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Abstract

In this paper we present a new algorithm for solving linear programs that requires only
Õ(
√

rank(A)L) iterations to solve a linear program with m constraints, n variables, and con-
straint matrix A, and bit complexity L. Each iteration of our method consists of solving Õ(1)
linear systems and additional nearly linear time computation.

Our method improves upon the previous best iteration bound by factor of Ω̃((m/ rank(A))1/4)
for methods with polynomial time computable iterations and by Ω̃((m/ rank(A))1/2) for meth-
ods which solve at most Õ(1) linear systems in each iteration. Our method is parallelizable and
amenable to linear algebraic techniques for accelerating the linear system solver. As such, up
to polylogarithmic factors we either match or improve upon the best previous running times for
solving linear programs in both depth and work for different ratios of m and rank(A).

Moreover, our method matches up to polylogarithmic factors a theoretical limit established
by Nesterov and Nemirovski in 1994 regarding the use of a “universal barrier” for interior point
methods, thereby resolving a long-standing open question regarding the running time of poly-
nomial time interior point methods for linear programming.

1 Introduction

Given a matrix, A ∈ Rm×n, and vectors, ~b ∈ Rm and ~c ∈ Rn, solving the linear program1

min
~x∈Rn : A~x≥~b

~cT~x (1.1)

is a core algorithmic task for both the theory and practice of computer science.
Since Karmarkar’s breakthrough result in 1984, proving that interior point methods can solve lin-

ear programs in polynomial time for a relatively small polynomial, interior point methods have been
an incredibly active area of research with over 1200 papers written just as of 1994 [29]. Currently,
the fastest asymptotic running times for solving (1.1) in many regimes are interior point methods.
Previously, state of the art interior point methods for solving (1.1) require either O(

√
mL) itera-

1This expression is the dual of a linear program written in standard form. It is well known that all linear programs
can be written as (1.1). Note that this notation of m and n differs from that in some papers. Here m denotes the
number of constraints and n denotes the number of variables. To avoid confusion we state many of our results in
terms of

√
rank(A) instead of

√
n .
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tions of solving linear systems [31] or O((m rank(A))1/4L) iterations of a more complicated but still
polynomial time operation [36, 39, 41, 1].2

However, in a breakthrough result of Nesterov and Nemirovski in 1994, they showed that
there exists a universal barrier function that if computable would allow (1.1) to be solved in
O(
√

rank(A)L) iterations [28]. Unfortunately, this barrier is more difficult to compute than the
solutions to (1.1) and despite this existential result, the O((m rank(A))1/4L) iteration bound for
polynomial time linear programming methods has not been improved in over 20 years.

In this paper we present a new interior point method that solves general linear programs in
Õ(
√

rank(A)L) iterations thereby matching the theoretical limit proved by Nesterov and Nemirovski
up to polylogarithmic factors.3 Furthermore, we show how to achieve this convergence rate while
only solving Õ(1) linear systems and performing additional Õ(nnz(A)) work in each iteration.4 Our
algorithm is parallelizable and we achieve the first Õ(

√
rank(A)L) depth polynomial work method

for solving linear programs. Furthermore, using one of the regression algorithms in [24, 17], our
linear programming algorithm has a running time of Õ((nnz(A) + (rank(A))ω)

√
rank(A)L) where

ω < 2.3729 is the matrix multiplication constant [42]. This is the first polynomial time algorithm
for linear programming to achieve a nearly linear dependence on nnz(A) for fixed n. Furthermore,
we show how to use acceleration techniques as in [37] to decrease the amortized per-iteration costs
of solving the requisite linear system and thereby achieve a linear programming algorithm with
running time faster than the previous fastest running time of O(m1.5nL) whenever m = Ω̃ (n). This
is the first provable improvement on both running time and the number of iterations for general
interior point methods in over 20 years.

We achieve our results through an extension of standard path following techniques for linear
programming [31, 7] that we call weighted path finding. We study what we call the weighted central
path, an idea of adding weights to the standard logarithmic barrier function [35, 5, 21] that was
recently used implicitly by Mądry to make an important breakthrough improvement on the running
time for solving unit-capacity instances of the maximum flow problem [19]. We provide a general
analysis of properties of the weighted central path, discuss tools for manipulating points along the
path, and ultimately produce an efficiently computable path that converges in Õ(

√
rank(A)L) steps.

We hope that these results may be of independent interest and serve as tools for further improving
the running time of interior point methods in general. While the analysis in this paper is quite
technical, our linear programming method is straightforward and we hope that these techniques
may prove useful in practice.

1.1 Previous Work

Linear programming is an extremely well studied problem with a long history. There are numerous
algorithmic frameworks for solving linear programming problems, e.g. simplex methods [4], ellipsoid
methods [10], and interior point methods [8]. Each method has a rich history and an impressive body
of work analyzing the practical and theoretical guarantees of the methods. We couldn’t possibly

2Here and in the rest of the paper L denotes the standard “bit complexity” of the linear program. The parameter
L is at most the number of bits needed to represent (1.1). For integral A, ~b, and ~c the quantity L is often defined
to be the potentially smaller quantity L = log(m) + log(1 + dmax) + log(1 + max{

∥∥~c∥∥∞, ∥∥~b∥∥∞}) where dmax is the
largest absolute value of the determinant of a square sub-matrix of A [8].

3Here and in the remainder of the paper we use Õ(·) to hide polylog(n,m) factors.
4We assume that A has no rows or columns that are all zero as these can be remedied by trivially removing

constraints or variables respectively or immediately solving the linear program. Therefore nnz(A) ≥ min{m,n}.
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cover the long line of beautiful work on this important problem in full, and we make no attempt.
Instead, here we present the major improvements on the number of iterations required to solve (1.1)
and discuss the asymptotic running times of these methods. For a more comprehensive history of
polynomial time algorithms for linear programming and interior point we refer the reader to one of
the many excellent references on the subject, e.g. [29, 43].

In 1984 Karmarkar [8] provided the first proof of an interior point method running in polyno-
mial time. This method required O(mL) iterations where the running time of each iteration was
dominated by the time needed to solve a linear system of the form

(
ATDA

)
~x = ~y for some positive

diagonal matrix D ∈ Rm×m and some ~y ∈ Rn. Using low rank matrix updates and preconditioning
Karmarkar achieved a running time of O(m3.5L) for solving (1.1) inspiring a long line of research
into interior point methods.5

Karmarkar’s result sparked interest in a particular type of interior point methods, known as path
following methods. These methods solve (1.1) by minimizing a penalized objective function ft(~x),

min
~x∈Rn

ft(~x) where ft(~x)
def
= t · ~cT~x+ φ(~x)

where φ : Rn → R is a barrier function such that φ(~x)→∞ as ~x tends to boundary of the polytope
and t is a parameter. Usually, the standard log barrier φ(~x)

def
= −

∑
i∈[m] log([A~x − ~b]i) is used.

Path following methods first approximately minimize ft for small t, then use this minimizer as an
initial point to minimize f(1+c)t for some constant c, and then repeat until the minimizer is close to
the optimal solution of (1.1).

Using this approach Renegar provided the first polynomial time interior point method which
solves (1.1) in O (

√
mL) iterations [31]. As with Karmarkar’s result the running time of each

iteration of this method was dominated by the time needed to solve a linear system of the form(
ATDA

)
~x = ~y. Using a combination of techniques involving low rank updates, preconditioning

and fast matrix multiplication, the amortized complexity of each iteration was improved [38, 7, 29].
The previously fastest running time achieved by such techniques was O(m1.5nL) [37].

In a seminal work of Nesterov and Nemirovski [29], they showed that path-following methods can
in principle be applied to minimize any linear cost function over any convex set by using a suitable
barrier function. Using this technique they showed how various problems such as semidefinite
programming, finding extremal ellipsoids, and more can all be solved in polynomial time via path
following. In this general setting, the number of iterations required depended on the square root of
a quantity associated with the barrier called self-concordance. They showed that for any convex set
in Rn, there exists a barrier function, called the universal barrier function, with self-concordance
O(n). Therefore, in theory any such convex optimization problems with n variables can be solved in
O (
√
nL) iterations. However, this result is generally considered to be only of theoretical interest as

the universal barrier function is defined as the volume of certain polytopes, a problem which in full
generality is NP-hard and its derivatives can only approximated by solving O(nc) linear programs
for some large constant c [18].

Providing a barrier that enjoys a fast convergence rate and is easy minimize approximately is
an important theoretical question with numerous implications. Renegar’s path-following method
effectively reduces solving a linear program to solving O(

√
mL) linear systems. Exploiting the

5Here and in the remainder of the paper when we provide asymptotic running times for linear programming
algorithms, for simplicity we hide additional dependencies on L that may arise from the need to carry out arithmetic
operations to precision L.
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structure of these systems yields the fastest known algorithms for combinatorial problems such as
minimum cost flow [3] and multicommodity flow [37]. Given recent breakthroughs in solving two
broad class of linear systems, symmetric diagonally dominant linear systems [33, 14, 9, 15] and
overdetermined system of linear equations [2, 24, 17] improving the convergence rate of barrier
methods while maintaining easy to compute iterations could have far reaching implications6

In 1989, Vaidya [41] made an important breakthrough in this direction. He proposed two barrier
functions related to the volume of certain ellipsoids which were shown to yield O((m rank(A))1/4 L)
and O(rank(A)L) iteration linear programming algorithms [39, 41, 36]. Unfortunately each iteration
of these methods required explicit computation of the projection matrix D1/2A(ATDA)−1ATD1/2

for a positive diagonal matrix D ∈ Rm×m. This was slightly improved by Anstreicher [1] who showed
it sufficed to compute the diagonal of this projection matrix. Unfortunately both these methods
do not yield faster running times than [37] unless m� n and neither are immediately amenable to
take full advantage of improvements in solving structured linear system solvers.

Year Author Number of Iterations Nature of iterations
1984 Karmarkar [8] O(mL) Linear system solve
1986 Renegar [31] O(

√
mL) Linear system solve

1989 Vaidya [40] O((m rank(A))1/4 L) Expensive linear algebra
1994 Nesterov and Nemirovskii [29] O(

√
rank(A)L) Volume computation

2013 This paper Õ(
√

rank(A)L) Õ(1) Linear system solves

These results seem to suggest that you can solve linear programs closer to the Õ(
√

rank(A)L)
bound achieved by the universal barrier only if you pay more in each iteration. In this paper we
show that this is not the case. Up to polylogarithmic factors we achieve the convergence rate of the
universal barrier function while only having iterations of cost comparable to that of Karmarkar’s
and Renegar’s algorithms.

1.2 Our Approach

In this paper our central goal is to produce an algorithm to solve (1.1) in Õ(
√

rank(A)L) iterations
where each iteration solves Õ(1) linear systems of the form

(
ATDA

)
~x = ~y. To achieve our goal ide-

ally we would produce a barrier function φ such that standard path following yields a Õ(
√

rank(A)L)
iteration algorithm with low iterations costs. Unfortunately, we are unaware of a barrier function
that both yields a fast convergence rate and has a gradient that can be computed with high accu-
racy using Õ(1) linear system solves. Instead, we consider manipulating a barrier that we can easily
compute the gradient of, the standard logarithmic barrier, φ(~x) = −

∑
i∈[m] log[A~x−~b]i.

Note that the behavior of the logarithmic barrier is highly dependent on the representation of
(1.1). Just duplicating a constraint, i.e. a row of A and the corresponding entry in ~b, corresponds
to doubling the contribution of some log barrier term − log[A~x − ~b]i to φ. It is not hard to see
that repeating a constraint many times can actually slow down the convergence of standard path
following methods. In other words, there is no intrinsic reason to weight all the − log[A~x − ~b]i
the same and the running time of path following methods do depend on the weighting of the

6Indeed, in Part II [16]we show how ideas in this paper can be used to yield the first general improvement to the
running time of solving the maximum flow problem on capacitated directed graphs since 1998 [6].
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− log[A~x−~b]i. Recently, Mut and Terklaky proved that by duplicating constraints on Klee-Minty
cubes carefully, the standard logarithmic barrier really requires O(

√
m log(1/ε)) iterations [23].

To alleviate this issue, we add weights to the log barrier that we change during the course of
the algorithm. We show that by carefully manipulating these weights we can achieve a convergence
rate that depends on the dimension of the polytope, rank(A), rather than the number of constrains
m. In Section 4, we study this weighted log barrier function given by

φ(~x) = −
∑
i∈[m]

gi(A~x−~b) · log([A~x−~b]i)

where ~g : Rm>0 → Rm>0 is a weight function of the current point and we investigate what properties
of ~g(~x) yield a faster convergence rate.

To illustrate the properties of the weighted logarithmic barrier, suppose for simplicity that we
normalize A and ~b so that A~x −~b = ~1 and let ~g def

= ~g(~1). Under these assumptions, we show that
the rate of convergence of path following depends on

∥∥~g∥∥
1
and

max
i∈[m]

~1Ti A
(
ATdiag (~g) A

)−1
AT~1i. (1.2)

To improve the convergence rate we would like to keep both these quantities small. For a general
matrix A, the quantity (1.2) is related to the leverage scores of the rows of A, a commonly used
measure for the importance of rows in a linear system [20].

For illustration purposes, if we assume that A is the incidence matrix of a certain graph and
put a resistor of resistance 1/gi on the edge i. Then, ~1Ti A

(
ATdiag (~g) A

)−1
AT~1i is the effective

resistance of the edge i [32]. Hence, we wish to to find g to minimize the maximum effective
resistance of the graph while keeping

∥∥~g∥∥
1
small. Thus, if it exists, an optimal ~g would simply make

all effective resistances the same.
This electric network inverse problem is well studied [34] and motivates us to considering the

following weight function

~g(~s)
def
= arg max

~w∈Rm
−~1T ~w +

1

α
log det

(
ATS−1WαS−1A

)
+ β

∑
i∈[m]

logwi. (1.3)

for carefully chosen constants α, β where S
def
= diag(~s(~x)) and W = diag(~w). The optimality

conditions of this optimization problem imply that the effective resistances are small, the total
weight is small, no weight is too small, and every term in the logarithmic barrier is sufficiently
penalized. This barrier is related to the volumetric barrier function used by Vaidya [40] and can be
viewed as searching for the best function in a family of volumetric barrier function. This formulation
with some careful analysis can be made to yield an Õ(

√
nL) iteration path-following algorithm by

solving the following minimax problem

min
~x∈Rn

max
~w∈Rm

t~cT~x− ~1T ~w +
1

α
log det

(
ATS−1WαS−1A

)
+ β

∑
i∈[m]

logwi (1.4)

where ~s(~x)
def
= A~x−~b, S

def
= diag(~s(~x)) and W = diag(~w).

Unfortunately, computing the derivative of the minimax formula still requires computing the
diagonal of the projection matrix as in Vaidya and Anstreicher’s work [37, 1] and is therefore too
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inefficient for our purposes. In Section 6 we show how to compute ~w approximately up to certain
multiplicative coordinate-wise error using dimension reduction techniques. However, this error is
still too much for path following to handle the directly as multiplicatively changing weights can hurt
our measures of centrality too much.

Therefore, rather than using the weighted log barrier

φ(~x) = −
∑
i∈[m]

gi(~x) log(s(~x)i)

where the weights ~g(~x) depends on the ~x directly, we maintain separate weights ~w and current point
~x and use the barrier

φ(~x, ~w) = −
∑
i∈[m]

wi log(s(~x)i).

We then maintain two invariants, (1) ~x is centered, i.e. ~x close to the minimum point of t · ~cT~x +
φ(~x, ~w) and (2) ~w close to ~g(~x) multiplicatively.

We separate the problem of maintaining these invariants into two steps. First, we design a step
for changing ~x and ~w simultaneously that improves centrality without moving ~w too far away from
~g(~x). We do this by decomposing a standard Newton step into a change in ~x and a change in ~w
with a ratio chosen using properties of the particular weight function. Second, we show that given
a multiplicative approximation to ~g(~x) and bounds for how much ~g(~x) may have changed, we can
maintain the invariant that ~g(~x) is close to ~w multiplicatively without moving ~w too much. We
formulate this as a general two player game and prove that there is an efficient strategy to maintain
our desired invariants. Combining these and standard techniques in path-following methods, we
obtain an Õ(

√
rank(A)L) iterations path-following algorithm where each iterations consists of Õ(1)

linear system solves.
We remark that a key component of our result is a better understanding of the effects of weighting

the logarithmic barrier and note that recently Mądry [19] has shown another way of using weighted
barrier functions to achieve a Õ(m10/7) time path-following method for the maximum flow problem
on unweighted graphs. We hope this provides further evidence of the utility of the weighted central
path discussed in later sections.

1.3 Geometric Interpretation of the Barrier

While to the best of our knowledge the specific weighted barrier, (1.3), presented in the previous
section is new, the minimax problem, (1.4), induced by the weight function is closely related to
fundamental problems in convex geometry. In particular, if we set α = 1, t = 0, and consider the
limit as β → 0 in (1.4) then we obtain the following minimax problem

min
~x∈Rn

max
~w≥0
−~1T ~w + log det

(
ATS−1WS−1A

)
. (1.5)

The maximization problem inside (1.5) is often referred to as D-optimal design and is directly
related to computing the John Ellipsoid of the polytope {~y ∈ Rn : |[A (~y − ~x)]i| ≤ s(~x)i} [11]. In
particular, (1.5) is directly computing the John Ellipsoid of the polytope

{
~x ∈ Rn : A~x ≥ ~b

}
and

hence, one can view our linear programming algorithm as using approximate John Ellipsoids to
improve the convergence rate of interior point methods.

6



Our algorithm is not the first instance of using John Ellipsoids in convex optimization or linear
programming. In a seminal work of Tarasov, Khachiyan and Erlikh in 1988 [12], they showed that
a general convex problem can be solved in O(n) steps of computing John Ellipsoid and querying a
separating hyperplane oracle. Furthermore, in 2008 Nesterov [26] also demonstrated how to use a
John ellipsoid to compute approximate solutions for certain classes of linear programs in O(

√
n/ε)

iterations and Õ(n2m+ n1.5m/ε) time.
From this geometric perspective, there are two major contributions of this paper. First, we

show that the logarithmic volume of an approximate John Ellipsoid is an almost optimal barrier
function for linear programming and second, that computing approximate John Ellipsoids can be
streamlined such that the cost of these operations is comparable to pert-iteration cost of using the
standard logarithmic barrier function.

1.4 Overview

The rest of the paper is structured as follows. In Section 2 we provide details regarding the mathe-
matical notation we use throughout the paper. In Section 3 we provide some preliminary information
on linear programming and interior point methods. In Section 4 we formally introduce the weighted
path and analyze this path assuming access to weight function. In Section 5 we present our weight
function. In Section 6 we showed approximate weights suffices and in Section 7 we put everything
together to present a Õ(

√
rank(A)L) iteration algorithm for linear programming where in each

iteration we solve Õ(1) linear systems. Finally, in the Appendix we provide some additional mathe-
matical tools we use throughout the paper. Note that throughout this paper we make little attempt
to reduce polylogarithmic factors in our running time.

2 Notation

Here we introduce various notation that we will use throughout the paper. This section should
be used primarily for reference as we reintroduce notation as needed later in the paper. (For a
summary of linear programming specific notation we use, see Appendix A.)

Variables: We use the vector symbol, e.g. ~x, to denote a vector and we omit the symbol when
we denote the vectors entries, e.g. ~x = (x1, x2, . . .). We use bold, e.g. A, to denote a matrix. For
integers z ∈ Z we use [z] ⊆ Z to denote the set of integers from 1 to z. We let ~1i denote the vector
that has value 1 in coordinate i and is 0 elsewhere.

Vector Operations: We frequently apply scalar operations to vectors with the interpretation
that these operations should be applied coordinate-wise. For example, for vectors ~x, ~y ∈ Rn we let
~x/~y ∈ Rn with [~x/~y]i

def
= (xi/yi) and log(~x) ∈ Rn with [log(~x)]i = log(xi) for all i ∈ [n] .

Matrix Operations: We call a symmetric matrix A ∈ Rn×n positive semidefinite (PSD) if
~xTA~x ≥ 0 for all ~x ∈ Rn and we call A positive definite (PD) if ~xTA~x > 0 for all ~x ∈ Rn. For
a positive definite matrix A ∈ Rn×n we denote let ‖ · ‖A : Rn → R denote the norm such that for
all ~x ∈ Rn we have ‖~x‖A

def
=
√
~xTA~x. For symmetric matrices A,B ∈ Rn×n we write A � B to

indicate that B −A is PSD (i.e. ~xTA~x ≤ ~xTB~x for all ~x ∈ Rn) and we write A ≺ B to indicate
that B −A is PD (i.e. that ~xTA~x < ~xTB~x for all ~x ∈ Rn). We define � and � analogously. For
A,B ∈ Rn×m, we let A ◦B denote the Schur product, i.e. [A ◦B]ij

def
= Aij ·Bij for all i ∈ [n] and

j ∈ [m], and we let A(2) def
= A ◦A. We use nnz(A) to denote the number of nonzero entries in A.

7



Diagonal Matrices: For A ∈ Rn×n we let diag(A) ∈ Rn denote the vector such that diag(A)i =
Aii for all i ∈ [n]. For ~x ∈ Rn we let diag(~x) ∈ Rn×n be the diagonal matrix such that
diag(diag(~x)) = ~x. For A ∈ Rn×n we let diag(A) be the diagonal matrix such that diag(diag(A)) =
diag(A). For a vector ~x ∈ Rn when the meaning is clear from context we use X ∈ Rn×n to denote
X

def
= diag(~x).

Multiplicative Approximations: Frequently in this paper we need to convey that two vectors
~x and ~y are close multiplicatively. We often write

∥∥X−1(~y − ~x)
∥∥
∞ ≤ ε to convey the equivalent

facts that yi ∈ [(1 − ε)xi, (1 + ε)xi] for all i or (1 − ε)X � Y � (1 + ε)X. At times we find it
more convenient to write

∥∥ log ~x − log ~y
∥∥
∞ ≤ ε which is approximately equivalent for small ε. In

Lemma 33, we bound the quality of this approximation.

