80

and ~wi ≥ 1
2~σi for all i, we get that∥∥∥log

(
~w(new)

)
− log (~w)

∥∥∥
~σ+∞

≤ 1/20. (8.4)

The assertion (2) and (3) follows from (8.3) and (8.4).

9 Generalized Minimum Cost Flow

In this section we show how to use the interior point method in Section 7 to solve the maxi-
mum flow problem in time Õ(m

√
n logO(1)(U)), to solve the minimum cost flow problem in time,

Õ(m
√
n logO(1)(U)), and to compute ε-approximate solutions to the lossy generalized minimum cost

flow problem in time Õ(m
√
n logO(1)(U/ε)). Our algorithm for the generalized minimum cost flow

problem is essentially the same as our algorithm for the simpler specific case of minimum cost flow
and maximum flow and therefore, we present the algorithm for the generalized minimum cost flow
problem directly. 10

The generalized minimum cost flow problem [5] is as follows. Let G = (V,E) be a connected
directed graph where each edge e has capacity ce > 0 and multiplier 1 ≥ γe > 0. For each edge
e, there can be only at most ce units of flow on that edge and the flow on that edge must be
non-negative. Also, for each unit of flow entering edge e, there are only γe units of flow going out.
The generalized maximum flow problem is to compute how much flow can be sent into t given a
unlimited source s. The generalized minimum cost flow is to ask what is the minimum cost of
sending the maximum flow given the cost of each edge is qe. The maximum flow and the minimum
cost flow are the case with γe = 1 for all edges e.

Since the generalized minimum cost flow includes all of these cases, we focus on this general
formulation. The problem can be written as the following linear program

min
~0≤~x≤~c

~qT~x such that A~x = F~1t

10Our algorithm could be simplified slightly for the simpler cases and the dependence on polylogarithmic factors
for these problems could possibly be improved.

39

where F is the generalized maximum flow value, ~1t is a indicator vector of size (n − 1) that is
non-zero at vertices t and A is a |V \{s}| × |E| matrix such that for each edge e, we have

A(ehead, e) = γ(e),

A(etail, e) = −1.

In order words, the constraint Ax = F~1t requires the flow to satisfies the flow conversation at all
vertices except s and t and requires it flows F unit of flow to t. We assume ce are integer and γe is
a rational number. Let U be the maximum of ce, qe, the numerator of γe and the denominator of
γe. For the generalized flow problems, getting an efficient exact algorithm is difficult and we aim
for approximation algorithms only.

Definition 33. We call a flow an ε−approximate generalized maximum flow if it is a flow satisfies
the flow conservation and the flow value is larger than maximum flow value minus ε. We call a flow
is an ε−approximate generalized minimum cost maximum flow if it is an ε-approximate maximum
flow and has cost not greater than the minimum cost maximum flow value.

Note that rank (A) = n− 1 because the graph is connected and hence our algorithm takes only
Õ(
√
nL) iterations. Therefore, the problems remaining are to compute L and bound how much

time is required to solve the linear systems involved. However, L is large in the most general setting
and hence we cannot use the standard theory to say how to get the initial point, how to round to
the vertex. Furthermore, the condition number of ATA can be very bad.

In [5], they used dual path following to solve the generalized minimum cost flow problem with
the caveats that the dual polytope is not bounded, the problem of getting the initial flow, the
problem of rounding it to the a feasible flow. We use there analysis to formulate the problem in a
manner more amenable to our algorithms. Since we are doing the primal path following, we will
state a reformulation of the LP slightly different.

Theorem 34 ([5]). Given a directed graph G. We can find a new directed graph G̃ with O(m) edges
and O(n) vertices in Õ(m) time such that the modified linear program

min
0≤xi≤ci,0≤yi≤4mU2,0≤zi≤4mU2

~qT~x+
256m5U5

ε2

(
~1T~y + ~1T~z

)
such that A~x+ ~y − ~z = F~1t

satisfies the following conditions:

1. ~x = c
2
~1, ~y = 2mU2~1− (A c

2
~1)−+F~1t, z = 2mU2~1 + (A c

2
~1)+ is an interior point of the linear

program.

2. Given any (~x, ~y, ~z) such that
∥∥A~x+~y−~z

∥∥
2
≤ ε2

128m2n2U3 and with cost value within ε2

128m2n2U3

of the optimum. Then, one can compute an ε-approximate minimum cost maximum flow for
graph G in time Õ(m).

