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Abstract

Visual attention is an indispensable component of complex vision tasks. In this paper, a multi-

scale, complex network-based approach for determining visual saliency is described. It uses degree

centrality (conceptually and computationally the simplest among all the centrality measures) over a

network of image regions to form a saliency map. The regions used in the network are multiscale in

nature with scale selected automatically. Experimental evaluation establishes the superiority of the

method over existing saliency methods, even in noisy environments.

1 Introduction

Attention is one of the most important component of primate vision. It is the mechanism to rapidly

focus gaze to some selected portions of the visual input. Psychovisual experiments [1] suggest that, in

the absence of any external guidance, attention is directed to visually salient locations in the image.

Modelling visually salient locations have been an important research direction over past decade. Fea-

ture integration theory [2] that explains various visual search strategies, is the foundation of many of the

researches carried on in last couple of decades. Koch and Ullman [3] provides a basic framework to com-

pute attended locations in an image. They suggest parallel extraction of various feature maps from the

visual input and find out conspicuity maps according to each feature using center-surround differences.

At the end, these maps are combined to get a single saliency map, encoding relative conspicuity of each

location in the input scene. Models proposed in [4, 5] follow this framework. In [4], center-surround dif-

ference is implemented as the difference between feature map representation at finer and coarser scales.

In [5], center-surround difference is implemented based on Difference-of-Oriented Gaussian (DOOrG)

model. These models compute saliency based on low-level features such as colour, intensity and orienta-

tion. In [6], texture is effectively used to determine saliency where there is very little difference in terms

of other features. Approaches described in [7]- [9] incorporate depth information in the computational

model. Kadir and Brady [10] demonstrates the need for determining appropriate scale for computing
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saliency and proposes a saliency computation method that automatically selects appropriate scale for

analysis. There are several other approaches ( [11]- [15]) that perform segmentation of input image and

compute saliency at object level. Some models ( [16, 17]) use Bayesian probability. Researchers have also

tried to solve the problem from an information theoretic perspective ( [18]- [21]) under the premise that

salient regions are those that convey maximum information. Other approaches include selective tuning

based [22], evolutionary programming based [23], contrast based [24], subspace estimation and analysis

based [25, 26], learning from human eye movement data [27], and spectral residual [28] approaches.

An entirely different approach is stated in [29], where a set of complex networks is formed from the

image. Nodes on such a network represent pixels of image and shift of attention is modelled using random

walk over such network. Markov chain over such network is defined and equilibrium distribution on the

Markov chain gives the saliency map.

In this direction a novel complex network based approach is presented in this paper to determine

the visually salient locations of an image. Experiments reported in [2, 30] demonstrate that if a loca-

tion/object significantly differs from all other locations and specifically from its surround, it is salient,

i.e., it draws attention. This motivates to construct networks where nodes represent accumulation of

similar pixels and the dissimilarity in terms of features between any pair of such accumulations is encoded

as edge-weight between corresponding nodes. This dissimilarity measure is modulated by their positional

proximity. Modulation by positional proximity ensures that difference with neighbouring locations gets

more weightage. Such networks are constructed over multiple features (intensity and orientation) across

multiple scale representation of the image. The network, termed as ViSaNet (Visual Saliency Network),

constructed here is a suitable choice for determining salient locations as it combines both local and global

conspicuity of a location. Incorporation of degree centrality analysis with this type of network suggests

that a centrally situated node belongs to a salient location.

The proposed approach gives improved result than the approaches suggested in [4] and [29]. Moreover,

performance of the proposed approach against noisy (zero-mean Gaussian) images is compared with those

approaches. The result shows that the proposed approach is superior to [4] and [29] in presence of high

noise.

The outline of rest of the paper is as follows: Section 2 depicts the proposed method in details.