Matrices: We use Rm>0 to denote the vectors in Rm where each coordinate is positive and for a
matrix A ∈ Rm×n and vector ~x ∈ Rm>0 we define the following matrices and vectors

• Projection matrix PA(~x) ∈ Rm×m: PA(~x)
def
= X1/2A(ATXA)−1ATX1/2.

• Leverage scores ~σA(~x) ∈ Rm: ~σA(~x)
def
= diag(PA(~x)).

• Leverage matrix ΣA(~x) ∈ Rm×m: ΣA(~x)
def
= diag(PA(~x)).

• Projection Laplacian ΛA(~x) ∈ Rm×m: ΛA(~x)
def
= ΣA(~x)−PA(~x)(2).

The definitions of projection matrix and leverage scores are standard when the rows of A are
reweighed by the values in vector ~x.

Convex Sets: We call a set U ⊆ Rk convex if for all ~x, ~y ∈ Rk and all t ∈ [0, 1] it holds that
t · ~x + (1 − t) · ~y ∈ U . We call U symmetric if ~x ∈ Rk ⇔ −~x ∈ Rk. For any α > 0 and convex set
U ⊆ Rk we let αU def

= {~x ∈ Rk|α−1~x ∈ U}. For any p ∈ [1,∞] and r ∈ R≥0 the `p ball of radius r is
given by {~x ∈ Rk|

∥∥~x∥∥
p
≤ r}.

Calculus: For a function f : Rn → R differentiable at x ∈ Rn, we denote the gradient of f at ~x by
∇f(~x) ∈ Rn where we have [∇f(~x)]i = ∂

∂xi
f(~x) for all i ∈ [n]. If f ∈ Rn → R is twice differentiable

at x ∈ Rn, we denote the Hessian of f at x by∇2f(~x) where we have [∇f(~x)]ij = ∂2

∂xi∂xj
f(~x) for all

i, j ∈ [n]. Often we will consider functions of two vectors, g : Rn1×n2 → R, and wish to compute the
gradient and Hessian of g restricted to one of the two vectors. For ~x ∈ Rn and ~y ∈ Rm then we let
∇~x~g(~a,~b) ∈ Rn1 denote the gradient of ~g for fixed ~y at point {~a,~b} ∈ Rn1×n2 . We define ∇~y, ∇2

~x~x,
and ∇2

~y~y similarly. Furthermore for h : Rn → Rm differentiable at ~x ∈ Rn we let J(~h(~x)) ∈ Rm×n

denote the Jacobian of ~h at ~x where for all i ∈ [m] and j ∈ [n] we let [J(~h(~x))]ij
def
= ∂

∂xj
h(~x)i. For

functions of multiple vectors we use subscripts, e.g. J~x, to denote the Jacobian of the function
restricted to the ~x variable.

3 Preliminaries

Here we provide a brief introduction to path following methods for linear programming. The purpose
of this section is to formally introduce interior point terminology and methodology that we build
upon to obtain Õ(

√
rank(A)L) iteration solver. The algorithm and the analysis discussed in this

section can be viewed as a special case of the framework presented in Section 4. The reader well
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versed in path following methods can likely skip this section and to the more curious reader we
encourage them to consider some of the many wonderful expositions on this subject [28, 43, 7] for
further reading.

3.1 The Setup

Given a matrix, A ∈ Rm×n, and vectors, ~b ∈ Rm and ~c ∈ Rn, the central goal of this paper is to
efficiently compute a solution to the following linear program

min
~x∈Rn : A~x≥~b

~cT~x (3.1)

It is well known that this is the dual of the standard form of a linear program and hence all linear
programs can be expressed by (3.1). We call a vector ~x ∈ Rm feasible if A~x ≥ ~b, we call ~cT~x the
cost of such a vector. therefore our goal is to either compute a minimum cost feasible vector or
determine that none exists.

We assume that A is full rank, i.e. rank(A) = n, and that m ≥ n. Nevertheless, we still write
many of our results using rank(A) rather than n for two reasons. First, this notation makes clear
that rank(A) is referring to the smaller of the two quantities m and n. Second, if rank(A) < n,
then we can reduce the number of variables to rank(A) by a change of basis.7 Hence, we only need
to solve linear programs in the full rank version.

3.2 Path Following Interior Point

Interior point methods solve (3.1) by maintaining a point ~x that is in the interior of the feasible
region, i.e. ~x ∈ S0 where

S0 def
= {~x ∈ Rn : A~x >~b}.

These methods attempt to iteratively decrease the cost of ~x while maintaining strict feasibility. This
is often done by considering some measurement of the distance to feasibility such as ~s(~x)

def
= A~x−~b,

called the slacks, and creating some penalty for these distances approaching 0. Since ~s(~x) > 0 if
and only if ~x ∈ S0 by carefully balancing penalties for small ~s(~x) and penalties for large ~cT~x these
methods eventually compute a point close enough to the optimum solution that it can be computed
exactly.

Path following methods fix ratios between the the penalty for large ~cT~x and the penalty for
small ~s(~x) and alternate between steps of optimizing with respect to this ratio and changing the
ratio. These methods typically encode the penalties through a barrier function φ : Rm>0 → R such
that φ(~s(~x))→∞ as s(~x)i → 0 for any i ∈ [m] and they encode the ratio through some parameter
t > 0. Formally, they attempt to solve optimization problems of the following form for increasing
values of t

min
~x∈Rm

ft(~x) where ft(~x)
def
= t · ~cT~x+ φ(~s(~x)) (3.2)

Since φ(~s(~x)) → ∞ as s(~x)i → 0 the minimizer of ft(~x), denoted ~x∗(t), is in S0 for all t. As t
increases the effect of the cost vector on ~x∗(t) increases and the distance from the boundary of the
feasible region as measured by ~s(~x) decreases. One can think of the points {~x∗(t) | t > 0} as a path

7In general, computing this change of basis may be computationally expensive. However, this cost can be di-
minished by using a subspace embedding [24] to replace ~x with Π~y for subspace embedding Π and Õ(rank(A))

dimensional ~y. Then using the reduction in Appendix E we only need to work with an Õ(rank(A)) rank matrix.
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in Rn, called the central path, where ~x∗(t) approaches a solution to (3.1) as t → ∞. A standard
choice of barrier is the standard log barrier, φ(~s(~x))

def
= −

∑
{i} log(s(~x)i) and for this choice of barrier

we refer to {~x∗(t) | t > 0} as the standard central path.
Path following methods typically follow the following framework:

(1) Compute Initial Point: Compute an approximation ~x∗(t) for some t.

(2) Follow the central path: Repeatedly increase t and compute an approximation to ~x∗(t).

(3) Round to optimal solution: Use the approximation to ~x∗(t) to compute the solution to (3.1).

Steps (1) and (3) are typically carried out by standard interior point techniques. These techniques
are fairly general and covered briefly in Section 7 and Appendix E. However, the manner in which (2)
is performed varies greatly from method to method. In the following subsection we provide a simple
technique for performing (2) that yields reasonable running times and serves as the foundation for
the algorithms considered in the remainder of the paper.

3.3 Following the Path

There are numerous techniques to follow the central path, i.e. approximately compute ~x∗(t) for
increasing values of t. Even with the barrier fixed there are numerous schemes to balance maintaining
a point close to a central path point, advancing to a further central path point, and performing the
numerical linear algebra needed for these operations [37, 7, 22, 29].

In this section we present a simple and common method whereby we simply alternate between
improving our distance to ~x∗(t) for some fixed t, and increasing t by some fixed multiplicative factor.
This method reduces the analysis of path following to bounding the computational complexity of
centering, i.e. improve the distance to ~x∗(t), and bounding how much increasing t hurts centrality,
i.e. increases the distance to ~x∗(t). In the remainder of this section we show how to perform this
analysis for the standard central path, φ(~x)

def
= −

∑
i∈[m] log(s(~x)i).

Typically path following methods center, i.e. minimize ft(~x), using Newton’s method or some
variant thereof. While for an arbitrary current point ~x ∈ S0 and t > 0 the function ft(~x) can be ill-
behaved, in a region near ~x∗(t) the Hessian of ft(~x) given by∇2ft(~x) = ATS−2A for S

def
= diag(~s(~x))

changes fairly slowly. More precisely, if one considers the second order approximation of ft(~z) around
some point ~x ∈ S0 “close enough” to ~x∗(t) ,

ft(~z) ≈ ft(~x) + 〈∇ft(~x), ~z − ~x〉+
1

2
(~z − ~x)T (∇2ft(~x)) (~z − ~x) ,

and applies one step of Newton’s method, i.e. minimizes this quadratic approximation to compute

~x(new) := ~x− (∇2ft(~x))−1∇ft(~x)

= ~x− (ATS−2A)−1(t~c−AT~s)

for ~s def
= ~s(~x) then this procedure rapidly converges to ~x∗(t).

To quantify this, we measure centrality, i.e. how close the current point ~x ∈ S0 is to ~x∗(t), by
the size of this Newton step in the Hessian induced norm. For ~x ∈ S0 and Newton step ~ht(~x)

def
=

(∇2ft(~x))−1∇ft(~x) we denote centrality by δt(~x)
def
=
∥∥~ht(~x)

∥∥
∇2ft(~x)

. Standard analysis of Newton’s
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method shows that if δt(~x) is less than some constant then for ~x(new) := ~x−~h(~x) we have δt(~x(new)) =
O(δt(~x)2) (See Lemma 5). Furthermore, under these conditions it is not hard to show that for
t′ = t(1 + (m)−1/2) we have δt′(~x(new)) ≤ O (δt(~x)) (See Lemma 1).

Combining these facts yields that in O(
√
m) iterations we can double t while maintaining a

nearly centered ~x, i.e. δt(~x) at most a constant. With some additional work discussed briefly in
Section 7 it can be shown that by maintaining a nearly centered ~x and changing t by a constant
factor at most Õ(L) times one can compute a solution to (3.1). Therefore, this method solves (3.1)
in O(

√
mL) iterations where the cost of each iteration is O(nnz(A)) plus the time need to solve a

linear system in the matrix ATS−2A.

4 Weighted Path Finding

In this section we introduce the optimization framework we use to solve the linear programs, the
weighted central path. After formally defining the path (Section 4.1), we prove properties of the path
(Section 4.2) and show how to center along the path (Section 4.3). We show that the performance
of path following methods using a weighted central path depends crucially on how the weights are
computed and in Section 4.4 we characterize the properties we require of such a weight function
in order to ensure that our weighted path following scheme converges efficiently. In Section 4.2 we
analyze the convergence rate of our weighted path following scheme assuming the ability to compute
these weights exactly. In the following section we then show how it suffices to compute the weights
approximately (Section 6), we show how to compute these weights efficiently (Section 5), and we
show how this yields an efficient linear program solver (Section 7).

4.1 The Weighted Path

Our weighted path following method is a generalization of the path following scheme presented in
Section 3.2. Rather than keeping the barrier function φ(~x) = −

∑
i∈[m] log s(~x)i fixed we allow for

greater flexibility in how we penalize slack variables and adaptively modify the barrier function in
order to take larger steps. In addition to maintaining a feasible point ~x and a path parameter t we
maintain a set of positive weights ~w ∈ Rm>0 and attempt to minimize the penalized objective function
ft : S0 × Rm>0 → R given for all ~x ∈ S0 and ~w ∈ Rm>0 by

ft(~x, ~w)
def
= t · ~cT~x−

∑
i∈[m]

wi log s(~x)i. (4.1)

We maintain a feasible point {~x, ~w} ∈ {S0×Rm>0} and our goal is to compute a sequence of feasible
points for increasing t and changing ~w such that ft(~x, ~w) is nearly minimized with respect to ~x.

Note that trivially any ~x ∈ S0 can be expressed as arg min~y∈Rn ft(~y, ~w) for some ~w ∈ Rm>0 and
therefore, every ~x ∈ S0 is a weighted central path point for some choice of weights. However, in
order to to convert a weighted central path point {~x, ~w} ∈ {S0 × Rm>0} to a solution for (1.1) we
will need to have t large and

∥∥~w∥∥
1
small which precludes this trivial choice of t and ~w.

In the remainder of the paper, we show that by careful updating ~x, ~w, and t we can stay close to
the weighted central path while making large increases in t and maintaining

∥∥~w∥∥
1
small. Ultimately,

this will allow us to solve linear programs in Õ(
√

rank(A)L) iterations while only solving Õ(1) linear
systems in each iteration.
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4.2 Properties of the Weighted Path

As in Section 3.3 for a feasible {~x, ~w} ∈ {S0 × Rm>0} we measure the centrality of this point by the
size of the Newton step on ~x in the Hessian norm, denoted by δt(~x, ~w) and we call {~x, ~w} a central
path point if δt(~x, ~w) = 0. For the penalized objective function ft, we see that the Newton step,
~ht(~x, ~w), is given by

~ht(~x, ~w) = (∇2
~x~xft(~x, ~w))−1∇~xft(~x, ~w)

= (ATS−1WS−1A)−1(t~c−ATS−1 ~w) (4.2)

and the centrality, δt(~x, ~w), is given by for all {~x, ~w} ∈ {S0 × Rm>0} by

δt(~x, ~w)
def
=
∥∥~ht(~x, ~w)

∥∥
∇2
~x~x
ft(~x,~w)

=
∥∥t~c−ATS−1 ~w

∥∥
(ATS−1WS−1A)−1 (4.3)

Whereas in the standard central path we saw that the centrality increased at a rate of
√
m as

t increased, here we show that in this more general case, the m is replaced by the total weight∥∥~w∥∥
1

=
∑

i∈[m]wi.

Lemma 1 (Weighted Path Step). For all {~x, ~w} ∈ {S0 × Rm>0} and t, α ≥ 0, we have

δ(1+α)t(~x, ~w) ≤ (1 + α)δt(~x, ~w) + α
√∥∥~w∥∥

1

Proof. Let ~s def
= ~s(~x). By (4.3) we have

δ(1+α)t(~x, ~w) =
∥∥(1 + α)t~c−ATS−1 ~w

∥∥
(ATS−1WS−1A)−1 .

Now,
∥∥ · ∥∥

(ATS−1WS−1A)−1 is a norm and therefore by the triangle inequality and the definition of
δt(~x, ~w) yields

δ(1+α)t(~x, ~w) ≤ (1 + α)δt(~x, ~w) + α
∥∥ATS−1 ~w

∥∥
(ATS−1WS−1A)−1 . (4.4)

Recall that PS−1A (~w) = W1/2S−1A(ATS−1WS−1A)−1ATS−1W1/2 is a projection matrix. Con-
sequently PS−1A (~w) � I and we have

∥∥ATS−1 ~w
∥∥

(ATS−1WS−1A)−1 =
∥∥W−1/2 ~w

∥∥
PS−1A(~w)

≤
∥∥W−1/2 ~w

∥∥
2

=

√∑
i∈[m]

wi. (4.5)

Combining (4.4) and (4.5) yields the result.

Now to see how well a Newton step on ~x can center, i.e. decrease δt(~x, ~w), we need to bound how
fast the second order approximation of ft(~x, ~w) can change, i.e. how much the Hessian, ∇2

~x~xft(~x, ~w),
changes as we change ~x. We do this by bounding how much the slacks can change as we change ~x.
As ∇2

~x~xft(~x, ~w) = ATS−1WS−1A this immediately bounds how much the Hessian can change as
we change ~x. The following lemma is motivated by similar results in [40, 1].
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Lemma 2 (Relative Change of Slacks). Let ~x(new) = ~x + ~∆ for some ~x ∈ S0 and ~∆ ∈ Rn. Let
~s(new) and ~s denote the slacks associated with ~x(new) and ~x respectively. If

∥∥S−1A~∆
∥∥
∞ < 1 then

~x(new) ∈ S0 and ∥∥S−1A~∆
∥∥
∞ ≤

∥∥~∆∥∥
ATS−1WS−1A

·max
i∈[m]

∥∥W−1/2~1i
∥∥

PS−1A(~w)
. (4.6)

In particular, choosing ~∆ = −~ht(~x, ~w) yields∥∥S−1A~∆
∥∥
∞ ≤ δt(~s, ~w) ·max

i∈[m]

∥∥W−1/2~1i
∥∥

PS−1A(~w)
.

Proof. Clearly ~s(new) = ~s + A~∆ and therefore the multiplicative change in slacks is given by∥∥S−1(~s(new) − ~s)
∥∥
∞ =

∥∥S−1A~∆
∥∥
∞. Consequently ~x(new) ∈ S0 if and only if

∥∥S−1A~∆
∥∥
∞ < 1.

To prove (4.6) we note that by definition of
∥∥ · ∥∥∞∥∥S−1A~∆

∥∥
∞ = max

i∈[m]

∣∣∣〈S−1A~∆, ~1i
〉∣∣∣
i
.

Using that A is full rank and therefore ATS−1WS−1A � 0 then yields∥∥S−1A~∆
∥∥
∞ = max

i∈[m[

∣∣∣〈(ATS−1WS−1A
)1/2 ~∆, (ATS−1WS−1A

)−1/2
ATS−1~1i

〉∣∣∣ .
Applying Cauchy Schwarz we have∥∥S−1A~∆

∥∥
∞ ≤

∥∥~∆∥∥
ATS−1WS−1A

·max
i∈[m[

∥∥ATS−1~1i
∥∥

(ATS−1WS−1A)−1 .

Recalling the definition PS−1A (~w) = W1/2S−1A
(
AS−1WS−1A

)−1
ATS−1W1/2 yields the result.

Lemma 2 implies that as
∥∥W−1/2~1i

∥∥
PS−1A(~w)

decreases, the region over which Newton steps do

not change the Hessian too much increases. We call this quantity,
∥∥W−1/2~1i

∥∥
PS−1A(~w)

, the slack
sensitivity as it measures how much slack changes during a Newton step.

Definition 3 (Slack Sensitivity). For ~s, ~w ∈ Rm>0 the slack sensitivity8, γ(~s, ~w) is given by

γ(~s, ~w)
def
= max

i∈[m]

∥∥W−1/2~1i
∥∥

PS−1A(~w)
.

Geometrically, slack sensitivity indicates how much a relative slack can change during a Newton
step, equivalently, how small is the Newton step region compared to the original polytope. From
Lemmas 1 and 2 our goal in using the weighted central path is clear. We wish to keep

∥∥~w∥∥
1
small so

that we can make large increases to t without increasing centrality and we wish to keep γ(~s(~x), ~w)
small so that over a large region we can improve centrality quickly. Unfortunately, while it is not
too difficult to produce weights that meet these criterion, changing the weights can also increase
δt. Therefore, we also need to choose weights in such a way that they do not change too drastically
as we take Newton steps. In the next subsection we introduce the step that we use to improve
centrality and account for possible changes in the weights.

8In the previous version in ArXiv, we called it weighted condition number which is confusing. We are indebted to
an anonymous reviewer for suggesting this name.
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4.3 Centering Steps

Here we define the centering step we use to decrease δt(~x, ~w). There are two ways to decrease δt,
one is to perform a Newton step on ~x which corresponds to move ~x closer to the central path., one is
to set ~w such that δt(~x, ~w) = 0 which corresponds to move the path itself to closer to ~x. By mixing
two steps, we can slow down progress along a specific weighted path as much as we want but still
obtaining the guarantee of Newton method. We call this r-step where r controls the ratio of how
much we change ~w and ~x. Setting r = 0 corresponds to a standard Newton step on ~x where the
weights are not updated. Setting r =∞ coresponds to changing ~w to make ~x completely centered.
There are two reasons we do thisinstead of a standard Newton step:

1. When we change ~x, we need to change the weights ~w accordingly to maintain the the properties
we want. However, when we change the weights ~w, we need to update ~x again, and so on. For
the weight function we consider in Section 5 the change of ~w required is large. Consequently,
after updating the weights we need to move ~x even more and it is not clear how to maintain
good weights and good centrality at the same time if we neglect the direction in which the
weights change. However, the weights we use actual change in a direction which partial helps
improve centrality. Considering a r-step helps us account for this progress directly.

2. We cannot compute the weights we want to use exactly. Instead we only know how to compute
them approximately up to 1/polylog(m) multiplicative error using Johnson–Lindenstrauss. .
Therefore, if we take a full Newton step on ~x and update the weights using the weight function,
the error in our approximation is possibly so large that the step in full would not help centrality.
To control this error and center when we cannot compute the weights exactly, we exploit that
the r-step gives us part of the change in the weights that we can compute precisely.

Definition 4 (r-step). Given a feasible point {~x(old), ~w(old)} ∈ {S0×Rm>0}, a path parameter t, and
a r-step

{~x(new), ~w(new)} = stept(~x
(old), ~w(old), r)

is defined as follows

~x(new) def
= ~x(old) − 1

1 + r
~ht(~x

(old), ~w(old)),

~w(new) def
= ~w(old) +

r

1 + r
W(old)S

−1
(old)A

~ht(~x
(old), ~w(old))

where we recall that

~ht(~x
(old), ~w(old))

def
= (ATS−1

(old)W(old)S
−1
(old)A)−1(t~c−ATS−1

(old) ~w
(old))

and we let ~s(old) and ~s(new) denote the slacks with ~x(old) and ~x(new) respectively.

Note that for a r-step we have

~s(new) = ~s(old) − 1

1 + r
A~h(~x(old), ~w(old)) (4.7)

and therefore
W−1

(old)(~w
(new) − ~w(old)) = −rS−1

(old)(~s
(new) − ~s(old)). (4.8)

14



In other words, a r-step performs a multiplicative update on the weights that is exactly r times
larger than the update on the slacks.

Using Lemma 2 we now show that so long as δt(~x(old), ~w(old)) is reasonably small with respect
to the slack sensitivity, any r-step produces a feasible {~x(new), ~w(new)} and does not change the
Hessian too much.

Lemma 5 (Stability of r-step). Let {~x(new), ~w(new)} = stept(~s
(old), ~w(old), r) where

γ
def
= γ(~x(old), ~w(old)) and δt

def
= δt(~x

(old), ~w(old)) ≤ 1

8γ
.