3. The linear system of the linear program is well-conditioned, i.e., the condition number of[
A I −I

] AT

I
−I

 is O(mU).

4. The linear system of the linear program can be solve in nearly linear time, i.e. for any diagonal
matrix S with condition number κ and vector b, it takes Õ

(
m log

(
κU
δ

))
time to find x such

that ∥∥x− L−1b
∥∥

L
≤ δ
∥∥x∥∥

L

40

where L =
[

A I −I
]
S

 AT

I
−I

 .
The main difference between what stated in [5] and here is that

1. Our linear program solver can support constraint li ≤ xi ≤ ui and hence we do not need to
split the flow variable to positive part and negative part.

2. Our linear program solver is primal path following and hence we add the constraint yi ≤ 4mU2

and zi ≤ 4mU2. Since the maximum flow value is at most mU2, it does not affect the optimal
solution of the linear program.

3. We remove the variable x3 in [5] because the purpose of that is to make the dual polytope is
bounded and we do not need it here.

Using the reduction mentioned above, one can obtain the promised generalized minimum cost flow
algorithm.

Theorem 35. There is a randomized algorithm to compute an ε−approximate generalized mini-
mum cost maximum flow in Õ(

√
n logO(1)(U/ε)) depth Õ(m

√
n logO(1) (U/ε)) total work (see Defini-

tion 33). Furthermore, there is an algorithm to compute an exact standard minimum cost maximum
flow in Õ(

√
n logO(1)(U)) depth and Õ(m

√
n logO(1) (U)) total work.

Proof. Using the reduction above and Theorem 18, we get an algorithm of generalized minimum
cost flow by solving Õ(

√
n) linear systems to Õ (1) bit accuracy and the condition number of those

systems are poly(mU/ε). In [5], they showed that the linear system involved can be reduced to
Õ(log(U/ε)) many Laplacian systems and hence we can use a recent nearly linear work polyloga-
rithmic depth Laplacian system solver of Spielman and Peng [31]. In total, it takes Õ(m logO(1)

(
U
ε

)
)

time to solve each systems.
For the standard minimum cost maximum flow problem, it is known that the solution set is

a convex polytope with integer coordinates and we can use Isolation lemma to make sure there
is unique minimum. Hence, we only need to take ε = poly(1/mU) and round the solution to the
closest integer. See Section 3.5 in [5] for details.

10 Acknowledgments

We thank Yan Kit Chim, Andreea Gane, and Jonathan A. Kelner for many helpful conversations.
This work was partially supported by NSF awards 0843915 and 1111109, NSF Graduate Research
Fellowship (grant no. 1122374) and Hong Kong RGC grant 2150701.

References

[1] Ravindra K Ahuja, Thomas L Magnanti, and James B Orlin. Network flows: theory, algorithms,
and applications. 1993.

[2] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a
meta-algorithm and applications. Theory of Computing, 8(1):121–164, 2012.

[3] András A Benczúr and David R Karger. Approximating st minimum cuts in õ (n 2) time.
In Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, pages
47–55. ACM, 1996.

41

[4] Paul Christiano, Jonathan A Kelner, Aleksander Madry, Daniel A Spielman, and Shang-Hua
Teng. Electrical flows, laplacian systems, and faster approximation of maximum flow in undi-
rected graphs. In Proceedings of the 43rd annual ACM symposium on Theory of computing,
pages 273–282. ACM, 2011.

[5] Samuel I Daitch and Daniel A Spielman. Faster approximate lossy generalized flow via interior
point algorithms. In Proceedings of the 40th annual ACM symposium on Theory of computing,
pages 451–460. ACM, 2008.

[6] Jack Edmonds and Richard M Karp. Theoretical improvements in algorithmic efficiency for
network flow problems. Journal of the ACM (JACM), 19(2):248–264, 1972.

[7] Shimon Even and R Endre Tarjan. Network flow and testing graph connectivity. SIAM journal
on computing, 4(4):507–518, 1975.

[8] Robert M Freund and Michael J Todd. Barrier functions and interior-point algorithms for
linear programming with zero-, one-, or two-sided bounds on the variables. Mathematics of
Operations Research, 20(2):415–440, 1995.