Section 3 shows the performance of our method compared to [4] and [29]. Robustness of the proposed

method against noise is analyzed in section 4. Section 5 focuses on time complexity analysis and free

parameter analysis of the proposed method. Finally, section 6 draws the conclusion.
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2 Computing Saliency

2.1 Feature Extraction at Multiple Scales

A particular location/object becomes conspicuous when it is dissimilar from its surroundings in terms of

one or more low-level features such as, intensity and orientation. Color is not considered here. In this

paper, we focus only on monochrome images. Dissimilarity also depends on the scale at which regions

are represented. At each scale, representation of input image is in terms of five set of feature maps -

intensity, and orientation at four directions (0◦, 45◦, 90◦ and 135◦). Gaussian Pyramid is a well known

structure for representing intensity feature map at multiple scales. A Gaussian Pyramid, Iς (ς varies

from 0 to K ), is constructed by repeated Gaussian filtering and subsampling of the intensity feature map

I0. Higher values of ς represent coarser scales. It may be noted that the value K is image-dependent.

Procedure to fix the value of K for a particular image is stated in next subsection.

Iς′
(x, y) = h ∗ Iς(x, y)

=
bδ/2c∑

α=−bδ/2c

bδ/2c∑
β=−bδ/2c

h(α, β)Iς(x− α, y − β) (1)

Iς+1(x, y) = Iς′
(2x, 2y) (2)

where h is the 2D Gaussian filter of size δ-by-δ, ∗ denotes convolution operator and bac denotes the

greatest integer lesser than or equal to a. If size of Iς is A × B, Iς+1 will be of size bA/2c × bB/2c.

Orientation at a particular direction θ is obtained at multiple scales through the creation of oriented

Gabor pyramid [31] from the intensity feature map.1

2.2 ViSaNet: A Network Representation of Feature Map

Visual Saliency Network (ViSaNet) (G = 〈V, E 〉) is constructed for each of the five features (intensity, and

orientation at 0◦, 45◦, 90◦ and 135◦) at each scale ς (ς ∈ [0 . . .K ]). A block of connected and homogeneous

pixels is represented by a single node Vi in the ViSaNet. This drastically reduces the number of nodes

in the network as compared to number of pixels, and decreases the computation associated to find the

edge-weights among these nodes. The homogeneity across a block of pixels in terms of a feature is

determined by estimating the difference between maximum and minimum feature values within that

block. If the difference between the maximum and the minimum feature values in a block is greater

than a particular threshold (typically chosen, in our experiments, as 5.88% (15/255 -th) of the dynamic

range of the feature map), then the block is not homogeneous and is decomposed further using quadtree

decomposition technique. Thus, sets of connected and homogeneous pixels are obtained that can be

represented by individual nodes. If number of nodes in any of the five ViSaNet formed at a particular

scale L is less than a predefined number η then computation at that scale is stopped and the value (L -

1) is assigned to K. η is chosen to be 100 in our experiments.
1The steerable pyramid in [32] also could have been used for this purpose.
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The experiments in [2, 30] reports that a location/object is salient, i.e., draws our attention, if it

differs significantly from its surroundings. The ViSaNet incorporates this by considering the edge-weight

to be proportional to the difference between the features of those locations. Feature space distance Dfij

is estimated as the absolute difference of the mean feature values of these blocks and normalized with

respect to the maximum value of feature distance among any pair of blocks.

Dfij
= |µfi

− µfj
|/max
∀k,∀l(|µfk

− µfl
|) (3)

where µfx
represents the mean feature value of the block corresponding to node x. The ViSaNet also

gives more weightage to edges connecting nodes whose corresponding blocks are spatially close. In other

word, the edge-weight is inversely proportional to spatial distance between those blocks. This ensures

that the effect of feature space distance Dfij
decays with the increase of spatial distance and vice versa. A

Gaussian function is used here to simulate the decay of feature influence with spatial distance, much like

human foveal retinal vision [33]. The spatial distance Dcij between two blocks corresponding to nodes

Vi and Vj is computed as the Cartesian distance between the midpoints of these blocks and normalized

with respect to the maximum possible distance among any pair of blocks. In summary, to estimate edge-

weights a function F (Vi, Vj) is used that represents distance between blocks corresponding to nodes Vi

and Vj . Here, F(Vi, Vj) is defined2 as follows:

F (Vi, Vj) = Dfij
· e−D2

cij
/2σ2

(4)

σ is the standard deviation of the Gaussian function. Though the decay of feature influence with

spatial distance is modelled using a Gaussian function, more generalization of this equation is possible.