Under these conditions we have∥∥S−1
(old)(~s

(new) − ~s(old))
∥∥

W(old)
≤ 1

1 + r
· δt, (4.9)∥∥S−1

(old)(~s
(new) − ~s(old))

∥∥
∞ ≤

1

1 + r
· δt · γ, (4.10)∥∥W−1

(old)(~w
(new) − ~w(old))

∥∥
∞ ≤

r

1 + r
· δt · γ. (4.11)

Consequently {~x(new), ~w(new)} is feasible and

(1− 3δtγ)∇2
~x~xft(~x

(old), ~w(old)) � ∇2
~x~xft(~x

(new), ~w(new)) � (1 + 3δtγ)∇2
~x~xft(~x

(old), ~w(old)) (4.12)

Proof. Equation (4.9) follows from the definition of δt and (4.7). Equations (4.10) and (4.11) follow
from Lemma 2, the definition of γ, (4.7), and (4.8). Since δt ≤ 1

8γ this implies that slack or weight
changes by more than a multiplicative factor of 1

8 and therefore clearly {~s(new), ~w(new)} ∈ {S0×Rm>0}.
To prove (4.12) note that (4.10) and (4.11) imply that(

1− r
1+rδtγ

)
W(old) �W(new) �

(
1 + r

1+rδtγ
)

W(old),(
1− 1

1+rδtγ
)

S(old) � S(new) �
(

1 + 1
1+rδtγ

)
S(old).

Since ∇2
~x~xft(~x, ~w) = ATS−1WS−1A for ~x, ~w ∈ {S0 × Rm>0} we have that(

1− r
1+rδtγ

)
(

1 + 1
1+rδtγ

)2∇
2
~x~xft(~x

(old), ~w(old)) � ∇2
~x~xft(~x

(new), ~w(new)) �

(
1 + r

1+rδtγ
)

(
1− 1

1+rδtγ
)2∇

2
~x~xft(~x

(old), ~w(old)).

Using that 0 ≤ δtγ ≤ 1
8 and computing the Taylor series expansions9 yields that(

1 + r
1+rδtγ

)
(

1− 1
1+rδtγ

)2 ≤ 1 + 3δtγ and

(
1− r

1+rδtγ
)

(
1 + 1

1+rδtγ
)2 ≥ 1− 3δtγ.

9Throughout this paper, when we use taylor series expansions we may use more than just the second order
approximation to the function.
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Using Lemma 5 we now bound how much a r-step improves centrality.

Lemma 6 (Centrality Improvement of r-step). Let {~x(new), ~w(new)} = stept(~x
(old), ~w(old), r) where

γ
def
= γ(~x(old), ~w(old)) and δt

def
= δt(~x

(old), ~w(old)) ≤ 1

8γ
.

We have the following bound on the change in centrality

δt(~x
(new), ~w(new)) ≤ 2

1 + r
· γ · δ2

t .

Proof. Let ~ht
def
= ~ht(~x

(old), ~w(old)) and let ~∆ def
= S−1

(old)(~s
(new) − ~s(old)) = −1

1+rS
−1
(old)A

~ht. Recalling the
definition of stept, we see that

~w
(new)
i

~s
(new)
i

=
~w

(old)
i − r ~w(old)

i
~∆i

~s
(old)
i + ~s

(old)
i

~∆i

=

(
~w

(old)
i

~s
(old)
i

)
·

(
1− r~∆i

1 + ~∆i

)

=

(
~w

(old)
i

~s
(old)
i

)(
1− (1 + r)~∆i

1 + ~∆i

)
(4.13)

Using the definition of ~ht we have

∇xft(~x(old), ~w(old)) = t~c−ATS−1
(old) ~w

(old) =
(
ATS−1

(old)W(old)S
−1
(old)A

)
~ht

= −(1 + r)ATS−1
(old)W(old)

~∆

and therefore
t~c = ATS−1

(old)W(old)

(
~1− (1 + r)~∆

)
. (4.14)

Combining (4.13) and (4.14) and using the definition of ~∆ then yields

∇xft(~x(new), ~w(new)) = t~c−ATS−1
(new) ~w

(new)

= ATS−1
(old)W(old)

(
~1− (1 + r)~∆− ~1 +

(1 + r)~∆

~1 + ~∆

)

= −(1 + r)ATS−1
(old)W(old)

~∆2

~1 + ~∆

= ATS−1
(old)W(old)S

−1
(old)diag(~∆)(I + diag(~∆))−1A~ht (4.15)

Now by Lemma 5 we know that

ATS−1
(new)W(new)S

−1
(new)A � (1− 3δtγ)ATS−1

(old)W(old)S
−1
(old)A.

Therefore by (4.15) and the fact that

PS−1
(old)

A

(
~w(old)

)
= W

1/2
(old)S

−1
(old)A

(
ATS−1

(old)WS−1
(old)A

)−1
ATS−1

(old)W
1/2
(old) � I,
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we have

δt(~x
(new), ~w(new)) =

∥∥∇xft(~x(new), ~w(new))
∥∥(

ATS−1
(new)

W(new)S
−1
(new)

A
)−1

≤ (1− 3δtγ)−1/2
∥∥diag(~∆)(I + diag(~∆))−1W

1/2
(old)S

−1
(old)A

~h
∥∥

P
S−1
(old)

A
(~w(old))

≤ (1− 3δtγ)−1/2
∥∥diag(~∆)(I + diag(~∆))−1W

1/2
(old)S

−1
(old)A

~h
∥∥

2

≤ (1− 3δtγ)−1/2

∥∥~∆∥∥∞
1−

∥∥~∆∥∥∞
∥∥W1/2

(old)S
−1
(old)A

~h
∥∥

2

= (1− 3δtγ)−1/2 ·

( ∥∥~∆∥∥∞
1−

∥∥~∆∥∥∞ δt
)
≤ 2

1 + r
γδ2

t

where in the last step we use that by Lemma 5,
∥∥~∆∥∥∞ ≤ 1

1+rδtγ and that δ ≤ 1
8γ by assumption.

4.4 Weight Functions

In Sections 4.1, 4.2, and 4.3 we saw that to make our weighted path following schemes to converge
quickly we need to maintain weights such that

∥∥~w∥∥
1
, γ(~s, ~w), and δt(~x, ~w) are small. Rather

than showing how to do this directly, here we assume we have access to some fixed differentiable
function for computing the weights and we characterize when such a weight function yields an
efficient weighted path following scheme. This allows us to decouple the problems of using weights
effectively and computing these weights efficiently.

For the remainder of this paper we assume that we have a fixed differentiable weight function
~g : Rm>0 → Rm>0 from slacks to positive weights (see Section 5 for a description of the function we
use). For slacks ~s ∈ Rm>0 we let G(~s)

def
= diag(~g(~s)) denote the diagonal matrix associated with the

slacks and we let G′(~s)
def
= J~s(~g(~s)) denote the Jacobian of the weight function with respect to the

slacks.
For the weight function to be useful, in addition to yielding weights of small size, i.e.

∥∥~g(~s)
∥∥

1
bounded, and good slack sensitivity, i.e. γ(~x,~g(~s(~x))) small, we need to ensure that the weights do
not change too much as we change ~x. For this, we use the operator norm of I + r−1G(~s)−1G′(~s)S
to measure for how much the weight function can diverge from the change in weights induced by
a r-step, i.e. how consistent ~g is to the central path. Lastly, to simplify the analysis we make a
uniformity assumption that none of the weights are two big, i.e.

∥∥~g(~s)
∥∥
∞ is bounded. Formally we

define a weight function as follows.

Definition 7 (Weight Function). A weight function is a differentiable function from ~g : Rm>0 → Rm>0

such that for constants c1(~g), cγ(~g), and cr(~g), we have the following for all ~s ∈ Rm>0:

• Size : The size c1(~g) satisfies c1(~g) ≥
∥∥~g(~s)

∥∥
1

• Slack Sensitivity: The slack sensitivity cγ(~g) satisfies cγ(~g) ≥ 1 and γ(~s,~g(~s)) ≤ cγ(~g).

• Step Consistency : The step consistency cr(~g) satisfies cr(~g) ≥ 1 and ∀r ≥ cr(~g) and ∀~y ∈ Rm∥∥I + r−1G(~s)−1G′(~s)S
∥∥

G(~s)
≤ 1 and

∥∥ (I + r−1G(~s)−1G′(~s)S
)
~y
∥∥
∞ ≤

∥∥~y∥∥∞ + cr
∥∥~y∥∥

G(~s)
.
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• Uniformity : The weight function satisfies
∥∥~g(~s)

∥∥
∞ ≤ 2

When the weight function ~g is clear from context we often write c1, cγ , and cr.
To get a sense of the magnitude of these parameters, in Theorem 12 we prove that there is a

weight function with size O(
√

rank A), slack sensitivity O(1) and step consistency O
(
log
(

m
rank A

))
;

hence lemmas with polynomial dependence of slack sensitivity and step consistency suffice for our
purposes. However, for the remainder of this section and Section 6 we let the weight function be
fixed but arbitrary.

Ideally, in our weighted path following schemes we would just set ~w = ~g(~s) for any slacks ~s we
compute. However, actually computing ~g(~s) may be expensive to compute exactly and therefore we
analyze schemes that maintain separate weights, ~w ∈ Rm>0 with the invariant that ~w is close to ~g(~s)

multiplicatively. Formally, we define ~Ψ(~s, ~w) for all ~s, ~w ∈ Rm>0 by

~Ψ(~s, ~w)
def
= log(~g(~s))− log(~w) (4.16)

and attempt to keep
∥∥~Ψ(~s, ~w)

∥∥
∞ small despite changes that occur due to r-steps.

Now we wish to show that a r-step does not increase ~Ψ(~s, ~w) by too much. To do this, we first
prove the following helper lemma.

Lemma 8. For a weight function ~g and ~s0, ~s1 ∈ S0 such that

ε∞
def
=
∥∥S−1

0 (~s1 − ~s0)
∥∥
∞ ≤

1

32cr
and εg

def
=
∥∥S−1

0 (~s1 − ~s0)
∥∥

G(~s0)
≤ ε∞

cr
.

we have∥∥∥∥log

(
~s1

~s0

)
+

1

cr
log

(
~g(~s1)

~g(~s0)

)∥∥∥∥
∞
≤ 3ε∞ and

∥∥∥∥log

(
~s1

~s0

)
+

1

cr
log

(
~g(~s1)

~g(~s0)

)∥∥∥∥
G(~s0)

≤ (1 + 6crε∞) εg.

Proof. Let ~p : Rm → Rm be defined for all i ∈ [m] and s ∈ Rm>0 by

~p(~s)i
def
= log(~si) +

1

cr
log(~g(~si)).

Clearly J~s[~p(~s)] = S−1 + c−1
r G−1(~s)G′(~s). Therefore, letting ~st

def
= ~s0 + t(~s1 − ~s0) for all t ∈ [0, 1]

we see that for all i ∈ [0, 1] ,

~p(~si) = ~p(~s0) +

ˆ i

0

[
S−1
t +

1

cr
G−1(~st)G

′(~st)

]
(~s1 − ~s0)dt.

Applying Jensen’s inequality and the definition of ~p then yields that for all i ∈ [0, 1] and any norm∥∥ · ∥∥ , ∥∥∥∥log

(
~si
~s0

)
+

1

cr
log

(
~g(~si)

~g(~s0)

)∥∥∥∥ ≤ ˆ i

0

∥∥∥∥[I +
1

cr
G−1(~st)G

′(~st)St

]
S−1
t (~s1 − ~s0)

∥∥∥∥ dt. (4.17)

Now for all t ∈ [0, 1] define ~at ∈ Rm>0 by

~at
def
= log

(
~st
~s0

)
− 1

cr
log

(
~g(~st)

~g(~s0)

)
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and let M be the supremum over all i ∈ [0, 1] such that
∥∥ log~g(~st)− log~g(~s0)

∥∥
∞ ≤ 3.5crε∞ for all

t ∈ [0, i]. By Lemma 33 and the fact that ε∞ ≤ 1
32cr

this implies that
∥∥G(~si)

−1(~g(~si)−~g(~s0))
∥∥
∞ ≤

4crε∞ and
∥∥G(~s0)−1(~g(~s0)− ~g(~si))

∥∥
∞ ≤ 4crε∞ for all i ∈ [0,M ]. Therefore, choosing

∥∥ · ∥∥
G(~s0)

in
(4.17) and applying Definition 7 yields that ∀i ∈ [0,M ] ,

∥∥~ai∥∥G(~s0)
< (1 + 4crε∞)1/2

ˆ i

0

∥∥S−1
t (~s1 − ~s0)

∥∥
G(~st)

dt ≤ (1 + 4crε∞)

1− ε∞
εg ≤ (1 + 6crε∞) εg.

Similarly, by choosing
∥∥ · ∥∥∞ in (4.17), we have ∀i ∈ [0,M ] that

∥∥~ai∥∥∞ <

ˆ i

0

(∥∥S−1
t (~s1 − ~s0)

∥∥
∞ + cr

∥∥S−1
t (~s1 − ~s0)

∥∥
G(~st)

)
dt

<
ε∞

1− ε∞
+

√
1 + 4crε∞
1− ε∞

crεg ≤ 2.2ε∞

By the definition of ~ai, the triangle inequality, and Lemma 33 we then have that∥∥ log(~g(~si))− log(~g(~s0))
∥∥
∞ < cr

(
2.2ε∞ +

∥∥ log(~si)− log(~s0)
∥∥
∞
)
< 3.5crε∞.

Since ~g is continuous we have that M = 1 and the result follows.

Using this lemma we bound on how much a r-step increases ~Ψ as follows

Lemma 9. Let {~x(new), ~w(new)} = stept(~x
(old), ~w(old), cr) where

δt
def
= δt(~x

(old), ~w(old)) ≤ 1

8cγ
and ε

def
=
∥∥ log(~g(~s(old)))− log(~w(old))

∥∥
∞ ≤

1

8
.

Letting

~∆
def
= log

(
~g(~s(new))

~g(~s(old))

)
− log

(
~w(new)

~w(old)

)
= ~Ψ(~s(new), ~w(new))− ~Ψ(~s(old), ~w(old)),

we have ∥∥~∆∥∥∞ ≤ 4cγδt and
∥∥~∆∥∥

W(new)
≤ eεcr

1 + cr
δt + 13cγδ

2
t .

Proof. Recall the following definition of slack sensitivity

γ(~s, ~w) = max
i∈[m]

∥∥W−1/2~1i
∥∥

PS−1A(~w)
= max

i∈[m]

∥∥~1i∥∥S−1A(ATS−1WS−1A)−1ATS−1 .

Since
∥∥ log(~g(~s(old)))− log(~w(old))

∥∥
∞ ≤

1
8 , we have

γ(~s(old), ~w(old)) ≤
√

8

7
γ(~s(old), ~g(~s(old))) ≤ 1.1cγ . (4.18)

Therefore, since δt ≤ 1
64cγcr

, by Lemma 5 and (4.18) we have

∥∥W−1
(old)(~w

(new) − ~w(old))
∥∥
∞ ≤

1.1crcγδt
1 + cr

≤ 1

2
and

∥∥S−1
(old)(~s

(new) − ~s(old))
∥∥
∞ ≤

1.1cγδt
1 + cr

≤ 1

2
.

(4.19)
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Recalling that W−1
(old)(~w

(new)− ~w(old)) = −crS−1
(old)(~s

(new)−~s(old)) and using that cr ≥ 1 and ε−ε2 ≤
log(1 + ε) ≤ ε for |ε| < 1

2 we have that for all i ∈ [m]∣∣∣∣∣log

(
w

(new)
i

w
(old)
i

)
+ cr log

(
s

(new)
i

s
(old)
i

)∣∣∣∣∣ =

∣∣∣∣∣log

(
1− cr

s
(new)
i − s(old)

i

s(old)
i

)
+ cr log

(
1 +

s
(new)
i − s(old)

i

s(old)
i

)∣∣∣∣∣
≤ 2c2

r

∣∣∣∣∣~s(new)
i − ~s(old)

i

~s
(old)
i

∣∣∣∣∣
2

(4.20)

Letting
∥∥ · ∥∥ denote either

∥∥ · ∥∥∞ or
∥∥ · ∥∥

W(old)
, recalling that

∥∥S−1
(old)(~s

(new) − ~s(old))
∥∥
∞ ≤

1.1cγδt
1+cr

≤
1.1cγδt
cr

, and applying (4.20) yields

∥∥~∆∥∥ ≤

∥∥∥∥∥cr log

(
~s(new)

~s(old)

)
+ log

(
~g(~s(new))

~g(~s(old))

)∥∥∥∥∥+

∥∥∥∥∥log

(
~w(new)

~w(old)

)
+ cr log

(
~s(new)

~s(old)

)∥∥∥∥∥
≤ cr

∥∥∥∥∥log

(
~s(new)

~s(old)

)
+

1

cr
log

(
~g(~s(new))

~g(~s(old))

)∥∥∥∥∥+ 2.2crcγδt
∥∥S−1

(old)(~s
(new) − ~s(old))

∥∥. (4.21)
By Lemma 5 and (4.19), ~s(old) and ~s(new) meet the conditions of Lemma 8 with ε∞ ≤ 1.1cγδt

1+cr
and

εg ≤ eε/2δt
1+cr

. Therefore, letting
∥∥ · ∥∥ be

∥∥ · ∥∥∞ in (4.21), we have

∥∥~∆∥∥∞ ≤ 3crε∞ + 2.2crcγδt
1.1cγδt
1 + cr

≤ 4cγδt.

Similarly, letting
∥∥ · ∥∥ be

∥∥ · ∥∥
W(old)

in (4.19) and noting that by definition of ε yields

∥∥~∆∥∥
W(old)

≤ eε/2crεg(1 + 6crε∞) + 2.2crcγδt
δt

1 + cr

≤ eε cr
1 + cr

δt + 10cγδ
2
t .

Finally, noting that
∥∥W−1

(old)(~w
(new) − ~w(old))

∥∥
∞ ≤ 1.1cγδt yields the result.

4.5 Centering Using Exact Weights

Here we bound the rate of convergence rate of path following assuming that we can compute the
weight function ~g exactly. We start by providing a basic lemma regarding how the Newton step size
changes as we change ~w.

Lemma 10 (Effect of Weight Change). Let ~x ∈ S0 and let ~w(old), ~w(new) ∈ Rm>0 with

ε∞
def
=
∥∥ log(~w(new))− log(~w(old))

∥∥
∞ ≤

1

2
, (4.22)

it follows that

δt(~x, ~w
(new)) ≤ (1 + ε∞)

[
δt(~x, ~w

(old)) +
∥∥ log(~w(new))− log(~w(old))

∥∥
W(old)

]
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Proof. Let H(old)
def
= ATS−1W(old)S

−1A and let H(new)
def
= ATS−1W(new)S

−1A. By the definition
of δt and the triangle inequality we have

δt(~x, ~w
(new)) =

∥∥t~c−ATS−1 ~w(new)
∥∥

H−1
(new)

≤
∥∥t~c−ATS−1 ~w(old)

∥∥
H−1

(new)

+
∥∥ATS−1 ~w(new) −ATS−1 ~w(old)

∥∥
H−1

(new)

(4.23)

By definition of ε∞ and Lemma 33 H−1
(new) � (1 + ε∞)2H−1

(old) and therefore∥∥t~c−AS−1 ~w(old)
∥∥

H−1
(new)

≤ (1 + ε∞)δt(~x, ~w
(old)). (4.24)

Furthermore, since PAS−1(~w(new)) � I we have∥∥ATS−1 ~w(new) −ATS−1 ~w(old)
∥∥

H−1
(new)

=
∥∥W−1/2

(new)(~w
(new) − ~w(old))

∥∥
PAS−1 (~w(new))

≤

∥∥∥∥∥ ~w(new) − ~w(old)

√
~w(new) ~w(old)

∥∥∥∥∥
W(old)

(4.25)

Using that (ex−1)2

ex ≤ (1 + |x|)2x2 for |x| ≤ 1
2 and letting x =

[
log(~w(new))− log(~w(old))

]
i
we have∥∥∥∥∥ ~w(new) − ~w(old)

√
~w(new) ~w(old)

∥∥∥∥∥
W(old)

≤ (1 + ε∞)
∥∥ log(~w(new))− log(~w(old))

∥∥
W(old)

(4.26)

Combining (4.23), (4.24), (4.25), and (4.26) completes the proof.

~x(new) = centeringExact(~x(old))

1. ~x(new) = ~x(old) − 1
1+cr

~h(~x(old), ~g(~s(old))).

With this lemma we can now show how much centering progress we make by just updating ~x
and using the weight function. Note that in this proof we are just using the r-step in the proof, not
the algorithm itself. We will need to use the r-step itself only later when we drop the assumption
that we can compute ~g exactly.

Theorem 11 (Centering with Exact Weights). Fix a weight function ~g, let ~x(old) ∈ S0, and let

~x(new) = centeringExact(~x(old))

If

δt
def
= δt(~x

(old), ~g(~s(old))) ≤ 1

80cγcr

then
δt(~x

(new), ~g(~s(new))) ≤
(

1− 1

4cr

)
δt(~x

(old), ~g(~s(old))).
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Proof. Let {~x(new), ~w(new)} ∈ {S0×Rm>0} be the result of a cr step from {~x(old), ~w(old)} ∈ {S0×Rm>0}.
Note that this ~s(new) is the same as the ~s(new) in the theorem statement.

Now by Lemma 6 we have that

δt(~s
(new), ~w(new)) ≤ cγδ2

t . (4.27)

Furthermore, defining ~∆ as in Lemma 9 and noting that ~w(old) = ~g(~s(old)) we have

~∆
def
= log

(
~g(~s(new))

~g(~s(old))

)
− log

(
~w(new)

~w(old)

)
= log

(
~g(~s(new))

~w(new)

)
.

we see by Lemma 9 that ∥∥ log(~g(~s(new))/~w(new))
∥∥
∞ ≤ 4cγδt ≤ 1/2 (4.28)

and ∥∥ log(~g(~s(new))/~w(new))
∥∥
~w(new) ≤

eεcr
1 + cr

δt + 13cγδ
2
t (4.29)

with ε = 0 because we are using exact weight computation. Applying Lemma 10 to (4.27), (4.28),
and (4.29) we have

δt(~x
(new), ~g(~s(new))) ≤ (1 + 4cγδt)

[
cγδ

2
t +

cr
1 + cr

δt + 13cγδ
2
t

]
≤ cr

1 + cr
δt + 20cγcrδ

2
t

≤
(

1− 1

2cr
+

1

4cr

)
δt ≤

(
1− 1

4cr

)
δt

From this lemma we have that if δt(~x,~g(~s)) isO(c−1
γ c−1

r ) then in Θ(c−1
r ) iterations of CenteringExact

we can decrease δt(~x,~g(~s)) by a multiplicative constant. Furthermore by Lemma 1 we see that we
can increase t by a multiplicative (1 + O(c−1

γ c−1
r c
−1/2
1 )) and maintain δt(~x,~g(~s)) = O(c−1

γ c−1
r ).