[9] Zvi Galil and Éva Tardos. An o (n 2 (m+ n log n) log n) min-cost flow algorithm. Journal of
the ACM (JACM), 35(2):374–386, 1988.

[10] Andrew V. Goldberg and Satish Rao. Beyond the flow decomposition barrier. J. ACM,
45(5):783–797, 1998.

[11] Andrew V Goldberg and Robert E Tarjan. Finding minimum-cost circulations by successive
approximation. Mathematics of Operations Research, 15(3):430–466, 1990.

[12] David Karger and Matthew Levine. Random sampling in residual graphs. In Proceedings of
the thiry-fourth annual ACM symposium on Theory of computing, pages 63–66. ACM, 2002.

[13] David R Karger. Better random sampling algorithms for flows in undirected graphs. In Pro-
ceedings of the ninth annual ACM-SIAM symposium on Discrete algorithms, pages 490–499.
Society for Industrial and Applied Mathematics, 1998.

[14] Narendra Karmarkar. A new polynomial-time algorithm for linear programming. In Proceedings
of the sixteenth annual ACM symposium on Theory of computing, pages 302–311. ACM, 1984.

[15] Alexander V Karzanov. On finding a maximum flow in a network with special structure and
some applications. Matematicheskie Voprosy Upravleniya Proizvodstvom, 5:81–94, 1973.

[16] Jonathan A Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford. An almost-linear-time
algorithm for approximate max flow in undirected graphs, and its multicommodity generaliza-
tions. In SODA, pages 217–226. SIAM, 2014.

[17] Jonathan A. Kelner, Lorenzo Orecchia, Aaron Sidford, and Zeyuan Allen Zhu. A Simple,
Combinatorial Algorithm for Solving SDD Systems in Nearly-Linear Time. January 2013.

[18] Ioannis Koutis, Gary L. Miller, and Richard Peng. Approaching optimality for solving SDD
systems. In Proceedings of the 51st Annual Symposium on Foundations of Computer Science,
2010.

42

[19] Ioannis Koutis, Gary L. Miller, and Richard Peng. A nearly-m log n time solver for sdd linear
systems. In Foundations of Computer Science (FOCS), 2011 IEEE 52nd Annual Symposium
on, pages 590 –598, oct. 2011.

[20] Yin Tat Lee, Satish Rao, and Nikhil Srivastava. A new approach to computing maximum flows
using electrical flows. In The 45th ACM Symposium on Theory of Computing (STOC), pages
755–764, 2013.

[21] Yin Tat Lee and Aaron Sidford. Efficient accelerated coordinate descent methods and faster
algorithms for solving linear systems. In The 54th Annual Symposium on Foundations of
Computer Science (FOCS), 2013.

[22] Yin Tat Lee and Aaron Sidford. Path finding i: Solving linear programs with \˜ o (sqrt(rank))
linear system solves. arXiv preprint arXiv:1312.6677, 2013.

[23] Mu Li, Gary L Miller, and Richard Peng. Iterative row sampling. 2012.

[24] Aleksander Madry. Fast approximation algorithms for cut-based problems in undirected graphs.
In FOCS, pages 245–254, 2010.

[25] Aleksander Madry. Navigating central path with electrical flows: from flows to matchings,
and back. In Proceedings of the 54th Annual Symposium on Foundations of Computer Science,
2013.

[26] Yu Nesterov. Introductory Lectures on Convex Optimization: A Basic Course, volume I. 2003.

[27] Yurii Nesterov and Arkadii Semenovich Nemirovskii. Interior-point polynomial algorithms in
convex programming, volume 13. Society for Industrial and Applied Mathematics, 1994.

[28] James B Orlin. Genuinely polynominal simplex and non-simplex algorithms for the minimum
cost flow problem. 1984.

[29] James B Orlin. A faster strongly polynomial minimum cost flow algorithm. Operations research,
41(2):338–350, 1993.

[30] James B Orlin. Max flows in o (nm) time, or better. In Proceedings of the 45th annual ACM
symposium on Symposium on theory of computing, pages 765–774. ACM, 2013.

[31] Richard Peng and Daniel A Spielman. An efficient parallel solver for sdd linear systems. arXiv
preprint arXiv:1311.3286, 2013.

[32] Alexander Schrijver. On the history of the transportation and maximum flow problems. Math-
ematical Programming, 91(3):437–445, 2002.