Theoretically, a function that is monotonically decreasing in the range Dcij > 0, can replace the Gaussian

component of the above equation. The use of a function with higher kurtosis (super-Gaussian) gives

relatively more weightage to the feature difference with a spatially close block compared to a function

with lower kurtosis (sub-Gaussian). Experiments with super-Gaussian and sub-Gaussian functions in

Eq. (4), instead of the Gaussian component, reveal no significant change in results.

2.3 Thresholding Edges in ViSaNet

Difference in feature values causes saliency. As edge weights are proportional to feature dissimilarity,

edges with higher weight are of our interest in saliency computation. The subset of edges with weight

greater than a particular threshold T is thus retained and other edges are discarded. In order to select

the threshold T the distribution of edge-weights between all pairs of vertices is analysed. It is observed

that the distribution takes the shape as shown in Figure 1. The aim is to detect a knee in the distribution.

Since entropy measures have been used to detect threshold in distribution, we have adopted the approach

stated below.
2Alternative to this measure, Eberly distance [34] could have been used to estimate the dissimilarity that, along with

feature dissimilarity, accounts for both spatial distance and differential form of scale variations.
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Let wi be the weight of an edge Ei. (wi is as same as F (Vi, Vj)). For, a particular threshold t, ratio

of summation of weights for discarded set of edges to total set of edges is calculated as:

r =
∑
wi≤t

wi/
∑

i

wi (5)

Therefore, the ratio of summation of weights for selected set of edges to total set of edges is (1 - r).

Edge-weight entropy En of discarded and selected set of edges is defined as

En = −rlog(r)− (1− r)log(1− r) (6)

Edge-weight entropy En varies with threshold t (Figure 2). Note that the maximum entropy value

corresponds to the knee of the edge-weight distribution curve. Accordingly, the threshold for which

edge-weight entropy is maximum is chosen as the edge-weight threshold T.

2.4 Analysing Degree of Nodes in Edge-Thresholded ViSaNet

Degree of a node, which is also a centrality [35] measure, is a structural attribute of the node in a network.

It shows positional importance of the node - as it is defined by the number of other nodes to which it

is directly connected. It can be easily estimated by row-wise/column-wise summation of the adjacency

matrix Ai,j of the network. Degree centrality DCi of node Vi is given by

DCi =
∑

j

Ai,j (7)

In the binarized ViSaNet, as an edge represents the dissimilarity between corresponding locations in

the image and it is modulated by positional proximity, the degree of a node encodes how many other

locations with which it has significant feature difference (modulated by positional proximity). As saliency

of certain location is determined by how dissimilar it is form other locations, specially its surroundings,

the degree of a node measures the conspicuity (saliency) of the location corresponding to that node.

A conspicuity map is formed by mapping the degree centrality values of all the nodes to the pixels

corresponding to their respective locations. Thus conspicuity map is computed for each feature at each

scale. Peaks in the maps indicate the conspicuity of the concerned locations.

A typical plot of the degree distribution is given in Figure 3. From the distribution, it can be concluded

that most of nodes have low degree and a few nodes have high degree. This nature of distribution is

observed throughout experiments with all the images at various scales.

2.5 Combining the Conspicuity Maps for Different Scales and Features

In order to obtain a single saliency map, the conspicuity maps obtained for various features at multiple

scales are to be combined. The difficulty in merging the maps is that these are of different dynamic ranges.