Thus we can double t and maintain δt(~x,~g(~s)) = O(c−1
γ c−1

r ) using O(c−1
γ c−2

r c
−1/2
1 ) iterations of

CenteringExact. In Section 7 we make this argument rigorously in the more general setting. In
the following sections, we show how to relax this requirement that ~g is computed exactly.

5 A Weight Function for Õ(
√
rank(A)L) Convergence

Here, we present the weight function ~g : Rm>0 → Rm>0 that when used in the framework proposed in
Section 4 yields an Õ(

√
rank(A)L) iteration interior point method. In Section 5.1 we motivate and

describe the weight function ~g, in Section 5.2 we prove that ~g satisfies Definition 7 with nearly opti-
mal c1(~g), cγ(~g), and cr(~g), and in Section 5.3 we show how to compute and correct approximations
to ~g efficiently.
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5.1 The Weight Function

Our weight function was inspired by the volumetric barrier methods of [40, 1].10 These papers
considered using the volumetric barrier, φ(~s) = − log det(ATS−2A) , in addition to the standard log
barrier, φ(~s) = −

∑
i∈[m] log si. In some sense the standard log barrier has a good slack sensitivity,

1, but a large size, m, and the volumetric barrier has a worse slack sensitivity,
√
m, but better total

weight, n. By carefully applying a weighted combination of these two barriers [40] and [1] achieved
an O((m rank(A))1/4L) iteration interior point method at the cost more expensive linear algebra in
each iteration.

Instead of using a fixed barrier, our weight function ~g : Rm>0 → Rm>0 is computed by solving
a convex optimization problem whose optimality conditions imply both good size and good slack
sensitivity. We define ~g for all ~s ∈ Rm>0 by

~g(~s)
def
= arg min

~w∈Rm>0

f̂(~s, ~w) where f̂(~s, ~w)
def
= ~1T ~w − 1

α
log det(AT

s WαAs)− β
∑
i∈[m]

logwi (5.1)

where here and in the remainder of this section we let As
def
= S−1A and the parameters α, β ∈ R are

chosen later such that the following hold

α ∈ (0, 1) , β ∈ (0, 1) , and β1−α ≥ 1

2
. (5.2)

To get a sense for why ~g has the desired properties, , suppose for illustration purposes that
α = 1 and β = 0 and fix ~s ∈ Rm>0. Using Lemma 34 and setting the gradient of (5.1) to ~0 we see
that if ~g exists then

~g(~s) = ~σAs(~g(~s))
def
= diag

(
(G(~s))1/2As(A

T
s G(~s)As)

−1AT
s (G(~s))1/2

)
where we use the definition of ~σAs from Section 2. Consequently,

max
i

∥∥G−1/2~1i
∥∥

PAs (~g)
= 1 and γ(~s,~g(~s)) = 1 .

Furthermore, since (G(~s))1/2As(A
T
s G(~s)As)

−1AT
s (G(~s))1/2 is a projection matrix,

∥∥~σAs(~g(~s))
∥∥

1
=

rank(A). Therefore, this would yield a weight function with good cγ and c1.
Unfortunately picking α = 1 and β = 0 makes the optimization problem for computing ~g

degenerate. In particular for this choice of α and β, ~g(~s) could be undefined. In the follow sections
we will see that by picking better values for α and β we can trade off how well ~g performs as a
weight function and how difficult it is to compute approximations to ~g.

5.2 Weight Function Properties

Here, we show that ~g : R≥0 → R≥0 as given by (5.1) is a weight function with respect to Definition 7
and we bound the values of c1(~g), cγ(~g), and cr(~g). The goal of this section is to prove the following.

Theorem 12 (Properties of Weight Function). Let us define α and β by

α = 1− 1

log2

(
2m

rank(A)

) and β =
rank(A)

2m

For this choice of parameters ~g is a weight function meeting the criterion of Definition 7 with
10 See Section 1.2 for further intuition.
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• Size : c1(~g) = 2 rank(A).

• Slack Sensitivity: cγ(~g) = 2.

• Step Consistency : cr(~g) = 2 log2

(
2m

rank(A)

)
.

We break the proof into several parts. In Lemma 13, we prove basic properties of f̂ . In Lemma 14
we prove that ~g is a weight function and bound its size. In Lemma 15 we bound the slack sensitivity
of ~g and in Lemma 16 we show that ~g is consistent.

We start by computing the gradient and Hessian of f̂(~s, ~w) with respect to ~w.

Lemma 13. For all ~s ∈ Rm>0 and ~w ∈ Rm>0, we have

∇~wf̂(~s, ~w) =
(
I−ΣW−1 − βW−1

)
~1 and ∇2

~w~wf̂(~s, ~w) = W−1 (Σ + βI− αΛ) W−1

where Σ
def
= ΣAs(W

α~1) and Λ
def
= ΛAs(W

α~1).

Proof. Using Lemma 34 and the chain rule we compute the gradient of ∇wf̂(~s, ~w) as follows

∇~wf̂(~s, ~w) = ~1− 1

α
ΣW−α (αWα−1

)
− βW−1~1

=
(
I−ΣW−1 − βW−1

)
~1

Next, using Lemma 36 and chain rule, we compute the following for all i, j ∈ [m],

∂(∇~wf̂(~s, ~w))i
∂wj

= −
wiΛij ~w

−α
j

(
α~wα−1

j

)
−ΣijIij + βIij

~w2
i

=
Σij

wiwj
− α Λij

wiwj
+
βIi=j
wiwj

. (Using that Σis diagonal)

Consequently ∇2
~w~wf̂(~s, ~w) = W−1 (Σ + βI− αΛ) W−1 as desired.

Using this lemma, we prove that ~g is a weight function with good size.

Lemma 14. The function ~g is a weight function meeting the criterion of Definition 7. For all
~s ∈ Rm>0 and i ∈ [m] we have

β ≤ gi(~s) ≤ 1 + β and
∥∥~g(~s)

∥∥
1

= rank(A) + β ·m.

Furthermore, for all ~s ∈ Rm>0, the weight function obeys the following equations

G(~s) = (Σg + βI)~1 and G′(~s) = −2G(~s) (G(~s)− αΛg)
−1 ΛgS

−1

where Σg
def
= ΣAs(G(~s)α~1), Λg

def
= ΛAs(G(~s)α~1), and G′(~s) is the Jacobian matrix of ~g at ~s.
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Proof. By Lemma 32 and (5.2) we have that for all ~w,~s ∈ Rm>0 ,

ΣAs(~w) � ΛAs(~w) � αΛAs(~w).

Therefore, by Lemma 13, ∇2
~w~wf̂(~s, ~w) � βW−2 and f̂(~s, ~w) is convex for ~w,~s ∈ Rm>0. Using

Lemma 13, we see that that for all i ∈ [m] it is the case that[
∇~wf̂(~s, ~w)

]
i

=
1

wi
(wi − σi − β)

Since 0 ≤ σi ≤ 1 for all i by Lemma 32 and β ∈ (0, 1) by (5.2), we see that if ~wi ∈ (0, β) then[
∇~wf̂(~s, ~w)

]
i
is strictly negative and if ~wi ∈ (1 + β,∞) then

[
∇~wf̂(~s, ~w)

]
i
is strictly positive.

Therefore, for any ~s ∈ Rm>0 , the ~w that minimizes this convex function f̂(~s, ~w) lies in the box
between β and 1 + β. Since f̂ is strongly convex in this region, the minimizer is unique.

The formula for G(~s) follows by setting ∇~wf̂(~s, ~w) = ~0 and the size of ~g follows from the fact
that

∥∥~σ∥∥
1

= tr (PAs(G(~s)α)). Since PAs(G(~s)α~1) is a projection onto the image of G(~s)α/2As and
since ~g(~s) > 0 and ~s > 0, the dimension of the image of G(~s)α/2As is the rank of A. Hence, we
have that ∥∥~g(~s)

∥∥
1
≤
∥∥~σ∥∥

1
+
∥∥β~1∥∥

1
= rank(A) + β ·m.

To compute G′(~s), we note that for ~w ∈ Rm>0 and Λw
def
= ΛWαA(S−2~1), by Lemma 36 and chain

rule, we get the following for all i, j ∈ [m],

∂(∇~wf̂(~s, ~w))i
∂sj

= −w−1
i Λijs

2
j

(
−2s−3

j

)
= 2w−1

i Λijs
−1
j .

Consequently, J~s(∇~wf̂(~s, ~w)) = 2W−1ΛwS−1 where J~s denotes the Jacobian matrix of the function
∇~wf̂(~s, ~w) with respect to ~s. Since we have already shown that J~w(∇~wf̂(~s, ~w)) = ∇2

~w~wft(~s, ~w) =
W−1 (Σw + βI− αΛw) W−1 is positive definite (and hence invertible), by applying the implicit
function theorem to the specification of ~g(~s) as the solution to ∇~wf̂(~s, ~w) = ~0, we have

G′(~s) = −
(
J~w(∇~wf̂(~s, ~w))

)−1 (
J~s(∇~wf̂(~s, ~w))

)
= −2G(~s) (G(~s)− αΛg)

−1 ΛgS
−1

Using Lemma 14 we now show that ~g has a good slack sensitivity.

Lemma 15 (Weight Function Slack Sensitivity). For all ~s ∈ Rm>0, we have γ(~s,~g(~s)) ≤ 2.

Proof. Fix an arbitrary ~s ∈ Rm>0 and let ~g def
= ~g(~s), and Σ

def
= ΣAs(~g

α). Recall that by Lemma 14 we
know that ~g = (Σ + βI)~1 and β ≤ gi ≤ 1 + β ≤ 2 for all i ∈ [m]. Furthermore, since β1−α ≥ 1

2 and
α ∈ (0, 1) by (5.1) and clearly G = G1−αGα we have

1

2
Gα � β1−αGα � G � (2)1−αGα � 2Gα (5.3)

Applying this and using the definition of PAs(~g) yields

As(A
T
s GAs)

−1AT
s � 2As(A

T
s GαAs)

−1AT
s = 2G−α/2PAs(~g

α)G−α/2 . (5.4)
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Hence, by definition of the weight slack sensitivity we have

γ(~s,~g) = max
i

∥∥G−1/2~1i
∥∥

PAs (~g)

= max
i

√
~1Ti As(AT

s GAs)−1AT
s
~1i

≤ max
i

√
2~1Ti G−α/2PAs(~g

α)G−α/2~1i

= max
i

√
2
σi
gαi
≤ 2 max

i

√
σi
gi
≤ 2

where the last line due to the fact g1−α
i ≥ β1−α ≥ 1

2 and gi ≥ σi.

Finally, we bound the step consistency of ~g.

Lemma 16 (Weight Function Step Consistency). For all ~s ∈ Rm>0, ~y ∈ Rm, r ≥ 2
1−α , and

B
def
= I +

1

r
G(~s)−1G′(~s)S,

we have
‖B~y‖G(~s) ≤

∥∥~y∥∥
G(~s)

and ‖B~y‖∞ ≤
∥∥~y∥∥∞ +

2

1− α
∥∥~y∥∥

G(~s)
.

Proof. Fix an arbitrary ~s ∈ Rm>0 and let ~g def
= ~g(~s), ~σ def

= ~σAs(~g
α), Σ

def
= ΣAs(~g

α), P
def
= PAs(~g

α),
Λ

def
= ΛAs(~g

α). Also, fix an arbitrary ~y ∈ Rm and let ~z def
= B~y.

By Lemma 14, G′ = −2G (G− αΛ)−1 ΛS−1 and therefore

B = I + r−1G−1
(
−2G (G− αΛ)−1 ΛS−1

)
S

= (G− αΛ)−1 (G− αΛ)− 2r−1 (G− αΛ)−1 Λ

= (G− αΛ)−1 (G− (α+ 2r−1)Λ
)

.

By Lemma 14, we have G � Σ. By the definition of Λ = Σ−P(2), we have Σ � Λ and Lemma 32
shows that Λ � 0. Hence, we have

0 � Λ � Σ ≺ G.

Using this and 0 < 2r−1 ≤ 1− α, we have that

0 ≺ G− (α+ 2r−1)Λ � G− αΛ .

Thus, G− αΛ is positive definite and therefore ~z is the unique vector such that

(G− αΛ)~z =
(
G− (α+ 2r−1)Λ

)
~y (5.5)

To bound
∥∥~z∥∥

G
, we note that since G � 0 we have(

I− αG−1/2ΛG−1/2
)

G1/2~z =
(
I− (α+ 2r−1)G−1/2ΛG−1/2

)
G1/2~y

Furthermore, since 0 � G−1/2ΛG−1/2 � I, we have that

0 � I− (α+ 2r−1)G−1/2ΛG−1/2 � I− αG−1/2ΛG−1/2
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and consequently∥∥~z∥∥
G

=
∥∥(I− αG−1/2ΛG−1/2

)
G1/2~z

∥∥
(I−αG−1/2ΛG−1/2)

−2

≤
∥∥(I− αG−1/2ΛG−1/2

)
G1/2~z

∥∥
(I−(α+2k−1)G−1/2ΛG−1/2)

−2

=
∥∥G1/2~y

∥∥ =
∥∥~y∥∥

G
. (5.6)

Therefore,
∥∥B~y∥∥

G
≤
∥∥~y∥∥

G
as desired.

Next, to bound
∥∥~z∥∥∞, we use that Λ = Σ−P(2) and ~g = ~σ + β~1 and (5.5) to derive

(1− α) Σ~z + β~z + αP(2)~z = G~z − αΛ~z

=
(
G− (α+ 2r−1)Λ

)
~y

=
(
1− α− 2r−1

)
Σ~y + β~y +

(
α+ 2r−1

)
P(2)~y .

toLeft multiplying this equation by ~1Ti for arbitrary i ∈ [m] and using that ~σi ≥ 0 then yields that

((1− α)~σi + β) |~zi| ≤
∣∣∣α~1Ti P(2)~z

∣∣∣+
∣∣∣((1− α− 2r−1)~σi + β

)
~yi +

(
α+ 2r−1

)
~1Ti P(2)~y

∣∣∣
≤ α

∣∣∣[P(2)~z]i

∣∣∣+ ((1− α)~σi + β)
∥∥~y∥∥∞ +

∣∣∣[P(2)~y]i

∣∣∣ (0 < 2r−1 ≤ (1− α) < 1)

≤ α~σi
∥∥~z∥∥

Σ
+ ((1− α)~σi + β)

∥∥~y∥∥∞ + ~σi
∥∥~y∥∥

Σ
(Lemma32)

≤ ((1− α)~σi + β)
∥∥~y∥∥∞ + (1 + α)~σi

∥∥~y∥∥
G

5.6 (Σ � Gand)

Consequently,

|~zi| ≤
∥∥~y∥∥∞ +

(1 + α)~σi
((1− α)~σi + β)

∥∥~y∥∥
G

≤
∥∥~y∥∥∞ +

2

1− α
∥∥~y∥∥

G

and therefore
∥∥B~y∥∥∞ =

∥∥~z∥∥∞ ≤ ∥∥~y∥∥∞ + 2
1−α

∥∥~y∥∥
G
.

From Lemmas 14, 15 and 16, the proof of Theorem 12 is immediate. Since m ≥ rank(A) we
have log2 (2m/ rank(A)) ≥ 1 and α ∈ (0, 1). Furthermore β ∈ (0, 1) and

β1−α =

(
rank(A)

2m

)( 1
log2(2m/ rank(A))

)
=

1

2

and therefore (5.2) is satisfied. Furthermore, for all ~s ∈ Rm>0 we have
∥∥~g(~s)

∥∥
1
≤ 2 · rank(A) by

Lemma 14. The bounds on cγ(~g) and cr(~g) then follow from Lemma 15 and Lemma 16 respectively.

5.3 Computing and Correcting The Weights

Here, we describe how to efficiently compute approximations to the weight function ~g : Rm≥0 → Rm≥0

as given by (5.1). The two main technical tools we use towards this end are the gradient descent
method, Theorem 17, a standard result in convex optimization, and fast numerical methods for
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estimating leverage scores using the Johnson-Lindenstrauss Lemma, Theorem 20, a powerful tool
in randomized numerical linear algebra.

Since the weight function, ~g, is defined as the minimizer of a convex optimization problem (5.1),
we could use the gradient descent method directly to minimize f̂ and hence compute ~g. Indeed, in
Lemma 19 we show how applying the gradient descent method in a carefully scaled space allows us to
compute ~g(~s) to high accuracy in Õ(1) iterations. Unfortunately, this result makes two assumptions
to compute ~g(~s): (1) we are given a weight ~w ∈ R≥0 that is not too far from ~g(~s) and (2) we compute
the gradient of f̂ exactly.

Assumption (1) is not an issue as we always ensure that ~g does not change too much between
calls to compute ~g and therefore can always use our previous weights as the approximation to ~g(~s).
However, naively computing the gradient of f̂ is computationally expensive and hence assumption
(2) is problematic. To deal with this issue we use the fact that by careful application of Johnson-
Lindenstrauss one can compute a multiplicative approximation to the gradient efficiently and in
Theorem 21 we show that this suffices to compute an approximation to ~g that suffices to use in our
weighted path following scheme.

First we prove the theorem regarding gradient descent method we use in our analysis. This the-
orem shows that if we take repeated projected gradient steps then we can achieve linear convergence
up to bounds on how much the hessian of the function changes over the domain of interest. 11

Theorem 17 (Simple Constrained Minimization for Twice Differentiable Function [25]). Let H be
a positive definite matrix and Q ⊆ Rm be a convex set. Let f(~x) : Q → R be a twice differentiable
function such that there are constants L ≥ µ ≥ 0 such that for all ~x ∈ Q we have µH � ∇2f(~x) �
LH. If for some ~x(0) ∈ Q and all k ≥ 0 we apply the update rule

~x(k+1) = arg min
~x∈Q

〈
∇f(~x(k)), ~x− ~x(k)

〉
+
L

2

∥∥~x− ~x(k)
∥∥2

H

then for all k ≥ 0 we have ∥∥~x(k) − ~x∗
∥∥2

H
≤
(

1− µ

L

)k ∥∥~x(0) − ~x∗
∥∥2

H
.

To apply this Theorem 17 to compute ~g(~s) we first need to show that there is a region around
the optimal point ~g(~s) such that the Hessian of f̂ does not change too much.

Lemma 18 (Hessian Approximation). For
∥∥W−1(~g(~s)− ~w)

∥∥
∞ ≤

1
12 we have

2(1− α)

3
W−1 � ∇2

~w~wf̂(~s, ~w) � 3

2
W−1.

Proof. From Lemma 13, we know that

∇2
~w~wf̂(~s, ~w) = W−1 (Σ + βI− αΛ) W−1

where Σ = ΣAs(~w
α) and Λ = ΛAs(~w

α). Using 0 � Λ � Σ, we have

(1− α)W−1 (Σ + βI) W−1 � ∇2
wwf̂(~s, ~w) �W−1 (Σ + βI) W−1

11Note that this theorem is usually stated with H = I, i.e. the standard Euclidean norm rather than the one
induced by H. However, Theorem 17 can be proved by these standard results just by a change of variables.
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Using that
∥∥W−1(~g(~s)− ~w)

∥∥
∞ ≤

1
12 and applying Lemma 14 we have

Σ + βI �
(

1− 1

12

)−2

ΣAs(~g
α) + βI �

(
1− 1

12

)−2

G � 3

2
W

and

Σ + βI �
(

1− 1

12

)2

ΣAs(~g
α) + βI �

(
1− 1

12

)2

G � 2

3
W.

Combining Theorem 17 and Lemma 18, we get the following algorithm to compute the weight
function using the exact computation of the gradient of f̂ . Note that this algorithm applies Theorem
17 multiple times as in each iteration we are taking a gradient step with respect to a different norm.

Lemma 19 (Exact Weight Computation). Given ~w(0) ∈ Rm>0 such that
∥∥∥W−1

(0)(~g(~s)− ~w(0))
∥∥∥
∞
≤

1−α
24 . Let

Q =

{
~w ∈ Rm |

∥∥∥W−1
(0)(~w − ~w(0))

∥∥∥
∞
≤ 1− α

24

}
.

For all k ≥ 0 let

~w(k+1) = arg min
~w∈Q

∥∥∥∥~w − 1

2

(
~w(k) + ~σAs

((
~w(k)

)α)
+ β

)∥∥∥∥2

W−1
(k)

This implies that for all k ,∥∥∥G(~s)−1(~g(~s)− ~w(k))
∥∥∥2

∞
≤ 4m2

(
1− 1− α

12

)k
.