[33] Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24.
Springer, 2003.

[34] Jonah Sherman. Nearly maximum flows in nearly linear time. In Proceedings of the 54th Annual
Symposium on Foundations of Computer Science, 2013.

[35] Daniel A Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. SIAM
Journal on Computing, 40(6):1913–1926, 2011.

43

[36] Daniel A Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph partitioning,
graph sparsification, and solving linear systems. In Proceedings of the thirty-sixth annual ACM
symposium on Theory of computing, pages 81–90. ACM, 2004.

[37] Éva Tardos. A strongly polynomial minimum cost circulation algorithm. Combinatorica,
5(3):247–255, 1985.

A Glossary

Here we summarize various linear programming specific notation that we use throughout the pa-
per. For many quantities we included the typical order of magnitude as they appear during our
algorithms.

• Linear program related: constraint matrix A ∈ Rm×n , cost vector ~c ∈ Rm, constraint vector
~b ∈ Rn, solution ~x ∈ Rm, weights of constraints ~w ∈ Rm where m is the number of variables
and n is the number of constraints.

• Matrix version of variables: S is the diagonal matrix corresponds to ~s, W corresponds to ~w,
Φ corresponds to φ.

• Penalized objective function (4.1): ft(~x, ~w) = t · ~cT~x+
∑

i∈[m] ~wiφi(~xi).

• Barrier functions (Sec 3.1): For [l,∞), we use φ(x) = − log(x − l). For (−∞, u], we use
φ(x) = − log(u− x). For [l, u], we use φ(x) = − log(ax+ b) where a = π

u−l and b = −π
2
u+l
u−l .

• The projection matrix P~x,~w (4.3): P~x,~w = I −W−1Ax

(
AT
xW−1Ax

)−1
AT
x where Ax

def
=

Φ′′(~x)−1/2A.

• Newton step (4.2): ~ht(~x, ~w) = −Φ′′(~x)−1/2P~x,~wW−1Φ′′(~x)−1/2∇xft(~x, ~w).

• The mixed norm (4.4): ‖~y‖~w+∞ =
∥∥~y∥∥∞ + Cnorm

∥∥~y∥∥
W

where Cnorm ≈ polylog(m).

• Centrality (4.6): δt(~x, ~w) = min~η∈Rn

∥∥∥∥∇xft(~x,~w)−A~η

~w
√
~φ′′(~x)

∥∥∥∥
~w+∞

≈ 1
polylog(m) .

• Properties of weight function (Def 6): size c1(~g) =
∥∥~g(~x)

∥∥
1
≈ rank (A), slack sensitivity

cγ(~g) =
∥∥P~x,~w

∥∥
~w+∞ ≈ 1 + 1

polylog(m) , step consistency cδ(~g) ≈ 1− 1
polylog(m) .

• Difference between ~g and ~w (5.4): ~Ψ(~x, ~w) = log(~g(~x))− log(~w).

• Potential function for tracing 0 (Thm 11): Φµ(~x) = eµx + e−µx ≈ poly(m).

• The weight function proposed (6.1):

~g(~x) = arg min
~w∈Rm>0

f̂(~x, ~w) where f̂(~x, ~w) = ~1T ~w +
1

α
log det

(
AT
xW−αAx

)
− β

∑
i

logwi

where Ax = (Φ′′(~x))−1/2A, α ≈ 1 + 1/ log2

(
m

rank(A)

)
, β ≈ rank(A)/m.

44

B Appendix

B.1 Technical Lemmas

Lemma 36. For any norm
∥∥ · ∥∥ and

∥∥~y∥∥
Q

def
= min~η∈Rn

∥∥∥∥~y − A~η

~w
√
~φ′′(~x)

∥∥∥∥, we have

∥∥~y∥∥
Q
≤
∥∥P~x,~w~y

∥∥ ≤ ∥∥P~x,~w

∥∥ · ‖~y‖Q .
Proof. By definition P~x,~w~y = ~y − A~ηy

~w
√
~φ′′(~x)

for some ~ηy ∈ Rn. Consequently,

∥∥~y∥∥
Q

= min
~η∈Rn

∥∥∥∥∥∥~y − Aη

~w

√
~φ′′(~x)

∥∥∥∥∥∥ ≤ ∥∥P~x,~w~y
∥∥ .