Moreover, if there are features promoting less number of conspicuous locations than other features, those

features (along with lesser conspicuous locations) should be highlighted [36]. This is due to the fact
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that feature maps with relatively few conspicuous locations easily discriminate those few locations from

other locations, i.e., relative saliency of those few locations are high. On the other hand, feature maps

that can not isolate a few locations with high relative saliency, need to be suppressed. A comparative

study of various map combination strategies is given in [36]. To inscribe this combination strategy, we,

similar to the model proposed in [4], adopt the global nonlinear normalization followed by summation

strategy described there. This nonlinear normalization strategy emulates a biological lateral inhibition

mechanism, in which neighbouring similar features inhibit each-other [37]. According to this scheme,

each conspicuity map C is processed as follows:

1. The values of a map are represented in a fixed range [0, M ].

2. Alongside M (which is the maximum of the map C ) other local maxima are found and their average

m̄ is computed. To compute local maxima it is checked whether for some points p there exists

some ε > 0, such that C(p)≥C(q) when Euclidean distance between points p and q, dist(p,q) < ε.

Then values of C at points p, C(p), are called local maxima.

3. The map C is multiplied by (M - m̄)2. As a consequence, when in a map the global maximum

differs largely from all other local maxima, the location corresponding to the global maxima is

promoted. On the other hand, small difference indicates that the map contains nothing unique,

and is suppressed.

Then for each feature, across-scale combination3 of conspicuity maps is performed to determine salient

locations in terms of that particular feature. At the end, across-feature fusion is performed to obtain

a single saliency map that encodes relative saliency of locations considering all features (in this case,

intensity and orientation) at multiple scales.

3 Evaluation

The saliency models are aimed at emulating human vision because of the later’s efficiency to handle huge

amount of information. To evaluate these models, human-specified salient locations are considered as

ground truth data. The similarities/dissimilarities of results of the proposed method from the human-

specified salient locations are compared with those of other schemes. This section, firstly, delineates the

preparation of groundtruth data from human specified salient locations. Then two evaluation strategies

along with the results are stated. A set of 50 images (Figure 4) are randomly selected for the experiment

from a larger collection of images of which some are taken from iLab image database [4, 36], some from

UCID [38] and some from the Internet.

3Alternative to this, usage of a scale-space distance measure such as Eberly distance [34], that account for differential

nature of features in scale dimension, could have intrinsically accommodate across-scale merging.
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3.1 Preparation of the groundtruth data

Ground truth data was prepared using the assistance of 62 volunteers. An image from our input set was

shown to a volunteer for a very short time (100ms). A white canvas of the same size followed the image.

She was asked to observe the image and to mark (on the white image) the centres of the locations which

seem to be salient to her. Human vision has two components. When confronted with an unfamiliar scene,

it is promptly directed to the visually salient locations. This is known as bottom-up component of our

vision. With time human vision begins to be guided by recognition/interpretation of the objects/scene

it observes. This is called top-down component. This justifies the very short display time of the input

image as the aim here is to evaluate a bottom-up saliency model and avoidance of the influence of top-

down component as much as possible. Again, human can not perceive a scene presented to her in less

than 1/10 th of a second (100 msec). Therefore, presenting the image with less than 100 msec time is of

no importance. Combination of these two logics explain the reason for 100 msec presentation time used

in our experiments. Opinion of each volunteer was taken for 24 images randomly selected from the input

set.

To prepare the ground truth data from the volunteers’ markings, the following procedure is adopted

for each images of the input set. Let Px be the set of all points marked by user x for an image I and P

be the set of points marked by all users for image I.

P =
⋃
x

Px (8)

Clustering is performed on set of points P and mean of spatial distribution µc and standard deviation

of spatial distribution σc is estimated for each cluster c. Circular regions centring at each µc and a radius

of corresponding σc is used to model the salient location. For each input image I, a binary image B (size

as same as I ) is constructed, where all the pixels encompassed by such circular regions are marked as 1,

and all other pixels are marked as 0. Let q be a pixel in B.

q =

 1, if ∃i, dist(q, µci) ≤ σci

0, otherwise
(9)

dist(a,b) is the Euclidean distance between two pixels a and b.

3.2 Evaluation Strategies and Results

3.2.1 Strategy 1

The basis of evaluation, here, is that vision processes only a few salient locations [39]. It is verified

whether the high salient locations match with the circular regions indicated by groundtruth B. Let S be

the saliency map obtained for image I and S(Z) represents the collection of values in the saliency map S

corresponding to pixel/group of pixels Z. For each circular region Ri in B, maximum of S(Ri) is found

and is represented by mi.

mi = max(S(Ri)) (10)
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It is checked whether there are other pixels that have saliency value greater than mi and do not

belong to any of the circular locations Ri’s in B. Let Γ is the set of such pixels.