Proof. Note that iterations of Theorem 17 can be rewritten as

~w(k+1) = arg min
~w∈Q

〈(
I−ΣAs

((
~w(k)

)α)
W−1

(k) − βW−1
(k)

)
~1, ~w − ~w(k)

〉
+
∥∥∥~w − ~w(k)

∥∥∥2

W−1
(k)

= arg min
~w∈Q

∥∥∥∥~w − 1

2

(
~w(k) + ~σAs

((
~w(k)

)α)
+ β

)∥∥∥∥2

W−1
(k)

where the last line simply comes for expanding the quadratic function and ignoring the constant
term. Hence, we see that the iteration on ~w(k+1) is in fact a gradient descent step. To apply
Theorem 17 we note that for any ~w ∈ Q the definition of Q and the fact that α ∈ (0, 1) implies that
(1− 1

24)W(0) �W � (1 + 1
24)W(0). Therefore Lemma 18 shows that for all ~w(k) ∈ Q,

1− α
2

W−1
(k) �

2(1− α)

3
W−1

(0) � ∇
2
~w~wf̂(~s, ~w) � 3

2
W−1

(0) � 2W−1
(k). (5.7)

where the left most and right most inequality comes from the fact they lies in a small region Q.
Hence, Theorem 17 and inequality (5.7) shows that∥∥∥~w(k+1) − ~g(~s)

∥∥∥2

W−1
(k)

≤
(

1− 1− α
4

)∥∥∥~w(k) − ~g(~s)
∥∥∥2

W−1
(k)

.
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Since
∥∥∥W−1

(0)(~g(~s)− ~w(0))
∥∥∥
∞
≤ 1−α

24 and ~w(k) ∈ Q, we know that G(~s) �
(
1− 1−α

24

)2
W(k). Hence,

we have

∥∥~w(k) − ~g(~s)
∥∥2

G−1(~s)
≤

(
1− 1− α

24

)−2(
1− 1− α

4

)∥∥~w(k−1) − ~g(~s)
∥∥2

G−1(~s)

≤
(

1− 1− α
12

)∥∥~w(k−1) − ~g(~s)
∥∥2

G−1(~s)

≤
(

1− 1− α
12

)k ∥∥~w(0) − ~g(~s)
∥∥2

G−1(~s)

The result follows from the facts that∥∥~w(0) − ~g(~s)
∥∥2

G−1(~s)
≤ m

∥∥G(~s)
∥∥
∞
∥∥G−1(~s)(~g(~s)− ~w(0))

∥∥2

∞ ≤
m(1 + β)(
1− 1−α

24

)2∥∥W−1
(0)(~g(~s)− ~w(0))

∥∥2

∞

and lemma 14 that
∥∥G−1(~s)(~w(k) − ~g(~s))

∥∥2

∞ ≤ β
−1
∥∥~w(k) − ~g(~s)

∥∥2

G−1(~s)
where β = rank(A)

2m .

Unfortunately, we cannot use the previous lemma directly as computing ~σAs exactly is too
expensive for our purposes. However, in [32] they showed that we can compute leverage scores, ~σAs ,
approximately by solving only polylogarithmically many regression problems (See [20] for more
details). These results use the fact that the leverage scores of the the ith constraint, i.e. [~σAs ]i is
the `2 length of vector PA(~x)~1i and that by the Johnson-Lindenstrauss lemma these lengths are
persevered up to multiplicative error if we project these vectors onto certain random low dimensional
subspace. Consequently, to approximate the ~σAs we first compute the projected vectors and then
use it to approximate ~σAs and hence only need to solve Õ(1) regression problems. For completeness,
we provide the algorithm and theorem here:

~σ(apx) = computeLeverageScores(A, ~x, ε)

1. Let k =
⌈
24 log(m)/ε2

⌉
.

2. Let ~q(j) be k random ±1/
√
k vectors of length m.

3. Compute ~p(j) = X1/2A(ATXA)−1ATX1/2~q(j).

4. Return ~σ(apx)
i =

∑k
j=1

(
~p

(j)
i

)2
.

Theorem 20 ([32]). For 0 < ε < 1 with probability at least 1− 1
m the algorithm computeLeverageScores

returns ~σ(apx) such that for all i ∈ [m] ,

(1− ε)~σA(~x)i ≤ ~σ(apx)
i ≤ (1 + ε)~σA(~x)i.

by solving only O(ε−2 · logm) linear systems.

Now, we show that we can modify Lemma 19 to use computeLeverageScores and we prove that
this still provides adequate error guarantees. Our weight computation and the analysis is as follows.
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~w = computeWeight(~s, ~w(0),K)

1. Let cr = 2 log2

(
2m

rank(A)

)
, α = 1− 1

log2

(
2m

rank(A)

) , β = rank(A)
2m , ε = K

48cr log( 2m
K )

.

2. Q =
{
~w ∈ Rm |

∥∥∥W−1
(0)(~w − ~w(0))

∥∥∥
∞
≤ 1

12cr

}
3. For j = 1 to k where k = d12cr log

(
4m
K

)
e

3a. ~σ(j) = computeLeverageScores
(
S−1A,

(
~w(j)

)α
, ε
)

3b. ~w(j) = arg min~w∈Q

∥∥∥~w − 1
2

(
~w(j−1) + ~σ(j) + β~1

)∥∥∥2

W−1
(j−1)

4. Output ~w(j).

Note that the convex set Q is aligned with standard basis and hence the step 3b can be computed
by explicit formula (5.9).

Theorem 21 (Approximate Weight Computation). Let ~s ∈ Rm>0,
∥∥W−1

(0)(~g(~s)− ~w(0))
∥∥
∞ ≤

1
12cr

12,
and K ∈ (0, 1). The algorithm computeWeight(~s, ~w(0),K) returns ~w such that∥∥G(~s)−1(~g(~s)− ~w)

∥∥
∞ ≤ K

with probability
(
1− 1

m

)d12cr log( 4m
K )e.

The running time is dominated by the time needed to solve O(c3
r log3(m/K) log(m)/K2) linear

systems.

Proof. Consider an execution of computeWeight(~s, ~w(0),K) where each computeLeverageScores
computes ~σAs

(
(~w(j))α

)
exactly, i.e. ~σ(j) = ~σAs

(
(~w(j))α

)
, and let ~v(j)denote the ~w(j) computed

during this idealized execution of computeWeight.
Now suppose that for all i ∈ [m] we have

(1− ε)M~v(j)
i ≤ ~w

(j)
i ≤ (1 + ε)M~v

(j)
i (5.8)

for some M ≥ 0 and j ∈ [k − 1]. Since the objective function and the constraints for step 3b. are
axis-aligned we can compute ~w(j) coordinate-wise and we see that

~w(j+1) = median
((

1− 1

12cr

)
~w(0), ~w(j) +

1

2

(
~σAs

((
~w(j)

)α)
+ β

)
,

(
1 +

1

12cr

)
~w(0)

)
(5.9)

where [median (~x, ~y, ~z)]i is equal to the median of xi, yi and zi for all i ∈ [m]. By (5.8), (5.9), and
the fact that (1− ε)σAs

((
~w(j+1)

)α)
i
≤ ~σ(j+1)

i ≤ (1 + ε)σAs

((
~w(j+1)

)α)
i
for all i ∈ [m], we have

that
(1− ε)M+1~v

(j+1)
i ≤ ~w

(j+1)
i ≤ (1 + ε)M+1~v

(j+1)
i .

Since ~v(0) = ~w(0) and since j ∈ [k − 1] was arbitrary we can apply induction and we have that for
all j ∈ [k]

(1− ε)j~v(j)
i ≤ ~w

(j)
i ≤ (1 + ε)j~v

(j)
i .

12Recall that cr = 2
1−α = 2 log

(
2m

rank(A)

)
≥ 2.
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Note that kε ≤ 1
8 and therefore by Taylor series expansion we have

∥∥V−1
(k)

(
~w(k) − ~v(k)

) ∥∥
∞ ≤

9
8εk.

Furthermore since ~v(k) ∈ Q we know that G(~s) �
(

1− 1
12cr

)2
V(k). Putting these together, applying

Lemma 19, and recalling that k = d12cr log
(

4m
K

)
e we have∥∥G(~s)−1(~g(~s)− ~w(k))

∥∥
∞ ≤

∥∥G(~s)−1(~g(~s)− ~v(k))
∥∥
∞ +

∥∥G(~s)−1
(
~v(k) − ~w(k)

)∥∥
∞

≤ 2m

(
1− 1

6cr

) k
2

+

(
1− 1

12cr

)−2 ∥∥V−1
(k)(~v

(k) − ~w(k))
∥∥
∞

≤ 2m · exp

(
− k

12cr

)
+ 1.5kε

≤ K

2
+ 1.5εd12cr log

(
4m

K

)
e ≤ K

Finally, we show how to compute an initial weight without having an approximate weight to
help the computation. The algorithm computeInitialWeight(~s,K) computes an initial weight in
Õ
(√

rank A
)
iterations of computeWeight by computing ~g for a large enough value of β and then

decreasing β gradually.

~w = computeInitialWeight(~s,K)

1. Let cr = 2 log2

(
2m

rank(A)

)
, α = 1− 1

log2

(
2m

rank(A)

) , β = 12cr and ~w = β~1.

2. Loop until β = rank(A)
2m

2a. ~w = computeWeight(~s, ~w, 1
50cr

).

2b. β = max

{(
1− (1−α)3/2

1000c2r
√

rank(A)

)
β, rank(A)

2m

}
.

3. Output computeWeight(~s, ~w,K).

Theorem 22 (Computating Initial Weights). For ~s ∈ Rm>0 and K > 0, with constant probability
the algorithm computeInitialWeight(~s,K) returns ~w ∈ Rm>0 such that∥∥G(~s)−1(~g(~s)− ~w)

∥∥
∞ ≤ K.

The total running time of computeInitialWeight(~s,K) is dominated by the time needed to solve
Õ(
√

rank (A) log(1/K)/K2) linear systems.

Proof. Fix ~s ∈ Rm>0 and let As
def
= S−1A. For all β > 0 let ~g : R>0 → Rm be defined by13

~g(β)
def
= arg min

~w∈Rm>0

~1T ~w − 1

α
log det(AT

s WαAs)− β
∑
i∈[m]

logwi

The algorithm computeInitialWeight(~s,K) maintains the invariant that before step 2a∥∥W−1(~g(β)− ~w)
∥∥
∞ ≤

1

12cr
. (5.10)

13Note that early we assumed that β < 1 and here we use much larger values of β. However, this bound on β was
primarily to assist in bounding c1 and does not affect this proof.
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Since ~g(β) = ~σ(β) + β where ~σ(β)
def
= ~σAs(~g

α(β)), we have that for all i ∈ [m]

β ≤ g(β)i ≤ 1 + β.

Therefore, in the step 1, the initial weight, ~w = β~1 ∈ Rm>0 satisfies the invariant (5.10). After step
2a, by Theorem 21 we have ∥∥G(β)−1(~g(β)− ~w)

∥∥
∞ ≤

1

50cr
. (5.11)

Therefore, it suffices to prove that ~g(β) is close to ~g(β − θ) for small θ.
To bound how much ~g(β) changes for small changes in β we proceed similarly to Lemma 14.

First by the implicit function theorem and direct calculation we know that

d~g

dβ
= −

(
J~w(∇~wf̂(~s, ~w))

)−1 (
Jβ(∇~wf̂(~s, ~w))

)
= G(β) (G(β)− αΛg)

−1 ~1 (5.12)

where Λg
def
= ΛAs(G(β)α~1). Next to estimate how fast ~g can change as a function of β we estimate

(5.12) in a similar manner to Lemma 16. Note that

G(β)− αΛg � (1− α)G(β) � (1− α)Σ(β)

where Σ(β)
def
= ΣAs(~g

α(β)). Consequently,∥∥∥∥G(β)−1 d~g

dβ

∥∥∥∥2

Σ(β)

≤
∥∥∥(G(β)− αΛg)

−1 ~1
∥∥∥2

Σ(β)

≤ 1

1− α

∥∥∥~1∥∥∥2

Σ(β)
=

rank (A)

1− α
. (5.13)

Using this estimate of how much ~g changes in the Σ(β) norm, we now estimate how much ~g changes
in the `∞ norm. Let ~z def

= (G(β)− αΛg)
−1 ~1. Then, we have

((1− α)~σi(β) + β) |~zi| ≤
∣∣∣α~1Ti P(2)~z

∣∣∣+ 1

≤ α~σi(β)
∥∥~z∥∥

Σ(β)
+ 1.

Using (5.13) and α < 1, we have∥∥∥∥d ln~g

dβ

∥∥∥∥
∞

=
∥∥~z∥∥∞ ≤ max

(
α
∥∥~z∥∥

Σ(β)

1− α
,

1

β

)
≤ max

(√
rank (A)

(1− α)3/2
,

1

β

)
.

Using (5.11), integrating, and applying Lemma 33 we have that∥∥G(β − θ)−1(~g(β − θ)− ~w)
∥∥
∞ ≤

1

12cr

for θ ≤ (1−α)3/2β

1000c2r
√

rank(A)
. Hence, this proves that step 2a preserves the invariant (5.10) at step 2a.

Hence, the algorithm satisfies the assumptions needed for Theorem 21 throughout and computeWeight
ins step 2a works as desired. Since each iteration β decreased by Õ

(
1/
√

rank (A)
)
portion and

the initial β is Õ(1) we see that the algorithm requires only Õ
(√

rank (A)
)

iterations. Using
Theorem 21 to bound the total number of linear systems solved then yields the result.
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6 Approximate Weights Suffice

In the previous sections, we analyzed a weighted path following strategy assuming oracle access
to a weight function we could compute exactly and showed how to compute a weight function
approximately. In this section we show why it suffices to compute multiplicative approximations
to the weight function. Ultimately, having access to this “noisy oracle” will only cause us to lose
polylogarithmic factors in the running time as compared to the “exact oracle” case.

This is a non-trivial statement as the weight function serves several roles in our weighted path
following scheme. First, it ensures a good ratio between total weight c1 and slack sensitivity cγ .
This allows us to take make large increases to the path parameter t after which we can improve
centrality. Second, the weight function is consistent and does not differ too much from the cr-update
step direction. This allows us to change the weights between cr-update steps without moving too
far away from the central path. Given a multiplicative approximation to the weight function, this
first property is preserved up to an approximation constant however this second property is not.

To effectively use multiplicative approximations to the weight function we cannot simply use
the weight function directly. Rather we need to smooth out changes to the weights by using some
slowly changing approximation to the weight function. In this section we show how this can be
achieved in general. First, in Section 6.1, we present the smoothing problem in a general form that
we call the chasing 0 game and we provide an effective strategy for playing this game. Then in
Section 6.2 we show how to use this strategy to produce a weighted path following scheme that uses
multiplicative approximations to the weight function.

6.1 The Chasing 0 Game

The chasing 0 game is as follows. There is a player, an adversary, and a point ~x ∈ Rm. The goal of
the player is to keep the point close to ~0 in `∞ norm and the goal of the adversary tries to move ~x
away from ~0 ∈ Rm. The game proceeds for an infinite number of iterations where in each iteration
the adversary moves the current point ~x(k) ∈ Rm to some new point ~y(k) ∈ Rm and the player needs
to respond. The player does not know ~x(k), ~y(k), or the move of the adversary. All the player knows
is that the adversary moved the point within some convex set U (k) and the player knows some
~z(k) ∈ Rn that is close to ~y(k) in `∞ norm.14 With this information the player is allowed to move
the point a little more than the adversary. Formally, the player is allowed to set the next point to
~x(k+1) ∈ Rm such that ~∆(k) def

= ~x(k+1) − ~y(k) ∈ (1 + ε)U for some fixed ε > 0.
The question we would like to address is, how close the player can keep ~x(k+1) to ~0 in `∞ norm?

In particular, we would like an efficient strategy for computing ~∆(k) such that
∥∥~x(k)

∥∥
∞ is bounded

for all k ≥ 0.
14To apply this result to weighted central path following we let the current points ~x(k) denote the difference between

log(~w) and log(~g (~x)). The sets U (k) are then related to the cr-update steps and the steps of the player are related
to the weights the path following strategy picks.
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Chasing 0 Game:
1. Given R > 0, ε > 0, ~x(0) ∈ Rm.
2. For k = 1, 2, · · ·
2a. The adversary announces symmetric convex set U (k) ⊆ Rn and ~u(k) ∈ U (k).
2b. The adversary sets ~y(k) := ~x(k) + ~u(k).
2c. The adversary announces ~z(k) such that

∥∥~z(k) − ~y(k)
∥∥
∞ ≤ R.

2d. The player chooses ~∆(k) ∈ (1 + ε)U (k).
2e. The player sets ~x(k+1) = ~y(k) + ~∆(k).

We show that assuming that the U (k) are sufficiently bounded then there is strategy that the
player can follow to ensure that that

∥∥~x(k)
∥∥
∞ is never too large. Our strategy simply consists of

taking “gradient steps” using the following potential function.

Definition 23. For any µ ≥ 0 let pµ : R→ R and Φµ : Rm → R be given by

∀x ∈ R : pµ(x)
def
= eµx + e−µx and Φµ(~x)

def
=
∑
i∈[m]

pµ(xi).

In other words, for all k we simply set ~∆(k) to be the vector in (1 + ε)U (k) that best minimizes
the potential function of the observed position, i.e. Φµ(~z(k)) for an appropriate choice of µ. In the
following theorem we show that this suffices to keep Φµ(~x(k)) small and that small Φµ(~x(k)) implies
small

∥∥~x(k)
∥∥
∞ and hence has the desired properties.

Theorem 24. Suppose that each U (k) is a symmetric convex set that contains an `∞ ball of radius
rk and is contained in a `∞ ball of radius Rk ≤ R.15 Let 0 < ε < 1

5 and consider the strategy

~∆(k) = (1 + ε) arg min
~∆∈U(k)

〈
∇Φµ(~z(k)), ~∆

〉
where µ =

ε

12R
.

Let τ def
= maxk

Rk
rk

and suppose Φµ(~x(0)) ≤ 12mτ
ε (or more specifically

∥∥~x(0)
∥∥
∞ ≤

12R
ε log

(
6τ
ε

)
) then

∀k ≥ 0 : Φµ(~x(k+1)) ≤
(

1− ε2rk
24R

)
Φµ(~x(k)) + εm

Rk
2R
≤ 12mτ

ε
.

In particular, we have
∥∥~x(k)

∥∥
∞ ≤

12R
ε log

(
12mτ
ε

)
.

To prove Theorem 24 we first provide the following lemma regarding properties of the potential
function Φµ.

Lemma 25 (Properties of the Potential Function). For all ~x ∈ Rm, we have

eµ‖~x‖∞ ≤ Φµ(~x) ≤ 2meµ‖~x‖∞ and µΦµ(~x)− 2µm ≤
∥∥∇Φµ(~x)

∥∥
1

(6.1)

Furthermore, for any symmetric convex set U ⊆ Rm and any ~x ∈ Rm, let ~x[ def
= arg max~y∈U 〈~x, ~y〉16

and
∥∥~x∥∥

U

def
= max~y∈U 〈~x, ~y〉. Then for all ~x, ~y ∈ Rm with

∥∥~x− ~y∥∥∞ ≤ δ ≤ 1
5µ we have

e−µδ
∥∥∇Φµ(~y)

∥∥
U
− µ

∥∥∇Φµ(~y)[
∥∥

1
≤
〈
∇Φµ(~x),∇Φµ(~y)[

〉
≤ eµδ

∥∥∇Φµ(~y)
∥∥
U

+ µeµδ
∥∥∇Φµ(~y)[

∥∥
1
.

(6.2)
15Formally we assume that if ~x ∈ U (k) then

∥∥~x∥∥∞ ≤ R and we assume that if
∥∥~x∥∥∞ ≤ r then ~x ∈ U (k).

16This is a scaled version of # operator in [27] and hence we name it differently.
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If additionally U is contained in a `∞ ball of radius R then

e−µδ
∥∥∇Φµ(~y)

∥∥
U
− µmR ≤

∥∥∇Φµ(~x)
∥∥
U
≤ eµδ

∥∥∇Φµ(~y)
∥∥
U

+ µeµδmR. (6.3)

Proof. First we note that for all x ∈ R we have

eµ|x| ≤ pµ(x) ≤ 2eµ|x| and p′µ(x) = µ sign(x)
(
eµ|x| − e−µ|x|

)
and therefore we have (6.1).

Next let x, y ∈ R such that |x − y| ≤ δ. Note that
∣∣p′µ(x)

∣∣ = p′µ(|x|) = µ
(
eµ|x| − e−µ|x|

)
and

since |x− y| ≤ δ we have that |x| = |y|+ z for some z ∈ (−δ, δ). Using that p′(|x|) is monotonic in
|x| we then have

|p′µ(x)| = p′µ(|x|) = p′µ(|y|+ z) ≤ p′µ(|y|+ δ)

= µ
(
eµ|y|+µδ − e−µ|y|−µδ

)
= eµδp′(|y|) + µ

(
eµδ−µ|y| − e−µ|y|−µδ

)
≤ eµδ

∣∣p′(y)
∣∣+ µeµδ. (6.4)

By symmetry (i.e. replacing x and y) this implies that

|p′µ(x)| ≥ e−µδ|p′(y)| − µ (6.5)

Since U is symmetric this implies that for all i ∈ [m] we have sign(∇Φµ(~y)[)i = ∇Φµ(~y)i =
sign(yi) . Therefore, if for all i ∈ [n] we have sign(xi) = sign(yi), by (6.4), we see that〈

∇Φµ(~x),∇Φµ(~y)[
〉

=
∑
i

p′µ(xi)∇Φµ(~y)[i

≤
∑
i

(
eµδp′µ(yi) + µeµδ

)
∇Φµ(~y)[i

≤ eµδ
〈
∇Φµ(~y),∇Φµ(~y)[

〉
+ µeµδ

∥∥∇Φµ(~y)[
∥∥

1

= eµδ
∥∥∇Φµ(~y)

∥∥
U

+ µeµδ
∥∥∇Φµ(~y)[

∥∥
1
.

Similarly, using (6.5), we have e−µδ
∥∥∇Φµ(~y)

∥∥
U
− µ

∥∥∇Φµ(~y)[
∥∥

1
≤
〈
∇Φµ(~x),∇Φµ(~y)[

〉
and hence

(6.2) holds. On the other hand if sign(xi) 6= sign(yi) then we know that |xi| ≤ δ and consequently
|p′µ(xi)| ≤ µ(eµδ − e−µδ) ≤ µ

2 since δ ≤ 1
5µ . Thus, we have

e−µδ
∣∣p′µ(yi)

∣∣− µ ≤ −µ
2
≤ sign (yi) p

′
µ(xi) ≤ 0 ≤ eµδ

∣∣p′µ(yi)
∣∣+ µeµδ.

Taking inner product on both sides with ∇Φµ(~y)[i and using definition of
∥∥ ·∥∥

U
and ·[, we get (6.2).

Thus, (6.2) holds in general.
Finally we note that since U is contained in a `∞ ball of radius R, we have

∥∥~y[∥∥
1
≤ mR for all

~y. Using this fact, (6.2), and the definition of
∥∥ · ∥∥

U
, we obtain

e−µδ
∥∥∇Φµ(~y)

∥∥
U
− µmR ≤

〈
∇Φµ(~x),∇Φµ(~y)[

〉
≤
∥∥∇Φµ(~x)

∥∥
U

where the last line comes from the fact ∇Φµ(~y)[ ∈ U and the definition of
∥∥ · ∥∥

U
. By symmetry

(6.3) follows.
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Using Lemma 25 we prove Theorem 24.