On the other hand, let ~ηq by such that such that
∥∥~y∥∥

Q
=

∥∥∥∥~y − A~ηq

~w
√
~φ′′(~x)

∥∥∥∥ . Then, since P~x,~wW−1(Φ′′)−1/2A =

0, we have

∥∥P~x,~w~y
∥∥ =

∥∥∥∥∥∥P~x,~w

~y − A~ηq

~w

√
~φ′′

∥∥∥∥∥∥ ≤ ∥∥P~x,~w

∥∥ ·
∥∥∥∥∥∥~y − A~ηq

~w

√
~φ′′

∥∥∥∥∥∥ =
∥∥P~x,~w

∥∥ · ‖~y‖Q .

Lemma 37 (Log Notation [22, Appendix]). Suppose |log(a)− log (b)| = ε ≤ 1/2 then
∣∣a−b
b

∣∣ ≤ ε+ε2.
If
∣∣a−b
b

∣∣ = ε ≤ 1/2, then |log (a)− log (b)| ≤ ε+ ε2.

Lemma 38 ([22, Appendix]). For any projection matrix P ∈ Rm×m, Σ = diag(P), i, j ∈ [m],
~x ∈ Rm, and ~w ∈ Rm>0 we have

• Σii =
∑

j∈[m] P
(2)
ij ,

• 0 � P(2) � Σ � I,

• P
(2)
ij ≤ ΣiiΣjj,

• |~1Ti P(2)~x| ≤ Σii

∥∥~x∥∥
Σ
.

• ∇~w log det(ATWA) = ΣA(~w)~w−1.

• J~w(~σA(~w)) = ΛA(~w)W−1.

Lemma 39. For any x, ε and λ > 0, we have

π

2
|x| − πε− 1

λ
≤ x tan−1(λ(x+ ε)) ≤ π

2
|x| .

Proof. We first consider the case ε = 0. Note that

x tan−1(λx) ≤ π

2
|x| .

45

Also, we note that

x tan−1(λx) ≥ |x|
(
π

2
− 1

λ |x|

)
because ∣∣∣∣tan(

π

2
− 1

λ |x|
)

∣∣∣∣ =

∣∣∣∣∣cos(1
λ|x|)

sin(1
λ|x|)

∣∣∣∣∣ ≤ λ |x| .
Hence, we have

π

2
|x| − 1

λ
≤ x tan−1(λx) ≤ π

2
|x| .

For ε 6= 0, we have

π

2
|x+ ε| − 1

λ
≤ (x+ ε) tan−1(λ(x+ ε)) ≤ π

2
|x+ ε| .

Thus, we have
π

2
|x| − πε− 1

λ
≤ x tan−1(λ(x+ ε)) ≤ π

2
|x| .

B.2 Projection on Mixed Norm Ball

In the [22], we studied the following problem:

max∥∥~x∥∥
2
≤1,−li≤xi≤li

〈~a, ~x〉 (B.1)

for some given vector ~a and ~l in Rm. We proved that the following algorithm outputs a solution of
(B.1) in depth Õ(1) and work Õ(m).

~x = projectOntoBallBoxParallel(~a,~l)

1. Set ~a = ~a/
∥∥~a∥∥

2
.

2. Sort the coordinate such that |ai| /li is in descending order.
3. Precompute

∑i
k=0 l

2
k and

∑i
k=0 a

2
k for all i.

4. Find the first i such that 1−
∑i
k=0 l

2
k

1−
∑i
k=0 a

2
k

≤ l2i
a2i
.

5. Output ~xj =

sign (aj) lj if j ∈ {1, 2, · · · , i}√
1−
∑i
k=0 l

2
k

1−
∑i
k=0 a

2
k

~aj otherwise
.

In this section, we show that the algorithm above can be transformed to solve the problem

max∥∥~x∥∥
~w

+
∥∥~x∥∥

∞
≤1

〈~a, ~x〉 (B.2)

for some given vector ~a and ~w > 0. To do this, let study (B.1) more closely. Without loss of
generality, we can assume

∥∥~a∥∥
2

= 1 and |ai| /li is in descending order. The key consequence of
projectOntoBallBoxParallel is that the problem (B.1) always has a solution of the form

~x
(it)
l,a =

sign (aj) lj if j ∈ {1, 2, · · · , it}√
1−
∑it
k=0 l

2
k

1−
∑it
k=0 a

2
k

~aj otherwise
. (B.3)

46

where it be the first coordinate such that

1− t2
∑i

k=0 l
2
k

1−
∑i

k=0 a
2
k

≤ t2l2i
a2
i

.