∀y, y ∈ Γ ⇔ ∀j, S(y) > mi ∧ y /∈ Rj (11)

If no such pixel exists, then Γ is a null set. If Γ is not the null set, then the error estimate ξi for Ri

is the sum of normalised distances for all the pixels in Γ from Ri. Distances are normalised with respect

to
√

X2 + Y 2, where image I is of size X×Y.

ξi =
∑
y∈Γ

mindist(y, Ri)/
√

X2 + Y 2 (12)

where, mindist(a,A) is the minimum Euclidean distance of a pixel a from a group of pixels A. The

error estimate ξ for the saliency map S is the summation of such error estimates ξi for all values of i.

ξ =
∑

i

ξi (13)

Some of the saliency maps obtained using the proposed method, and the method in [4] and [29] are

shown in Figure 5. The error estimates (Eq. 13) for all the input images are computed as stated above

and displayed in Table 1. From the Table 1, one may easily observe that proposed method gives better

result compared to the other two in most cases. It is to be noted that the evaluation strategy checks two

things:

1. Whether the model predicts some other areas as more salient than the salient locations indicated

by Groundtruth data. If, no such area exists, then the error estimate becomes zero.

2. If, such locations exist, then how far these locations are from the salient locations specified by

Groundtruth data. Due to this reason the error estimate is pretty high in some cases.

3.2.2 Strategy 2: ROC Analysis

The comparison of performance of these methods is also done using a Receiver Operating Characteristic

(ROC) curve which plots true positive rate against false positive rate. Figure 6 shows the mean ROC

curves for the proposed method, the method in [4] and the one in [29]. These mean curves are obtained by

averaging the loci of the ROC curves for 50 images obtained using each of the methods under comparison.

The average area under curves suggests that the proposed method, the method in [29] and in [4] achieve

94%, 89% and 85% of the ROC-area of a human based control. Therefore, according to ROC analysis,

the proposed method outperforms the other two.

4 Robustness Against Noise

Next we inspect how the proposed method performs under noisy conditions as compared to some well-

established methods of saliency computation. As zero-mean Gaussian noise generates mathematically
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tractable models and is used to simulate real-world situations, the robustness analysis is shown against

this type of noise. Each of the input image is subjected to a zero-mean Gaussian noise of peak signal-

to-noise ratio 10 dB.

The proposed method as well as the methods in [4] and [29] are applied to each of the noisy images.

The obtained saliency maps are shown in Figure 7. To quantitatively compare the robustness of these

techniques against noise, again errors are estimated (Eq. 13) on the results obtained from noisy images.

From the Table 2 it can be concluded that the proposed method works better than those in [4] and [29]

in the presence of white Gaussian noise. After carefully inspecting both the Tables 1 and 2, it can also

be observed that increase in error due to presence of noise is higher in case of [4] and [29] compared to

the proposed degree centrality based method. Therefore, the proposed method is more immune under

noisy environments.

Figure 8 shows the mean ROC plots for noisy images for the three methods. The average area under

curves suggests that the proposed method, the method in [29] and in [4] achieve 92.5%, 74.25% and 60.5%

of the ROC-area of a human based control. Therefore, ROC analysis also suggests that the proposed

method is less effected than the other two methods by the incorporated noise.

5 Analysing Time complexity and Free Parameters

5.1 Time Complexity Analysis

We compare execution time of the proposed method with the method in [29], which is also a complex net-

work based approach. Both approaches have two basic steps - forming a complex network representation

of an image and deriving saliency map using that representation.

In [29], each pixel is mapped to one node in the network. Complex network formation involves

estimating edge and therefore, estimation has to be done for (N
2 ) edges for an image with N pixels.