Proof. [Theorem 24] For the remainder of the proof, let
∥∥~x∥∥

U(k) = max~y∈U(k) 〈~x, ~y〉 and ~x[(k) =

arg max~y∈U(k) 〈~x, ~y〉. Since U (k) is symmetric, we know that ~∆(k) = − (1 + ε)
(
∇Φµ(~z(k))

)[(k) and
therefore by applying the mean value theorem twice we have that

Φµ(~x(k+1)) = Φµ(~y(k)) +
〈
∇Φµ(~z), ~x(k+1) − ~y(k)

〉
= Φµ(~x(k)) +

〈
∇Φµ(~y), ~y(k) − ~x(k)

〉
+
〈
∇Φµ(~z), ~x(k+1) − ~y(k)

〉
for some ~y between ~y(k) and ~x(k) and some ~z between ~x(k+1) and ~y(k). Now, using that ~y(k)−~x(k) ∈
U (k) and that ~x(k+1) − ~y(k) = ~∆(k) we have

Φµ(~x(k+1)) ≤ Φµ(~x(k)) +
∥∥∇Φµ(~y)

∥∥
U(k) − (1 + ε)

〈
∇Φµ(~z),

(
∇Φµ(~z(k))

)[(k)〉
. (6.6)

Since Uk is contained within the `∞ ball of radius Rk Lemma 25 shows that∥∥∇Φµ(~y)
∥∥
U(k) ≤ eµRk

∥∥∇Φµ(~x(k))
∥∥
U(k) +mµRke

µRk . (6.7)

Furthermore, since ε < 1
5 and Rk ≤ R, by triangle inequality we have

∥∥~z−~z(k)
∥∥
∞ ≤ (1+ε)Rk+R ≤

3R and
∥∥~z(k) − ~x(k)

∥∥
∞ ≤ 2R. Therefore, applying Lemma 25 twice yields that〈
∇Φµ(~z),∇Φµ(~z(k))[(k)

〉
≥ e−3µR

∥∥∇Φµ(~z(k))
∥∥
U(k) − µmRk

≥ e−5µR
∥∥∇Φµ(~x(k))

∥∥
U(k) − 2µmRk. (6.8)

Combining (6.6), (6.7), and (6.8) then yields that

Φµ(~x(k+1)) ≤ Φµ(~x(k))−
(
(1 + ε)e−5µR − eµR

) ∥∥∇Φµ(~x(k))
∥∥
U(k) +mµRke

µR + 2(1 + ε)mµRk.

Since we chose µ = ε
12R , we have

1 + ε ≤ ε

2
+ (1 + 6µR) ≤ ε

2
e5µR + e6µR.

Hence, we have (1 + ε)e−5µR − eµR ≤ ε
2 . Also, since 0 < ε < 1

5 we have

mµRke
µR + 2(1 + ε)mµRk ≤

(
eµR + 2(1 + ε)

)
mµRk ≤ εm

7Rk
24R

.

Thus, we have

Φµ(~x(k+1)) ≤ Φµ(~x(k))− ε

2

∥∥∇Φµ(~x(k))
∥∥
U(k) + εm

7Rk
24R

.

Using Lemma 25 and the fact that Uk contains a `∞ ball of radius rk, we have∥∥∇Φµ(~x(k))
∥∥
U(k) ≥ rk

∥∥∇Φµ(~x(k))
∥∥

1
≥ εrk

12R

(
Φµ(~x(k))− 2m

)
.
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Therefore, we have that

Φµ(~x(k+1)) ≤
(

1− ε2rk
24R

)
Φµ(~x(k)) +

εrk
12R

m+ εm
7Rk
24R

≤
(

1− ε2rk
24R

)
Φµ(~x(k)) + εm

Rk
2R

.

Hence, if Φµ(~x(k)) ≤ 12mτ
ε , we have Φµ(~x(k+1)) ≤ 12mτ

ε . SinceΦµ(~x(0)) ≤ 12mτ
ε by assumption we

have by induction that Φµ(~x(k)) ≤ 12mτ
ε for all k. The necessary bound on

∥∥~x(k)
∥∥
∞ then follows

immediately from Lemma 25.

6.2 Centering Step With Noisy Weight

Here we show how to use the results of the previous section to perform weighted path following
given access only to a multiplicative approximation of the weight function. In particular, we show
how to use Theorem 24 to improve the centrality of ~x while maintaining the invariant that ~w is
close to ~g(~x) multiplicatively.

As in Section 4 given a feasible point, {~x, ~w} ∈ {S0×Rm>0}, we measure the distance between the
current weights, ~w ∈ Rm>0, and the weight function, ~g(~s) ∈ Rm>0, in log scale ~Ψ(~s, ~w)

def
= log(~g(~s)) −

log(~w). Our goal is to keep
∥∥~Ψ(~s, ~w)

∥∥
∞ ≤ K for some error threshold K. We choose K to be just

small enough that we can still decrease δt(~x, ~w) linearly and still approximate ~g(~s), as in general it
may be difficult to compute ~g(~s) when ~w is far from ~g(~s). Furthermore, we ensure that ~Ψ doesn’t
change too much in either ‖ · ‖∞ or ‖ · ‖W(new)

and thereby ensure that the centrality does not
increase too much as we move ~w towards ~g(~s).

We meet these goals by playing the chasing 0 game where the vector we wish to keep near ~0 is
~Ψ(~s, ~w), the adversaries moves are cr-steps, and our moves change log(~w). The cr-step decreases δt
and since we are playing the chasing 0 game we keep ~Ψ(~s, ~w) small. Finally, since by the rules of the
chasing 0 game we do not move ~w much more than ~g(~s) has moved, we have by similar reasoning
to the exact weight computation case, Theorem 11 that changing ~w does not increase δt too much.
This inexact centering operation and the analysis are formally defined and analyzed below.

Most of the parameter balancing involved in this paper lies in the theorem below. Due to the
step consistency, we know know that after a cr-steps, the weight does not move too far away that
we can move it back without hurting centrality too much if we can compute the weight exactly. The
Chasing 0 game shows that we can mimic this if we compute the weight accurate enough. Therefore,
the balancing is simply about how accurate we need to do.

(~x(new), ~w(apx)) = centeringInexact(~x(old), ~w(old),K, approxWeight)

1. R = K
60cr log(960crcγm3/2)

, δt = δt(~x
(old), ~w(old)), ε = 1

5cr
and µ = ε

12R .

2. {~x(new), ~w(new)} = stept(~x
(old), ~w(old), cr) as in Definition 4.

3. Let U = {~y ∈ Rm |
∥∥~y∥∥

W(new)
≤ cr+0.14

cr+1 δt and
∥∥~y∥∥∞ ≤ 4cγδt}

4. Compute ~z = approxWeight(~s, ~w(new), R).
5. ~w(apx) := exp

(
log(~w(new)) + (1 + ε) arg min~u∈U

〈
∇Φµ

(
log(~z)− log

(
~w(new)

))
, ~u
〉)

Note that in step 5 in centeringInexact, we need to project a certain vector onto the intersection
of ball,

∥∥ · ∥∥
W(new)

, and box,
∥∥ · ∥∥∞. In Section C we show that this can be computed in parallel in
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depth Õ(1) and work Õ(m) and therefore this step is not a bottleneck in the computational cost
of our weighted path following schemes.

Theorem 26 (Centering with Inexact Weights). Given current point {~x(old), ~w(old)} ∈ {S0×Rm>0},
error parameter K ≤ 1

8cr
, and approximate weight computation oracle, approxWeight, such that∥∥ log(approxWeight(~s, ~w,R))−log (~g(~s))

∥∥
∞ ≤ R for ~s, ~w ∈ Rm>0 with

∥∥ log(~w)−log (~g(~s))
∥∥
∞ ≤ 2K,

assume that

δt
def
= δt(~x

(old), ~w(old)) ≤ K

240crcγ log
(
960crcγm3/2

) and Φµ
def
= Φµ(~Ψ(~x(old), ~w(old))) ≤ 960crcγm

3/2

where µ = ε
12R . Let (~x(new), ~w(apx)) = centeringInexact(~x(old), ~w(old),K), then

δt(~x
(new), ~w(apx)) ≤

(
1− 0.5

1 + cr

)
δt

and
Φµ(~Ψ(~x(new), ~w(apx))) ≤

(
1− δt

600c2
rR
√
m

)
Φµ(~x(k)) +

2mcγδt
5R

≤ 960crcγm
3/2.

Also, we have
∥∥ log(~g(~s(new)))− log(~w(apx))

∥∥
∞ ≤ K.

Proof. By Lemma 9, we know that for a cr-update step, we have ~Ψ(~x(new), ~w(new))−~Ψ(~x(old), ~w(old)) ∈
U where U is the symmetric convex set given by

U
def
= {~y ∈ Rm |

∥∥~y∥∥
W(new)

≤ Cw and
∥∥~y∥∥∞ ≤ C∞}

where
C∞ = 4cγδt and Cw =

cr + 1/8

cr + 1
δt + 13cγδ

2
t .

Note that since δt ≤ K
(
240crcγ log

(
960crcγm

3/2
))−1 we have

C∞ ≤ 4cγ

(
K

240crcγ log
(
960crcγm3/2

)) ≤ K

60cr log
(
960crcγm3/2

) = R

Therefore U is contained in a `∞ ball of radius R. Again using the bound on δt we have

Cw =
cr + 1

8

cr + 1
δt + 13cγδ

2
t ≤

cr + 1
8

cr + 1
δt +

0.008

cr
δt

≤ cr + 0.14

cr + 1
δt. (6.9)

Consequently, U ⊆ U where we recall that U is the symmetric convex set defined by

U = {~y ∈ Rm |
∥∥~y∥∥

W(new)
≤ cr + 0.14

cr + 1
δt and

∥∥~y∥∥∞ ≤ 4cγδt}.

Therefore, we can play the chasing 0 game on ~Ψ(~s(old), ~w(old)) attempting to maintain the invariant
that

∥∥~Ψ(~s(old), ~w(old))
∥∥
∞ ≤ K ≤

1
8cr

without taking steps that are more than 1 + ε times the size of
U . We pick ε = 1

5cr
so to not interfere with our ability to decrease δt linearly.
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To use the chasing 0 game to maintain
∥∥~Ψ(~s(old), ~w(old))

∥∥
∞ ≤ K we need to ensure that R

satisfies the following
12R

ε
log

(
12mτ

ε

)
≤ K

where here τ is as defined in Theorem 24. To bound τ we need to lower bound the radius of the
`∞ ball that U contains. Since

∥∥~g(~s(old))
∥∥
∞ ≤ 2 by Definition 7 and since

∥∥~Ψ(~x(old), ~w(old))
∥∥
∞ ≤

1
8

by assumption we have that
∥∥~w(old)

∥∥
∞ ≤ 3. By Lemma 5 we know that

∥∥~w(new)
∥∥
∞ ≤ 4 if δtcγ ≤ 1

8
and consequently

∀u ∈ Rm :
∥∥~u∥∥2

∞ ≥
1

4m

∥∥~u∥∥2

W(new)
.

Consequently, if
∥∥~u∥∥∞ ≤ δt

4
√
m
, then ~u ∈ U . Thus, U contains a a box of radius δt

4
√
m

and since U is
contained in a box of radius 4cγδt, we have that τ ≤ 16cγ

√
m and consequently

12R

ε
log

(
12mτ

ε

)
≤ 60crR log

(
960crcγm

3/2
)
≤ K.

This proves that we meet the conditions of Theorem 24. Therefore, we have

Φµ(~Ψ(~x(new), ~w(apx))) ≤
(

1− ε2

24R

(
δt

4
√
m

))
Φµ(~x(k)) + εm

1

2R
(4cγδt)

=

(
1− δt

600c2
rR
√
m

)
Φµ(~x(k)) +

2mcγδt
5R

≤ 960crcγm
3/2.

where we do not need to re-derive the last line because it follows from Theorem 24.
Consequently,

∥∥~Ψ(~x(old), ~w(old))
∥∥
∞ ≤ K and Φµ(~Ψ(~x(new), ~w(apx))) ≤ 960crcγm

3/2. Since K ≤
1
8 , we have

∥∥G(~s(old))−1(~w(old) − ~g(~s(old)))
∥∥
∞ ≤ 1.2 and γ(~s(old), ~w(old)) ≤ 2cγ . Consequently, by

Lemma 6 we have
δt(~x

(new), ~w(new)) ≤ γ(~x(old), ~w(old)) · δ2
t ≤ 2 · cγ · δ2

t

Let

ε∞
def
=
∥∥ log(~w(apx))− log(~w(new))

∥∥
∞ and εw

def
=
∥∥ log(~w(apx))− log(~w(new))

∥∥
W(new)

.

By our bounds on U , we have

ε∞ ≤ (1 + ε)R ≤ 1

100cr
and εw = (1 + ε)

[
cr + 0.14

cr + 1
δt

]
≤ cr + 0.37

cr + 1
δt.

Using Lemma 10, we have that

δt(~x
(new), ~w(apx)) ≤ (1 + ε∞)

[
δt(~x

(new), ~w(new)) + εw

]
≤ 3cγδ

2
t + (1 + ε∞)εw

≤
(

1 +
1

100cr

)(
cr + 0.34

cr + 1

)
δt + 3cγδ

2
t ≤

(
cr + 0.5

cr + 1

)
δt
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7 The Algorithm

In this section we show how to put together the results of the previous sections to solve a linear
program. First, in Section 7.1 we provide a path following routine that allows us to move quickly
from one approximate central path point to another. Using this subroutine, in Section 7.2 we show
how to obtain an algorithm for solving a linear program in Õ(

√
rank(A)L) iterations that consist of

solving linear systems in the original constraint matrix. In the Appendix we provide additional proof
details such as how these algorithm only require approximate linear system solvers (Appendix D)
and how to initialize our interior point technique and round approximate solutions to optimal ones
(Appendix E).

7.1 Path Following

We start by analyzing the running time of pathFollowing a subroutine for following the weighted
central path.

(~x(new), ~w(new)) = pathFollowing(~x(old), ~w(old), tstart, tend)

1. cr = 2 log2

(
2m

rank(A)

)
, t = tstart,K = 1

24cr
.

2. While t < tend
2a. (~x(new), ~w(apx)) = centeringInexact(~x(old), ~w(old),K, computeWeight)

2b. t(new) := t

(
1 + 1

1010c3r log(crm)
√

rank(A)

)
.

2c. ~x(old) := ~x(new), ~w(old) := ~w(apx), t := t(new)

2d. For every m
100cr log(crm) steps, check if the current ~x, ~w satisfies the δ and Φ invariants.

If it does not satisfies, roll back to the last time the invariants were met.
3. Output (~x(old), ~w(old)).

Theorem 27 (Main Result). Given {~x(old), ~w(old)} ∈ {S0 × Rm>0} and tstart ≤ tend. Suppose that

δtstart(~x
(old), ~w(old)) ≤ 1

11520c2
r log

(
1920crm3/2

) and Φµ(~Ψ(~x(old), ~w(old))) ≤ 1920crm
3/2

where µ = 2 log (52crm) /K. Let (~x(new), ~w(apx)) = pathFollowing(~x(old), ~w(old), tstart, tend), then

δtend(~x(new), ~w(new)) ≤ 1

11520c2
r log

(
1920crm3/2

) and Φµ(~Ψ(~x(new), ~w(new))) ≤ 1920crm
3/2.

Furthermore, computing (~x(new), ~w(new)) takes Õ
(√

rank(A) log
(
tend
tstart

))
iterations in expectation

where the cost of each iteration is dominated by the time need to solve Õ(1) linear system solves.

Proof. This algorithm maintains the invariant that

δt(~x
(old), ~w(old)) ≤ 1

11520c2
r log

(
1920crm3/2

) and Φµ(~Ψ(~x(old), ~w(old))) ≤ 1920crm
3/2

in each iteration in the beginning of the step (2a). Note that our oracle computeWeight satisfies
the assumption of Theorem 26 since 2K ≤ 1

12cr
. Hence, centeringInexact can use computeWeight
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to find the approximations of ~g(~s(new)). Hence, Theorem 26 shows that we have

δt(~x
(new), ~w(apx)) ≤

(
1− 0.5

1 + cr

)
δt and Φµ(~Ψ(~x(new), ~w(apx))) ≤ 1920crm

3/2.

Using the fact c1(~g) ≤ 2 rank(A) and that ~w(new) is within a multiplicative factor of two of ~g(~s(new))
by Lemma 1 we have

δt(new)(~x(new), ~w(apx))

≤

(
1 +

1

1010c3
r log (crm)

√
rank(A)

)(
1− 0.5

1 + cr

)
δt +

√∥∥~w(new)
∥∥

1

1010c3
r log (crm)

√
rank(A)

≤ 1

11520c2
r log

(
1920crm3/2

)
Theorem 21 shows that with probability

(
1− 1

m

)d12cr log( 4m
K )e, computeWeight outputs a correct

answer. Therefore, for each m
100cr log(crm) iterations there is constant probability that the whole

procedure runs correctly. Hence, we only need to know how long it takes to check the current state
satisfies δt and Φµ invariants. We can check the δt easily using only 1 linear system solve. To check
Φµ, we need to compute the weight function exactly. To do this, we use lemma 19 and note that
computing the leverage scores exactly takes m linear system solve. Therefore, the averaged cost of
step 2d is just Õ(1) linear system solves and this justified the total running time.

7.2 Solving a Linear Program

Here we show how to use the properties of pathFollowing proved in Theorem 27 to obtain a linear
program solver. Given the previous theorem all that remains is to show how to get the initial central
point and round the optimal point to a vertex. We defer much of the proof of how to obtain an
initial point, deal with unbounded solutions, and round to an optimal vertex to Lemma 40 proved
in Appendix E.

Theorem 28. Consider a linear programming problem of the form

min
~x∈Rn : A~x≥~b

~cT~x (7.1)

where A ∈ Rm×n, ~b ∈ Rm, and ~c ∈ Rn have integer coefficients. Let L denote the bit complexity of
(7.1) and suppose that for any positive definite diagonal matrix D ∈ Rm×m with condition number
2Õ(L) there is an algorithm solve(A,~b,D, ε) such that∥∥solve(A,~b,D, ε)− (DA)+~b

∥∥
ATD2A

≤ ε
∥∥ (DA)+~b

∥∥
ATD2A

(7.2)

in time O (T log(1/ε)) for any ε > 0 with success probability greater than 1 − 1
m . Then, there is

an algorithm to solve (7.1) in expected time Õ
(√

rank(A) (T + nnz(A))L
)
, i.e, find the active

constraints of an optimal solution or prove that the program is unfeasible or unbounded.
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Using [24] as the Solve algorithm, we obtain an algorithm that solves (7.1) in time

Õ
(√

rank(A) (nnz(A) + (rank(A))ω)L
)
.

where ω < 2.3729 [42] is the matrix multiplication constant.

Proof. Applying the Lemma 40 we obtain a modified linear program

min
〈
~c(new), ~x

〉
given A(new)~x ≥ ~b(new) (7.3)

which is bounded and feasible with O(n) variables, O(m) constraints, O(rank(A)) rank and Õ(L)
bit complexity. Also, we are given an explicit interior point ~x0.

To obtain an initial weighted central path point, we can use Theorem 22. However, ~x may not be
close to central path, i.e. δt could be large. To fix this, we can temporarily change the cost function
such that δt = 0. In particular, we can set ~cmodified = ATS−1

x ~w and get δt = 0 for this modified cost
function. One can think of Theorem 27 as showing that we can get the central path point from a
certain cost function tstart~c to another cost function tend~c in time that depends only logarithmically
on the multiplicative difference between these two vectors. Clearly, instead of increasing t we can
decrease t similarly. Hence, we can decrease t such that we get the central path point ~xcenter for
the cost function 2−Θ̃(L)~cmodified. Since 2−Θ̃(L) is close enough to zero, it can be shown that δt is
small also for the cost function 2−Θ̃(L)~c. Then, we could use Theorem 27 to increase t and obtain
the central path point for t = 2Θ̃(L).

Then, we can use centeringInexact to make δt becomes and hence ~cT~xt close to ~cT~x. By a
standard duality gap theorem,17 we know that the duality gap of ~xt is less than

∥∥~w∥∥
1
/t and in

this case it is less than 2−Θ̃(L) because
∥∥~w∥∥

1
≤ 2 rank (A). Now, we can use the conclusion of the

Lemma 40 to find the active constraints of an optimal solution of the original linear program or
prove that it is infeasible or unbounded.

During the algorithm, we only called the function centeringInexact Õ(L) times and hence the
algorithm only executes Õ(L) linear system solves. In Section D, we show that these linear systems
do not need to be solved exactly and that inexact linear algebra suffices. Using this observation and
letting using [24] as the solve routine yields the total running time of

Õ
(√

rank(A) (nnz(A) + (rank(A))ω)L
)
.

In Section C, we show that the projection problem in centeringInexact can be computed in
Õ(1) depth and Õ(m) work and other operations are standard parallelizable linear algebra opera-
tions. Therefore, we achieve the first Õ(

√
rank (A)L) depth polynomial work method for solving

linear programs.

Theorem 29. There is an Õ(
√

rank (A)L) depth polynomial work algorithm to solve linear program
of the form

min
~x∈Rn : A~x≥~b

~cT~x

where L denote the bit complexity of the linear program.
17See [16] or [25] for a more detailed treatment of this fact in a more general regime.
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7.3 Accelerating the Solver

In this section, we show that how we can apply acceleration methods for decreasing the iterations
of interior point techniques can be applied to our algorithm to yield a faster method. In particular
we show how to adapt techniques of Vaidya [37] for using fast matrix multiplication to obtain a
faster running time. Our goal here is to provide a simple exposition of how the iteration costs of
our method can be decrease. We make no attempt to explore the running time of our algorithm in
all regimes and we note that since our algorithm only needs to solve linear systems in scalings of
the original constraint matrix there may be techniques to improve our algorithm further in specific
regimes by exploiting structure in A.