Note that it ≥ is if t ≤ s. Therefore, we have that the set of t such that it = j is simply11

|aj |√
l2j

(
1−

∑j
k=0 a

2
k

)
+ a2

j

∑j
k=0 l

2
k

≤ t < |aj−1|√
l2j−1

(
1−

∑j−1
k=0 a

2
k

)
+ a2

j−1

∑j−1
k=0 l

2
k

. (B.4)

Define the function f by
f(t) = max∥∥~x∥∥

2
≤1,−tli≤xi≤tli

〈~a, ~x〉 .

We know that

f(t) =
〈
~a, ~x

(it)
tl,a

〉
= t

it∑
j=1

|aj | |lj |+

√√√√1− t2
it∑
k=0

l2k

√√√√1−
it∑
k=0

a2
k.

Therefore, we have

max∥∥~x∥∥
2
+
∥∥~l−1~x

∥∥
∞
≤1

〈~a, ~x〉 = max
0≤t≤1

max∥∥~x∥∥
2
≤1−t and −tli≤xi≤tli

〈~a, ~x〉

= max
0≤t≤1

(1− t) max∥∥~x∥∥
2
≤1 and − t

1−t li≤xi≤
t

1−t li

〈~a, ~x〉

= max
0≤t≤1

(1− t)f(
t

1− t
)

= max
0≤t≤1

t

it∑
j=1

|aj | |lj |+

√√√√(1− t)2 − t2
it∑
k=0

l2k

√√√√1−
it∑
k=0

a2
k.

Note that the function t
∑i

j=1 |aj | |lj | +
√

(1− t)2 − t2
∑i

k=0 l
2
k

√
1−

∑i
k=0 a

2
k is concave and the

solution has a close form. Therefore, one can compute the maximum value for each interval of t
(B.4) and find which is the best. Hence, we get the following algorithm.

~x = projectOntoMixedNormBallParallel(~a,~l)

1. Set ~a = ~a/
∥∥~a∥∥

2
.

2. Sort the coordinate such that |ai| /li is in descending order.
3. Precompute

∑i
k=0 l

2
k,
∑i

k=0 a
2
k and

∑i
j=1 |aj | |lj | for all i.

4. Let gi(t) = t
∑i

j=1 |aj | |lj |+
√

(1− t)2 − t2
∑i

k=0 l
2
k

√
1−

∑i
k=0 a

2
k.

5. For each j ∈ {1, · · · , n}, Find tj = arg maxit=j gj(t) using (B.4)
6. Find i = arg maxi gi(ti).

7. Output (1− ti)~x(i)
ti

1−ti
l,a

defined by (B.3).

11There are some boundary cases we ignored for simplicity.

47

The discussion above leads to the following theorem. The problem in the from (B.2) can be
solved by projectOntoMixedNormBallParallel and a change of variables.

Theorem 40. The algorithm projectOntoMixedNormBallParallel outputs a solution to

max∥∥~x∥∥
2
+
∥∥~l−1~x

∥∥
∞
≤1

〈~a, ~x〉

in total work Õ(m) and depth Õ(1).

48

	1 Introduction
	1.1 Previous Work
	1.2 Our Approach
	1.3 Our Contributions
	1.4 Paper Organization

	2 Notation
	3 Preliminaries
	3.1 The Problem
	3.2 Coordinate Barrier Functions

	4 Weighted Path Finding
	4.1 The Weighted Central Path
	4.2 Measuring Centrality.
	4.3 The Weight Function

	5 Progressing Along Weighted Paths
	5.1 Changing t
	5.2 Changing
	5.3 Changing
	5.4 Centering

	6 Weight Function
	6.1 Computing and Correcting Weight Function

	7 The Algorithm
	8 Linear System Solver Requirements
	8.1 The normal force A.
	8.2 An efficient step
	8.3 An efficient step
	8.4 The stable algorithm
	8.5 Well conditioned

	9 Generalized Minimum Cost Flow
	10 Acknowledgments
	A Glossary
	B Appendix
	B.1 Technical Lemmas
	B.2 Projection on Mixed Norm Ball