In the proposed method, quadtree decomposition is applied to get blocks of pixels with similar feature

value and one block is mapped to one node in the network. If it is assumed that N pixels are mapped

into n blocks, then there are n nodes in the network and estimation has to be done for (n
2 ). As N is

much greater than n, the complex network formation process in the proposed method is faster than that

of [29]. Table 3 demonstrates some sample execution time4of complex network formation from feature

maps with N pixels and n blocks.

In [29], saliency is obtained using the equilibrium distribution of the Markov chain (which is formed

by normalising weights of outbound edges for each node to 1) derived from the network. Computation of

equilibrium distribution involves repeated multiplication of the Markov matrix with an initially uniform

vector. For a network with κ nodes, time complexity of this process is in the order of O(κ2k), where k

4The measurements are taken using MATLAB 7.1 on an Intel Core(TM)2Duo 2.2GHz CPU. cputime command, which

returns elapsed CPU time in seconds, is used for this purpose.
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in number of iterations to meet the equilibrium. On the other hand, the proposed method only requires

degree centrality computation which is in the order of O(κ2). This further speeds up the process. Table

4 gives some sample computational time of equilibrium distribution and degree centrality for a network

with κ nodes.

Therefore, the proposed degree centrality based method is faster than the method in [29] in both

steps.

5.2 Analysis of Free Parameters

Three free parameters have been used in the proposed method:

• threshold of dynamic range of a block above which quadtree decomposition is done on the block.

This value is typically chosen, in our experiments, as 5.88% (15/255 -th) of the dynamic range of

the feature map. Therefore, this parameter is automatically tuned to individual feature maps.

• η to control number of spatial scales.

• σ, standard deviation of the Gaussian function in the formulation of edge-weight [Eq. (4)].

The model in [4] has two free parameters to determine the coarser and finer scales for center-surround

differences. The graph based model described in [29] has three free parameters as follows:

• standard deviation of the Gaussian functions in the formulation of edge-weight.

• threshold to check whether equilibrium distribution is reached or not and subsequent controlling

of the iteration.

• spatial scales to be used for computation.

Therefore, the proposed model is not using much extra free parameters than the models with which

the proposed scheme has been compared. In this context, the notable attempt in [27] must be mentioned

where a nonparametric approach to capture visual saliency is proposed.

6 Conclusion

In this paper, a complex-network based approach for determining visually salient locations in an image

is depicted. It is a bottom-up approach using low-level attributes (intensity and orientation). It is

also a multi-scaled approach as well where selected scales are image-dependent. The most important

contribution of this paper is in demonstration of using degree centrality of a node to find visual saliency.

Moreover, measuring degree centrality is computationally more efficient than the equilibrium distribution

on the Markov chain (computationally equivalent to eigenvector centrality) based approach stated in [29].

The issue of high computational burden related to construction of complex network (as in [29]) is handled
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here using a block-based approach. The proposed method gives superior results than methods stated

in [4] and [29], even under noisy conditions.

A few things ought to be mentioned at the end. Firstly, as maximization of entropy leads to threshold

selection, the selected threshold is image dependent. Noiseless and noisy versions of the experiment

register different threshold value for the same image. Secondly, experiments with various threshold

values reveal that the entropy maximization based scheme gives good threshold in an overall scenario.

But there are cases where the selected threshold is not optimum. Therefore, optimum threshold selection

for binarizing ViSaNet can motivate further research. Thirdly, though the proposed degree centrality

based approach produces better results for most of the cases, Table I shows a few cases where other

methods perform well. Therefore, a detailed interpretation of each of these cases can be a good research

direction in future. Some categorization of images may come out to guide vision researchers on the

selection of model based on image category.
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Table 1: Comparison of error estimates [Eq. (13)] of the saliency maps obtained using the proposed

method with maps obtained by [4] and [29].
Input Proposed Itti Harel

image method et al [4] et al [29]