To accelerate our path following method, we note that we solve systems of two forms: we solve
systems in ATS−1WS−1A to update ~x and we solve systems in ATS−1WαS−1A to update ~w.
Since we have proven in Lemma 15 that two system are spectrally similar, we only need to know
how to solve system of the form ATS−1WS−1A and then we can use preconditioning to solve either
system. Furthermore, we note similarly to Vaidya [37] that the S and W matrices do not change
too much from iteration to iteration and therefore a sequence of the necessary linear system can be
solved faster than considering them individually. Below we state and Appendix F we prove a slight
improvement of a result in [37] formally analyzing one way of solving these systems faster.

Theorem 30. Let ~d(i) ∈ Rm>0 be a sequence of r positive vectors. Suppose that the number of times
that d(i)

j 6= d
(i+1)
j for any i ∈ [r] and j ∈ [m] is bounded by Cr2 for some C ≥ 1. Then if we are

given the ~d(i) in a sequence, in each iteration i we can compute
(
ATDiA

)−1
~xi for Di = diag(~di)

and arbitrary ~xi ∈ Rn with average cost per iteration

Õ

(
mnω−1

r
+ n2 + Cωr2ω + Cω−1nrω

)
where ω < 2.3729 [42] is the matrix multiplication constant.

Using Theorem 30 we simply need to estimate how much the diagonal entries S−1WS−1 to
obtain a faster linear program solver. We prove the following.

Theorem 31. For any n
m ≤ β ≤ 1 and r > 1, there is an

Õ

(√
mβ

(
nnz(A) + n2 +

mnω−1

r
+ β−ωr2ω + β−(ω−1)nrω

)
L

)
(7.4)

time algorithm for solving linear programming problems of the form

min~cT~x given A~x ≥ ~b

where A ∈ Rm×n.

Proof. Instead of using β = n
m in the weight function we let β ∈ [ nm , 1] be arbitrary as in the

theorem statement. Looking at the analysis in Section 5 we see that this yields a weight function
with c1 = O (βm), cγ = O(1) and cr = Õ(1). Consequently, it takes Õ

(√
βmL

)
iterations to solve

the linear program.
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We separate the sequence of the linear systems involved into groups of size r. To use the previous
theorem to compute

(
ATDjA

)−1
~x for each group of operations, we need to estimate the change of

the diagonal entries S−1WS−1. For the change of S, Lemma 5 shows that∥∥ log (~sj)− log (~sj+1)
∥∥

Wj
= O(1).

Since we have added β in the weight function, we have ~wi ≥ β and∥∥ log (~sj)− log (~sj+1)
∥∥

2
= O(β−1/2).

Therefore, in a period of r operations, at most O
(
β−1r2

)
coordinates can change multiplicatively

by a constant factor. Similarly, we can use inequality (6.9) to analyze the change of W.
Therefore, we can maintain a vector ~d such that D is spectrally similar to S−1WS−1 while

only changing ~d a total of O
(
β−1r2

)
over a sequence of r operations. Using Theorem 30 and using

ADA as pre-conditioner for the necessary linear system solves, we can solve the linear system with
average cost

Õ

(
nnz(A) + n2 +

mnω−1

r
+ β−ωr2ω + β−(ω−1)nrω

)
.

Using that the total number of iterations is Õ
(√
βmL

)
then yields (7.4).

8 Acknowledgments

We thank Yan Kit Chim, Andreea Gane, Jonathan A. Kelner, Lap Chi Lau, Aleksander Mądry,
Cameron Musco, Christopher Musco, Lorenzo Orecchia, Ka Yu Tam and Nisheeth Vishnoi for many
helpful conversations. This work was partially supported by NSF awards 0843915 and 1111109, NSF
Graduate Research Fellowship (grant no. 1122374) and Hong Kong RGC grant 2150701. Finally,
we thank the referees for extraordinary efforts and many helpful suggestions.

References

[1] Kurt M. Anstreicher. Volumetric path following algorithms for linear programming. Math.
Program., 76:245–263, 1996.

[2] Kenneth L Clarkson and David P Woodruff. Low rank approximation and regression in input
sparsity time. In Proceedings of the 45th annual ACM symposium on Symposium on theory of
computing, pages 81–90. ACM, 2013.

[3] Samuel I Daitch and Daniel A Spielman. Faster approximate lossy generalized flow via interior
point algorithms. In Proceedings of the 40th annual ACM symposium on Theory of computing,
pages 451–460. ACM, 2008.

[4] George B Dantzig. Maximization of a linear function of variables subject to linear inequalities.
New York, 1951.

[5] RobertM. Freund. Projective transformations for interior-point algorithms, and a superlinearly
convergent algorithm for the w-center problem. Mathematical Programming, 58(1-3):385–414,
1993.

45



[6] Andrew V. Goldberg and Satish Rao. Beyond the flow decomposition barrier. J. ACM,
45(5):783–797, 1998.

[7] Clovis C Gonzaga. Path-following methods for linear programming. SIAM review, 34(2):167–
224, 1992.

[8] Narendra Karmarkar. A new polynomial-time algorithm for linear programming. In Proceedings
of the sixteenth annual ACM symposium on Theory of computing, pages 302–311. ACM, 1984.

[9] Jonathan A. Kelner, Lorenzo Orecchia, Aaron Sidford, and Zeyuan Allen Zhu. A Simple,
Combinatorial Algorithm for Solving SDD Systems in Nearly-Linear Time. January 2013.

[10] Leonid G Khachiyan. Polynomial algorithms in linear programming. USSR Computational
Mathematics and Mathematical Physics, 20(1):53–72, 1980.

[11] Leonid G Khachiyan. Rounding of polytopes in the real number model of computation. Math-
ematics of Operations Research, 21(2):307–320, 1996.

[12] LG Khachiyan, SP Tarasov, and II Erlikh. The method of inscribed ellipsoids. In Soviet Math.
Dokl, volume 37, pages 226–230, 1988.

[13] Adam R Klivans and Daniel Spielman. Randomness efficient identity testing of multivariate
polynomials. In Proceedings of the thirty-third annual ACM symposium on Theory of computing,
pages 216–223. ACM, 2001.

[14] Ioannis Koutis, Gary L. Miller, and Richard Peng. A nearly-m log n time solver for sdd linear
systems. In Foundations of Computer Science (FOCS), 2011 IEEE 52nd Annual Symposium
on, pages 590 –598, oct. 2011.

[15] Yin Tat Lee and Aaron Sidford. Efficient accelerated coordinate descent methods and faster
algorithms for solving linear systems. In The 54th Annual Symposium on Foundations of
Computer Science (FOCS), 2013.

[16] Yin Tat Lee and Aaron Sidford. Path finding ii: An\˜ o (m sqrt (n)) algorithm for the minimum
cost flow problem. arXiv preprint arXiv:1312.6713, 2013.

[17] Mu Li, Gary L Miller, and Richard Peng. Iterative row sampling. 2012.

[18] László Lovász and Santosh Vempala. Simulated annealing in convex bodies and an o*(n4)
volume algorithm. J. Comput. Syst. Sci., 72(2):392–417, 2006.

[19] Aleksander Madry. Navigating central path with electrical flows: from flows to matchings,
and back. In Proceedings of the 54th Annual Symposium on Foundations of Computer Science,
2013.

[20] Michael W. Mahoney. Randomized algorithms for matrices and data. Foundations and Trends
in Machine Learning, 3(2):123–224, 2011.

[21] Nimrod Megiddo. Pathways to the optimal set in linear programming. In Nimrod Megiddo,
editor, Progress in Mathematical Programming, pages 131–158. Springer New York, 1989.

46



[22] Shinji Mizuno, Michael J Todd, and Yinyu Ye. On adaptive-step primal-dual interior-point
algorithms for linear programming. Mathematics of Operations research, 18(4):964–981, 1993.

[23] Murat Mut and Tamás Terlaky. A tight iteration-complexity upper bound for the mty predictor-
corrector algorithm via redundant klee-minty cubes. 2013.

[24] Jelani Nelson and Huy L Nguyên. Osnap: Faster numerical linear algebra algorithms via sparser
subspace embeddings. arXiv preprint arXiv:1211.1002, 2012.

[25] Yu Nesterov. Introductory Lectures on Convex Optimization: A Basic Course, volume I. 2003.

[26] Yu. Nesterov. Rounding of convex sets and efficient gradient methods for linear programming
problems. Optimization Methods Software, 23(1):109–128, February 2008.

[27] Yu Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems.
SIAM Journal on Optimization, 22(2):341–362, 2012.

[28] Yu E Nesterov and Michael J Todd. Self-scaled barriers and interior-point methods for convex
programming. Mathematics of Operations research, 22(1):1–42, 1997.

[29] Yurii Nesterov and Arkadii Semenovich Nemirovskii. Interior-point polynomial algorithms in
convex programming, volume 13. Society for Industrial and Applied Mathematics, 1994.

[30] Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial optimization: algorithms and
complexity. Courier Dover Publications, 1998.

[31] James Renegar. A polynomial-time algorithm, based on newton’s method, for linear program-
ming. Mathematical Programming, 40(1-3):59–93, 1988.

[32] Daniel A Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. SIAM
Journal on Computing, 40(6):1913–1926, 2011.

[33] Daniel A Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph partitioning,
graph sparsification, and solving linear systems. In Proceedings of the thirty-sixth annual ACM
symposium on Theory of computing, pages 81–90. ACM, 2004.

[34] Gilbert Strang. Inverse problems and derivatives of determinants. Archive for Rational Me-
chanics and Analysis, 114(3):255–265, 1991.

[35] Michael J Todd. Scaling, shifting and weighting in interior-point methods. Computational
Optimization and Applications, 3(4):305–315, 1994.

[36] Pravin M. Vaidya. A new algorithm for minimizing convex functions over convex sets (extended
abstract). In FOCS, pages 338–343, 1989.

[37] Pravin M Vaidya. Speeding-up linear programming using fast matrix multiplication. In Foun-
dations of Computer Science, 1989., 30th Annual Symposium on, pages 332–337. IEEE, 1989.

[38] Pravin M Vaidya. An algorithm for linear programming which requires o (((m+ n) n 2+(m+
n) 1.5 n) l) arithmetic operations. Mathematical Programming, 47(1-3):175–201, 1990.

47



[39] Pravin M. Vaidya. Reducing the parallel complexity of certain linear programming problems
(extended abstract). In FOCS, pages 583–589, 1990.

[40] Pravin M Vaidya. A new algorithm for minimizing convex functions over convex sets. Mathe-
matical Programming, 73(3):291–341, 1996.

[41] Pravin M Vaidya and David S Atkinson. A technique for bounding the number of iterations in
path following algorithms. Complexity in Numerical Optimization, pages 462–489, 1993.

[42] Virginia Vassilevska Williams. Multiplying matrices faster than coppersmith-winograd. In
Proceedings of the forty-fourth annual ACM symposium on Theory of computing, pages 887–
898. ACM, 2012.

[43] Yinyu Ye. Interior point algorithms: theory and analysis, volume 44. John Wiley & Sons, 2011.

A Glossary

Here we summarize problem specific notation we use throughout the paper. For many quantities
we included the typical order of magnitude as they appear during our algorithms.

• Linear program related: constraint matrix A ∈ Rm×n , cost vector ~c ∈ Rn, constraint vector
~b ∈ Rm, solution ~x ∈ Rn, weights of constraints ~w ∈ Rm where m is the number of constraints
and n is the number of variables.

• Bit complexity: L = log(m) + log(1 + dmax) + log(1 + max{
∥∥~c∥∥∞,∥∥~b∥∥∞}) where dmax is the

largest absolute value of the determinant of a square sub-matrix of A.

• Slacks: ~s(~x) = A~x−~b.

• Matrix version of variables: S is the diagonal matrix corresponds to ~s, W corresponds to ~w,
G corresponds to ~g.

• Penalized objective function (4.1): ft(~x, ~w) = t · ~cT~x−
∑

i∈[m]wi log s(~x)i.

• Newton step (4.2): ~ht(~x, ~w) = (∇2
~x~xft(~x, ~w))−1∇~xft(~x, ~w) =

(
ATS−1WS−1A

)−1 (
t~c−ATS−1 ~w

)
.

• Centrality (4.3): δt(~x, ~w) =
∥∥~ht(~x, ~w)

∥∥
∇2
~x~x
ft(~x,~w)

≈ 1
polylog(m) .

• Slack Sensitivity(4.3): γ(~s, ~w) = maxi∈[m]

∥∥W−1/2~1i
∥∥

PS−1A(~w)
≈ 1.

• Properties of weight function (Def 7): size c1(~g) =
∥∥~g(~s)

∥∥
1
≈ rank (A), slack sensitivity

cγ(~g) = sup~s γ(~s,~g(~s)) ≈ 1, step consistency cr(~g) ≈ log
(

m
rank A

)
.

• Difference between ~g and ~w (4.16): ~Ψ(~s, ~w) = log(~g(~s))− log(~w).

• Potential function for tracing 0 (Def 23): Φµ(~x) = eµx + e−µx ≈ poly(m).
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• The weight function proposed (5.1):

~g(~s) = arg min
~w∈Rm>0

f̂(~s, ~w) where f̂(~s, ~w) = ~1T ~w − 1

α
log det(AT

s WαAs)− β
∑
i

logwi

where As = S−1A, α ≈ 1− 1/ log2

(
m

rank(A)

)
, β ≈ rank(A)/m.

B Technical Tools

In this section, we provide and prove various mathematical facts that we use throughout the paper.

B.1 Matrix Properties

First, we prove various properties regarding projection matrices that we use throughout the paper.

Lemma 32 (Projection Matrices). Let P ∈ Rn×n be an arbitrary projection matrix and let Σ =
diag(P). For all i, j ∈ [n] and ~x ∈ Rn we have the following

(1) Σii =
∑

j∈[n] P
(2)
ij ,

(2) 0 � P(2) � Σ � I,

(3) P
(2)
ij ≤ ΣiiΣjj,

(4) |~1Ti P(2)~x| ≤ Σii

∥∥~x∥∥
Σ
.

Proof. To prove (1), we simply note that by definition of a projection matrix P = PP and therefore

Σii = Pii = ~1Ti P~1i = ~1Ti PP~1i =
∑
j∈[n]

P2
ij =

∑
j∈[n]

P
(2)
ij

To prove (2), we observe that since P is a projection matrix, all its eigenvectors are either 0
or 1. Therefore, Σ � I and by (1) Σ − P(2) is diagonally dominant. Consequently, Σ − P(2) � 0.
Rearranging terms and using the well known fact that the shur product of two positive semi-definite
matrices is positive semi-definite yields (2).

To prove (3), we use P = PP, Cauchy-Schwarz, and (1) to derive

Pij =
∑
k∈[n]

PikPkj ≤

√√√√√
∑
k∈[n]

P2
ik

∑
k∈[n]

P2
kj

 =
√

ΣiiΣjj .

Squaring then yields (3).
To prove (4), we note that by the definition of P(2) and Cauchy-Schwarz, we have

∣∣∣~1Ti P(2)~x
∣∣∣ =

∣∣∣∣∣∣
∑
j∈[n]

P
(2)
ij ~xj

∣∣∣∣∣∣ ≤
√√√√√
∑
j∈[n]

Σjj~x2
j

 ·∑
j∈[n]

P
(4)
ij

Σjj
(B.1)
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Now, by (1) and (3), we know that

∑
j∈[n]

P4
ij

Σjj
≤
∑
j∈[n]

P2
ijΣiiΣjj

Σjj
= Σii

∑
j∈[n]

P2
ij = Σ2

ii (B.2)

Since
∥∥~x∥∥

Σ

def
=
√∑

j∈[n] Σjj~x2
j , combining (B.1) and (B.2) yields

∣∣∣~1Ti P(2)~x
∣∣∣ ≤ Σii

∥∥~x∥∥
Σ

as desired.

B.2 Taylor Expansions and Multiplicative Approximations

Throughout this paper we use log(~a) − log(~b) as a convenient way of working with B−1(~a −~b) or
A−1(~b − ~a). In this section we make this connection rigorous by providing several helper lemmas
used throughout the paper.

Lemma 33 (Log Notation). Suppose
∥∥ log(~a)− log(~b)

∥∥
∞ = ε ≤ 1/2 then∥∥B−1(~a−~b)

∥∥
∞ ≤ ε+ ε2.

If
∥∥B−1(~a−~b)

∥∥
∞ = ε ≤ 1/2, then ∥∥ log(~a)− log(~b)

∥∥
∞ ≤ ε+ ε2.

Proof. Using the Taylor expansion of ex and log(1 + x), we get the following two inequalities which
prove the claim

1 + x ≤ ex ≤ 1 + x+ x2 for |x| ≤ 1

2
,

x− x2 ≤ log(1 + x) ≤ x for |x| ≤ 1

2
.

B.3 Matrix Calculus

Here, we derive various matrix calculus formulas used in Section 5. These are now somewhat
standard and also discussed in [40, 1] but we derive them here for completeness. In this section, we
define

RA(~w)ij
def
= ~aTi (ATWA)−1~aj .

We start by computing the derivative of the volumetric barrier function, f(~w)
def
= log det(ATWA).

Lemma 34 (Derivative of Volumetric Barrier). For A ∈ Rn×m, let f : Rm>0 → R be given by
f(~w)

def
= log det(ATWA). Then the following holds

∀~w ∈ Rm>0 : ∇f(~w) = diag(RA(~w))
def
= ΣA(~w)W−1~1.
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Proof. For all i ∈ [m] and ~w ∈ Rm, we know that

∂

∂ ~wi
f(~w) = lim

α→0

1

α

[
f(~w + α~1i)− f(~w)

]
= lim

α→0

1

α

[
log det(ATWA + α~ai~a

T
i )− log det(ATWA)

]
.

Applying the matrix determinant lemma then yields that

∂

∂ ~wi
f(~w) = lim

α→0

1

α

[
log
(
det(ATWA) · (1 + α~aTi (ATWA)−1~ai)

)
− log

(
det(ATWA)

)]
.

Therefore,
∂

∂ ~wi
f(~w) = lim

α→0

log(1 + αR(~w)ii)

α
= R(~w)ii.

Next we bound the rate of change of entries of the resistance matrix.

Lemma 35 (Derivative of Effective Resistance). For all A ∈ Rm×n, ~w ∈ Rm>0, and i, j, k ∈ [m] we
have

∂

∂ ~wk
[RA(~w)]ij = −RA(~w)ikRA(~w)kj

where diag(RA(~w))
def
= ΣA(~w)W−1~1.

Proof. By definition, we have that

∂

∂ ~wk
RA(~w)ij = lim

α→0

1

α

[
R(~w + α~1k)ij −R(~w)ij

]
(B.3)

and
R(~w + α~1k)ij = ~1Ti A(ATWA + αAT~1k~1

T
kA)−1AT~1j . (B.4)

Furthermore, by applying the Sherman-Morrison formula, we know that

(ATWA + αAT~1k~1
T
kA)−1 = (ATWA)+ −

α(ATWA)−1AT~1k~1TkA(ATWA)−1

1 + α~1TkA(ATWA)−1AT~1k
. (B.5)

Combining (B.3), (B.4), and (B.5) yields the result.

Finally, we use this to derive the Jacobian of leverage scores.

Lemma 36 (Derivative of Leverage Scores). For all A ∈ Rm×n, ~w ∈ Rm>0 we have the following

J~w(~σA(~w)) = ΛA(~w)W−1.

Proof. Since by definition ~σA(~w)i = ~wiRA(~w)ii by the previous lemma, we have that

∂

∂ ~wj
~σA(~w)i = ~1i=jR(~w)ii − ~wiR(~w)

(2)
ij .

Writing this in matrix form and recalling the definition of the Jacobian then yields

J~w(~σA(~w)) = diag(RA(~w))−WRA(~w)(2).

Right multiplying by I = WW−1 and recalling the definition of ΛA then yields the result.
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C Projecting Onto Ball Intersect Box

In the algorithm centeringInexact, we need to compute

arg min
~u∈U

〈~a, ~u〉 (C.1)

where U = {~x ∈ Rm |
∥∥~x∥∥

W
≤ b and

∥∥~x∥∥∞ ≤ c} for some ~w ≥ ~0, i.e. we need to project ~a onto the
intersection of the ball,

{
~x ∈ Rm |

∥∥~x∥∥
W
≤ b
}
, and the box

{
~x ∈ Rm |

∥∥~x∥∥∞ ≤ c}. In this section
we show how this can be computed in nearly linear time and in particular it can be computed in
parallel in depth Õ(1) and work Õ(m).

Note that by rescaling we can rewrite (C.1) as

arg max∥∥~x∥∥
2
≤1,−li≤xi≤li

〈~a, ~x〉 (C.2)

for some li. Let us consider a simple algorithm which first ignore the box constraint and find the
best vector ~a. If ~a does not violate any box constraint, then it is the solution. Otherwise, we
pick a most violated constraint i, i.e. the coordinate with highest |ai| /li. Then, we threshold this
coordinates and repeat the procedure on the remaining coordinate.

~x = projectOntoBallBox(~a)

1. Set ~a = ~a/
∥∥~a∥∥

2
.

2. Sort the coordinate such that |ai| /li is in descending order.
3. For i = 0, · · · ,m

3a. Set ~x =

sign (~aj) lj if j ∈ {1, 2, · · · , i}√
1−
∑i
k=0 l

2
k

1−
∑i
k=0 a

2
k

~aj otherwise
.

3b. If ~x is a feasible solution, output ~x.

Lemma 37. The algorithm projectOntoBallBox outputs a solution of the problem (C.2).

Proof. We claim that for all k ≤ i where i is the last step in the algorithm, we have

max
~x∈Ω
〈~a, ~x〉 = max

~x∈Ωk
〈~a, ~x〉

where Ω = {x :
∥∥~x∥∥

2
≤ 1,−li ≤ xi ≤ li} and Ωk = Ω ∩ {x : |xi| = li for i ∈ {1, 2, · · · , k}}. Since

~x is feasible at the last step, we have

~xlast = arg max
~x∈Ωk

〈~a, ~x〉

= arg max
~x∈Ω

〈~a, ~x〉 .