1 0 46.1 0

2 2228.7 34003 3.7

3 0 833.4 0

4 2.1 965.3 2818.2

5 346.6 617.8 469.4

6 2062.7 5830.3 6416.2

7 6885.6 12172 7661.7

8 164.8 145.3 346.1

9 238.1 4727.6 35.1

10 0.5 2.4 76.4

11 0 269.3 66.5

12 0 212.5 0

13 0 0 0

14 51.7 316.2 831.2

15 16.7 21349 71.1

16 8290.8 14633 23723

17 0 0 0

18 2.8 44.3 0.6

19 85.2 383.3 327.7

20 16726 31614 24854

21 0 7637.2 15659

22 0 0 0

23 226.5 4673.7 409.3

24 0 0 2.4

25 410.8 6146.9 150.4

26 68.3 72.9 6269.9

27 15.3 381.8 145.5

28 0 0 408.7

29 1.3 124.2 3429.6

30 0 10138 0

31 222.7 382.1 2985.8

32 0.1 16096 11727

33 619.9 536.7 840.9

34 0.9 7625.8 13800

35 8.9 18.7 36.3

36 5.7 59.2 15.3

37 0 256.1 0

38 0 1681.9 0

39 0 0 0

40 87 305.6 152

41 32.6 846.2 875.7

42 4.6 12826 5306.6

43 1.2 6447.6 360.8

44 289.8 231.5 2604.5

45 0 62.7 58.5

46 460.1 394.9 2142.4

47 0 0 0

48 0 0 0

49 0.5 271.2 0

50 5 5.3 16.7

Average 791.4 4107.7 2702
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Table 2: Comparison of error estimates [Eq. (12)] of the saliency maps obtained using the proposed

method with maps obtained by [4] and [29] on noisy images(10 dB) (Gaussian).
Input Proposed Itti Harel

image method et al [4] et al [29]

1 0 323.6 1029.4

2 2351.8 52896 32769

3 0 1319.6 1083.8

4 2.9 5966.7 10546

5 401.1 1316.6 3637.9

6 2130.1 6896 6514.9

7 7105.8 12375 12471

8 172.4 187.8 910

9 250 9027.3 356.1

10 1.2 4429 88.32

11 0 2679 329.8

12 0 2101.3 0

13 0 0 0

14 300.7 1424.6 972.9

15 21.1 23280 85.24

16 8440.8 15661 24534

17 0.3 4.7 0.3

18 3.8 68 4

19 207.8 4017.4 394.7

20 17596 33112 59412

21 0 8792.6 32458

22 0 0 0

23 387.3 7791.1 2106.3

24 0 0 90.17

25 433.5 6309.8 451.4

26 150.5 1519.7 8103.6

27 20.9 1057.1 197.4

28 0 0 453.4

29 2.1 130.9 5587

30 0 11762 0

31 309.8 641.9 3662.7

32 0.2 24753 15593

33 2193.8 2620.1 5360.6

34 1.3 12179 41488

35 74.2 111.1 130.2

36 22.3 931.7 29.8

37 0 424.5 0.1

38 0 2553.7 0

39 0 130.4 0

40 190.7 423.5 233.5

41 40.6 3639.4 1018

42 10 53607 11516.6

43 3.5 9194.9 486.5

44 306.4 314.2 4697.7

45 0.6 181.6 157.6

46 525.7 621.3 3466

47 0 0 0

48 0 0 0

49 1.5 5656.8 97.5

50 5.5 5904.9 19.3

Average 873.3 6766.8 5850.9
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Table 3: Time taken in network formation phase.

Size of Number Time according Number Time according to

feature map of pixels to [29] (in sec.) of blocks proposed method (in sec.)

512x512 262144 1568.30 1210 38.41

256x256 65536 120.64 571 3.58

128x128 16384 4.16 205 0.08

Table 4: Comparison in computational time for equilibrium distribution and degree centrality computa-

tion process for a network with same number of nodes.

Number Time for Equilibrium Time for degree

of nodes distribution (in sec.) centrality (in sec.)

1210 3.69 0.0313

571 2.52 0.0105

205 0.16 0.0009

14



References

[1] Constantinidis, C., and Steinmetz, M. A.: ‘Posterior parietal cortex automatically encodes the

location of salient stimuli’, The Journal of Neuroscience, 2005, 25, (1), pp. 233-238.