Therefore, the correctness of the algorithm follows from the claim.
Now, we prove the claim by induction. The base case is trivial because Ω = Ω0. Now proceed

by contradiction and suppose that

max
~x∈Ωk

〈~a, ~x〉 > max
~x∈Ωk+1

〈~a, ~x〉 . (C.3)
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Let ~y = arg max~x∈Ωk
〈~a, ~x〉. If for all j > k, we have |yj | < lj . Then, the ~x found in the (k + 1)th

iteration is exactly ~y and it is feasible and hence the algorithm outputs ~y. Otherwise, there is j
such that |yj | = lj . Since ~y /∈ Ωk+1, we have |yk+1| < lk+1 and hence j > k + 1.

Consider
~z(t) = ~y +

sign (yk+1) t

|yk+1|+ ε
~1k+1 −

sign (yj) t

lj
~1j

where ε is a very small positive number. Note that d
dt

∥∥~z(t)∥∥2
∣∣∣
t=0

= 2
|yk+1|
|yk+1|+ε − 2 < 0 and hence∥∥~z(t)∥∥

2
≤ 1 for t > 0 but close to 0. Also, we have

d

dt
〈~a, ~z〉 =

|ak+1|
|yk+1|+ ε

− |aj |
lj
.

Take ε = lk+1 − |yk+1|, then we have

d

dt
〈~a, ~z〉 =

|ak+1|
lk+1

− |aj |
lj

> 0

because j > k+ 1 and |ai| /li is in descending order. Therefore, ~z(t) is a feasible and better solution
for small positive t. Hence, it proves ~y is not the optimal solution of max~x∈Ωk 〈~a, ~x〉 that contradicts
to the definition of ~y.

Hence, max~x∈Ω 〈~a, ~x〉 = max~x∈Ωk 〈~a, ~x〉 and the algorithm outputs an optimal solution.

~x = projectOntoBallBoxParallel(~a)

1. Set ~a = ~a/
∥∥~a∥∥

2
.

2. Sort the coordinate such that |ai| /li is in descending order.
3. Precompute

∑i
k=0 l

2
k and

∑i
k=0 a

2
k for all i.

4. Find the first i such that 1−
∑i
k=0 l

2
k

1−
∑i
k=0 a

2
k

≤ l2i+1

a2i+1
.

5. Output ~x =

sign (~aj) lj if j ∈ {1, 2, · · · , i}√
1−
∑i
k=0 l

2
k

1−
∑i
k=0 a

2
k

~aj otherwise
.

The algorithm projectOntoBallBoxParallel is a parallel and more efficient version projectOntoBallBox.
All other operations in our algorithm are standard linear algebra and hence the following theorem
shows that our linear programming solver is indeed parallelizable.

Lemma 38. The algorithm projectOntoBallBoxParallel outputs an solution of the optimization
problem (C.2) in depth Õ(1) and work Õ(m).

Proof. Note that in the algorithm projectOntoBallBox, the value

1−
∑i

k=0 l
2
k

1−
∑i

k=0 a
2
k

is increasing through the algorithm. To see this, note that in step 3b, if ~x is not feasible, that means
there is j such that

1−
∑i

k=0 l
2
k

1−
∑i

k=0 a
2
k

>
l2j
a2
j

.
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Since ai/li is in descending order, j = i+ 1. Therefore, we have

1−
∑i

k=0 l
2
k

1−
∑i

k=0 a
2
k

>
l2i+1

a2
i+1

.

Hence, we have
1−

∑i+1
k=0 l

2
k

1−
∑i+1

k=0 a
2
k

>
1−

∑i
k=0 l

2
k

1−
∑i

k=0 a
2
k

.

Using this fact, it is easy to see the algorithm projectOntoBallBoxParallel and the algorithm
projectOntoBallBox outputs the same vector. Obviously, all steps can be computed in depth Õ(1)
and work Õ(m).

D Inexact Linear Algebra

Throughout much of our analysis of weighted path following we assumed that linear systems in
A could be solved exactly. In this section we relax this assumption and discuss the effect of
using inexact linear algebra in our linear programming algorithms. We show that rather than
computing

(
ATDA

)−1
~x precisely for positive diagonal matrix D it suffices to solve these systems

approximately.
Throughout this section we assume that for any matrix A ∈ Rn×m and vector ~b ∈ Rm there is

an algorithm solve(A,~b) which outputs an vector ~x such that∥∥~x−A+~b
∥∥

ATA
≤ ε
∥∥A+~b

∥∥
ATA

. (D.1)

Since A is full rank, we can write ~c = AT ~d for some ~d. From equation (4.2), the Newton step is

~ht(~x, ~w) = (ATS−1WS−1A)−1ATS−1
√

W

(
t
~s~d√
~w
−
√
~w

)

=
(√

WS−1A
)+
(
t
~s~d√
~w
−
√
~w

)
.

Suppose that we compute ~ht by the algorithm solve above, then we have∥∥∥∥∥solve
(
√

WS−1A, t
~s~d√
~w
−
√
~w

)
− ~ht

∥∥∥∥∥
ATS−1WS−1A

≤ ε
∥∥~ht∥∥ATS−1WS−1A

= εδt (~x, ~w) .

Hence, the outcome of solve differs from the Newton step ~ht by a relative small amount in
‖·‖ATS−1WS−1A. Hence, it suffices to prove that δt is stable under this small amount in ‖·‖ATS−1WS−1A

and hence is the algorithm solve will only increase δ by a little compared with using exact linear
algebra.

Lemma 39. Let γ def
= γ(~x, ~w) and ~x(new) = ~x+ ~∆. Let η =

∥∥∥~∆∥∥∥
ATS−1WS−1A

≤ 1
8γ . Then, we have

δt

(
~x(new), ~w

)
≤ (1− γη)−1 (δt (~x, ~w) + η) .
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Proof. By the same proof in Lemma 5, we have that∥∥S−1(~s(new) − ~s)
∥∥
∞ ≤ γη.

Therefore, we have

δt

(
~x(new), ~w

)
=

∥∥∥t~c−ATS−1
(new) ~w

∥∥∥(
ATS−1

(new)
WS−1

(new)
A
)−1

≤ (1 + γη)
∥∥∥t~c−ATS−1

(new) ~w
∥∥∥(

ATS−1
(new)

WS−1
(new)

A
)−1

≤ (1 + γη)
∥∥t~c−ATS−1 ~w

∥∥
(ATS−1WS−1A)−1 +

∥∥∥∥AT

(
~w

~s
− ~w

~s(new)

)∥∥∥∥
(ATS−1WS−1A)−1

= (1 + γη) δt (~x, ~w) +

∥∥∥∥∥~s(new) − ~s
~s(new)

∥∥∥∥∥
W

≤ (1 + γη) δt (~x, ~w) + (1− γη)−1

∥∥∥∥∥~s(new) − ~s
~s

∥∥∥∥∥
W

.

By the same proof in Lemma 5, we have that∥∥S−1(~s(new) − ~s)
∥∥

W
≤ η.

Thus, we have the result.

Therefore, as long as we choose ε small enough, the algorithm solve gives an accurate enough
~x(new) for the centering step. Similarly, it is easy to see that it also gives accurate enough ~w(new)

because the error of ~w(new) due to solve is small in
∥∥ · ∥∥

W
norm and the tracing 0 game can afford

for this error.
At last, we need to check solve gives us a way to compute weight function. Since the weight

function computation relies on the function computeLeverageScores, we only need to know if we
can compute ~l in the computeLeverageScores with high enough accuracy. Now, we use the notation
is the computeLeverageScores. Without loss of generality, we can assume X = I. Let ~l(apx) and
~p(apx) be the approximate ~l and ~p computed by the algorithm Solve. Then, we have∥∥∥∥(~l(j))(apx)

− (ATA)+AT ~q(j)

∥∥∥∥
ATA

=

∥∥∥∥(~l(j))(apx)
−A+~q(j)

∥∥∥∥
ATA

≤ ε
∥∥A+~q(j)

∥∥
ATA

= ε
∥∥AT ~q(j)

∥∥
(ATA)−1

≤ ε
∥∥~q(j)

∥∥
2
≤ ε
√
n

k
.

Hence, for any i, j, we have∥∥∥∥~p(j)
i −

(
~p

(apx)
i

)(j)
∥∥∥∥
∞
≤

∥∥∥∥~p(j) −
(
~p(apx)

)(j)
∥∥∥∥

2

=

∥∥∥∥A((~l(j))(apx)
−~l(j)

)∥∥∥∥
2

≤ ε

√
n

k
.

55



Therefore, we have√√√√ k∑
j=1

(
~p

(j)
i

)2
−

√√√√ k∑
j=1

((
~p

(apx)
i

)(j)
)2

≤

√√√√ k∑
j=1

(
~p

(j)
i −

(
~p

(apx)
i

)(j)
)2

≤ ε
√
nk.

Therefore, if ε ≤
√

1
mpolylog(m) , the error is small enough for computeLeverageScores.

E Bit Complexity and Linear Program Reductions

In this section, we show how to reduce solving an arbitrary linear program to finding a low cost
solution in a bounded linear program for which we have an explicit interior point. Throughout this
section letA ∈ Rm×n, ~b ∈ Rm, ~c ∈ Rn, and consider the following general linear program

min
~x∈Rn : A~x≥~b

~cT~x (E.1)

We assume that the entries of A, ~b, and ~c are integers and we let OPT denote the optimal value of
(E.1) and we let L denote the bit complexity of (E.1) where

L
def
= log(m) + log(1 + dmax(A)) + log(1 + max{

∥∥~c∥∥∞,∥∥~b∥∥∞})
and dmax(A) denotes the largest absolute value of the determinant of a square sub-matrix of A.
Our goal is to efficiently transform (E.1) to a linear program of the same form

min
~x∈Rn′ : A′~x≥~b′

~c′T~x (E.2)

where A′ ∈ Rm
′×n′ , ~b′ ∈ Rm

′ , and ~c′ ∈ Rn
′ are integer, and nnz(A′), n′, m′, and the bit complexity

of (E.2) denoted, L′, are comparable to nnz(A), n, m, and L. Furthermore, we require that (E.2)
is bounded, has an explicit efficiently computable interior point, and that we can convert any low
cost feasible solution to a solution of (E.1) in linear time.

While there are standard tools to perform reductions to ensure that (E.1) is bounded and has an
explicit initial feasible point or to ensure that the optimal integral solution can be easily computed
explicitly, we need to particularly careful when using these reductions to ensure that nnz(A), n,
and m are not increased significantly. As the running times of our path following techniques in
Section (7) depend crucially on these parameters in this section we prove the following Lemma
claiming that such an efficient reduction is possible.

Lemma 40. In O(nnz(A) + n+m) time we can compute integer A′ ∈ Rm
′×n′ , ~b′ ∈ Rm

′, ~c′ ∈ Rn
′ ,

~x′ ∈ Rm
′ . Such that nnz(A′) = O(nnz(A) + n+m), n′ = O(n), m′ = O(m), A′~x′ ≥ ~b′, and (E.2)

is bounded and has bit complexity at most 12L1 + 7 log(20n). Furthermore, if we can find a feasible
point in (E.2) such that the cost of that point is at most the OPT + 2−12(L+log(20n)) where OPT is
the value of (E.2) then we can either

1. Find the active constraints of a basic feasible optimal solution (E.1) using only one matrix
vector multiplication by A; or

56



2. Prove that (E.1) is infeasible or unbounded.

We break this proof into two parts. First in Lemma 41 we show how to transform (E.1) so that
the linear program is bounded and has an explicit feasible point. Then in Lemma 43 we follow the
approach of [3] and show that we can perturb the cost of a linear program to make the optimal
solution unique and thereby make it easy to compute an exact integral solution.

Lemma 41. Consider the following modified linear program

min~cT~x+ n23L+4z such that A~x+ z~1 ≥ ~b, 2L+1 ≥ z ≥ 0, 2L+1~1 ≥ ~x ≥ −2L+1~1 (E.3)

where A, ~b, and ~c are as in (E.1) and L is the bit complexity of (E.1). (E.3) is bounded with
an explicit interior point ~x = 0, z = 2L + 1. Furthermore, (E.1) is bounded and feasible with an
optimal solution ~x if and only if (~x, 0) is an optimal solution of (E.3) with 2L ≥ xi ≥ −2L, (E.1)
is unbounded if and only if there is a basic feasible solution, (~x, z), of (E.3) with |xi| > 2L for
some i, and (E.1) is infeasible if and only if there is basic feasible solution, (~x, z), of (E.3) with
~z 6= 0. Furthermore, (E.3) can be written in the form (E.2) such that all these properties hold with
nnz(A′) = O(nnz(A) + n+m), n′ = O(n), m′ = O(m), and L′ ≤ 4L+ 2 log(16n).

Proof. Case 1: Suppose (E.1) is bounded and feasible. It is known that any basic feasible solution
of (E.1) is a vector of rational numbers with both absolute value of numerator and denominator
are bounded by 2L [30]. Therefore, −n22L ≤ OPT ≤ n22L. Given any feasible solution ~x of (E.1),
the point (~x, z = 0) is a feasible solution of (E.3) with same cost value. Hence, the linear program
(E.3) is feasible and the optimal value of (E.3) is at most n22L.

On the other hand, clearly (E.3) is feasible because ~x = ~0, z = 2L + 1 is an interior point.
Furthermore, (E.3) is bounded and therefore has some optimal value. Consider any optimal basic
feasible solution (~x, z) of (E.3), we have ~cT~x is between −n22L+1 and n22L+1. Also, z is a rational
number with the absolute value of denominator are bounded by 2L using Cramer’s rule. Therefore,
we have z ≥ 2−L1 or z = 0. If z ≥ 2−L, then the total cost is at least n23L+42−L − n22L+1 > n22L.
However, as we argued above, the optimal value of (E.3) is at most n22L. Therefore, optimal
solution has z = 0 and 2L ≥ xi ≥ −2L for all i.

Case 2: Suppose (E.1) is not feasible. In this case, any feasible point (~x, z) in (E.3) has z 6= 0
and by the reasoning in the previous section any basic feasible solution has cost greater than n22L.

Case 3: Suppose (E.1) is not bounded. Let OPTk = min~cT~x such that A~x ≥ ~b, k + 2L ≥ xi ≥
−2L−k. Thus, we have OPT1 < OPT0 and any optimal point of the case k = 1 has some coordinate
larger than 2L or smaller −2L. By similar argument as above, we have that the optimal point of
(E.3) is of the form (~x, 0) and some coordinate of ~x is larger than 2L or smaller −2L.

To compute the bit complexity of (E.3) note that we can write (E.3) in the form of (E.2) by
choosing

A′ =


A ~1
I ~0

−I ~0
~0T 1
~0T −1

 , ~b′ =


~b
−2L1+1

2L1+1

0
2L1+1

 , ~c′ =

(
~c

n23L+4

)
where I ∈ Rm×m and~0 ∈ Rm (E.4)

Thus n′ = n+ 1, m′ = 3m+ 2, and it is easy to see that

dmax(A′) = dmax
([

A ~1
])
≤ n · dmax (A) .
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Therefore, the bit complexity of (E.3) is at most log(1 + ndmax(A)) + log(1 + n23L+4) ≤ 4L +
2 log(16n) as desired.

Following the approach in [3] to use the following isolation lemma, we show that it is possible
to transform the linear program into one with unique optimal solution by randomly perturbing the
cost function.

Lemma 42 ([13]). Given any collection of linear functions on n variables c1, c2, · · · , cn with coeffi-
cients in the range {−K,−K − 1, · · · ,K − 1,K}. If c1, · · · , cn are independently chosen uniformly
at random in {−2Kn, · · · , 2Kn}. Then, with probability greater than 1

2 , there is a unique linear
function of minimum value at c1, c2, · · · , cn.

Note that for we can think every vertex ~x is a linear function ~cT~x on the cost variables ~c.
Although there are exponentially many vertices, the above lemma shows that the minimizer is
attained at a unique vertex (linear function).

Lemma 43. Suppose that (E.1) is feasible and bounded and consider the following modified linear
program

min
(
22L+3n~c+ ~r

)T
~x given A~x ≥ ~b. (E.5)

where each coordinate in ~r ∈ Rm is chosen uniformly at random from the integers {−2L+1n, · · · , 2L+1n}.
Let OPT ’ denote the optimal value of the linear program (E.5). Given any feasible solution for

the linear program (E.5) with cost less than OPT + n−12−3L−2, we can find the active constraints
of a basic feasible optimal solution of (E.1) by using only one matrix vector multiplication with A.
Furthermore, the bit complexity of (E.5) is at most 3L+ log(8n).

Proof. Since the set of basic solutions to (E.5) and (E.1) are the same, we know that any basic
feasible solution of (E.5) is a vector of rational numbers with absolute value of numerator and
denominator both bounded by 2L. Consequently our perturbation of the cost function maintains
that an optimum solution to (E.5) is an optimal solution to (E.1). Hence, the Isolation Lemma
shows that with probability greater than 1

2 , the linear program (E.5) has a unique solution ~x∗.
Now consider the polytope Pt = {~x such that A~x ≥ ~b and

(
22L+3n~c+ ~r

)T
~x ≤ OPT+t2−2L−1}

for t > 0. Since (E.5) has a unique solution, by a similar argument as before, P1 contains only one
basic feasible solution of (E.5) and hence Pt − ~x∗ = t (P1 − ~x∗) for any t ≤ 1. Also, for any ~x ∈ P1,
~x is in the polytope of {A~x ≥ ~b} and hence

∥∥~x∥∥∞ ≤ 2L. Therefore, for any ~x ∈ Pt, we have∥∥~x − ~x∗∥∥∞ ≤ t · 2L+1 for any t ≤ 1. Therefore, for any ~x ∈ Pt,
∥∥A~x −A~x∗

∥∥
∞ ≤ nt22L+1. Since

A~x∗ is a vector of rational numbers with the absolute value of denominator are bounded by 2L, we
can distinguish if a constraint is satisfied or not when nt22L+1 < 2−L−1.

Combining Lemma 41 and Lemma 43 proves Lemma 40.

F Numerical Linear Algebra for Acceleration

Here we prove Theorem 30 needed for the accelerated linear program solver. Below we restate the
theorem for convenience.
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Theorem 44. Let ~d(i) ∈ Rm>0 be a sequence of r positive vectors. Suppose that the number of times
that d(i)

j 6= d
(i+1)
j for any i ∈ [r] and j ∈ [m] is bounded by Cr2 for some C ≥ 1. Then if we are

given the ~d(i) in a sequence, in each iteration i we can compute
(
ATDiA

)−1
~xi for Di = diag(~di)

and arbitrary ~xi ∈ Rn with the average cost per iteration

Õ

(
mnω−1

r
+ n2 + Cωr2ω + Cω−1nrω

)
where ω < 2.3729 [42] is the matrix multiplication constant.

Proof. For all i ∈ [r] let Bi = ATDiA. Since D1 ∈ Rm×m is diagonal and A ∈ Rn×m we can
compute D1A trivially in O(mn) time. Furthermore from this we can compute B1 = ATD1A in
O(mnω−1) time using fast matrix multiplication by splitting A into m

n blocks of size n and using that
m > n. Furthermore, using fast matrix multiplication we can then compute B−1

1 in O(nω) time and
similarly we can compute B−1

1 AT in O(mnω−1) time. Now, we show how to use this computation
of B−1

1 and B−1
1 AT in O(mnω−1) time to decrease the running time of future iterations.

For all k > 1, let Dk = D1 + ∆k for some diagonal ∆k ∈ Rm×m and let rk
def
= nnz(∆k). Let

Pk ∈ Rrk×n be the 1 − 0 matrix that selects the rows of A for which the diagonal entry in ∆k is
nonzero, let Sk ∈ Rrk×rk be the diagonal matrix whose diagonal entries are the non-zero diagonal
entries of ∆k and Ak

def
= PkA.

Note that ∆k = PT
k SkPk and hence by the Woodbury matrix identity, we have

B−1
i =

(
ATD1A + ATPT

k SkPkA
)−1

= B−1
1 −B−1

1 AT
k

(
S−1
k + AkB

−1
1 AT

k

)−1
AkB

−1
1 (F.1)

Assume we have computed AkB
−1
k AT

k ∈ Rrk×rk explicitly, we can use fast matrix multiplication to
compute

(
S−1
k + AkB

−1
k AT

k

)−1 in time O(rωk ). Then, we can use (F.1) to compute B−1
i ~xi in just

O
(

nnz
(
B−1

1

)
+ nnz(Ak) + nnz

((
S−1
k + AkB

−1
1 AT

k

)−1
))

= O(nrk + n2)

time. Consequently, not counting the time to compute AkB
−1
k AT

k ∈ Rrk×rk , we have that the
average cost of computing B−1

i ~xi is

Õ

(
mnω−1

r
+ n2 + nrk + rωk

)
= Õ

(
mnω−1

r
+ n2 + Cωr2ω

)
(F.2)

because rk ≤ Cr2 and nrk ≤ 2n2 + 2r2
k.

All that remains is to estimate the cost of computing AkB
−1
k AT

k . For notational simplicity, we
order the rows of A such that AT

k = [AT
k−1 RT

k ] where Rk ∈ Ruk×n where uk = rk − rk−1. From
this, to compute AkB

−1
k AT

k we see that it suffices to compute(
AkB

−1
1 AT

k AkB
−1
1 UT

k

UkB
−1
1 Ak UkB

−1
1 UT

k

)
Now, since we precomputed B−1

1 AT and U is just a subset of the rows of A, we see that we can
compute B−1

1 UT
k by extracting columns from B−1

1 AT . Thus, we see that the time to compute
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AT
kB−1

k Ak is dominated by the time to multiply a matrix of size at most rk × n and n × uk. We
can do this by multiplying O

(
rk
uk
· nuk

)
matrices of size uk × uk which can be done in O(rknu

ω−2
k )

time. Thus the average cost of computing AT
kB−1

k Ak is

O

 ∑
1≤k<r

(
1

r

)
·
(
rknu

ω−2
k

) ≤ O(Crn · r · (Cr)ω−2) = O(Cω−1nrω)

where we used the fact that since
∑

k uk = rk, rk ≤ Cr2 and the minimum value of
∑

k u
ω−2
k is

achieve when each uk = Cr.
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