[2] Treisman, A. M., and Gelade, G.: ‘A feature-integration theory of attention’, Cognitive Psychology,

1980, 12, (1), pp. 97-136.

[3] Koch, C., and Ullman, S.: ‘Shifts in selective visual attention: towards the underlying neural

circuitry’, Human Neurobiology, 1985, 4, pp. 219-227.

[4] Itti, L., Koch, C., and Niebur, E.: ‘A model of saliency-based visual attention for rapid scene

analysis’, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20, (11), pp.

1254-1259.

[5] Cheoi, K., and Lee, Y.: ‘Detecting perceptually important regions in an image based on human

visual attention characteristic’, Proc. Joint IAPR International Workshop on Structural, Syntactic,

and Statistical Pattern Recognition, 2002, pp. 329-338.

[6] Hu, Y., Rajan, D., and Chia, L.-T.: ‘Adaptive local context suppression of multiple cues for salient

visual attention detection’, Proc. IEEE International Conference on Multimedia and Expo, July

2005, pp. 346-349.

[7] Maki, A., Nordlund, P., and Eklundh, J.-O.: ‘A computational model of depth-based attention’,

Proc. 13th International Conference on Pattern Recognition, August 1996, 4, pp. 734-739.

[8] Ouerhani, N., and Hugli, H.: ‘Computing visual attention form scene depth’, Proc. 15th Interna-

tional Conference on Pattern Recognition, September 2000, 1, pp. 375-378.

[9] Courty, N., Marchand, E., and Arnaldi, B.: ‘A new application for saliency maps: synthetic vision

of autonomous actors’, Proc. of International Conference on Image Processing, September 2003, 3,

pp. III-1065-1068.

[10] Kadir, T., and Brady, M.: ‘Saliency, scale and image description’, International Journal of Computer

Vision, 2001, 45, (2), pp. 83-105.

[11] Osberger, W., and Maeder, A. J.: ‘Automatic identification of perceptually important regions in an

image’, Proc. of 14th International Conference on Pattern Recognition, August 1998, 1, pp. 701-704.

[12] Sun, Y., and Fisher, R.: ‘Object-based visual attention for computer vision’, Artificial Intelligence,

2003, 146, pp. 77-123.

[13] Yu, Z., and Wong, H.-S.: ‘A rule based technique for extraction of visual attention regions based on

real-time clustering’, IEEE Transactions on Multimedia, 2007, 9, (4), pp. 766-784.

15



[14] Liu, H., Jiang, S., Huang, Q., Xu, C., and Gao, W.: ‘Region-based visual attention analysis with its

application in image browsing on small displays’, Proc. 15th International Conference on Multimedia,

September 2007, pp. 305-308.

[15] Aziz, M. Z., and Mertsching, B.: ‘Fast and robust generation of feature maps for region-based visual

attention’, IEEE Transactions on Image Processing, 2008, 17, (5), pp. 633-644.

[16] Itti, L., and Baldi, P.: ‘Bayesian surprise attracts human attention’, Advances in Neural Information

Processing Systems, 2005, 18. [http://books.nips.cc/papers/files/nips18/NIPS2005 0199.pdf]

[17] Begum, M., Mann, G. K. I., and Gosine, R. G.: ‘A biologically inspired bayesian model of visual at-

tention for humanoid robots’, Proc. 6th IEEE-RAS International Conference on Humanoid Robots,

December 2006, pp. 587-592.

[18] Kohonen, T.: ‘A computational model of visual attention’, Proc. International Joint Conference on

Neural Networks, July 2003, 4, pp. 3238-3243.

[19] Bruce, N. D. B.: ‘Features that draw visual attention: an information theoretic perspective’, Neu-

rocomputing, 2005, 65-66, pp. 125-133.

[20] Bruce, N. D. B., Tsotsos, J. K.: ‘Saliency based on information max-

imization’, Advances in Neural Information Processing Systems, 2005, 18.

[http://books.nips.cc/papers/files/nips18/NIPS2005 0081.pdf]

[21] Renninger, L. W., Coughlan, J., Verghese, P., and Malik, J.: ‘An information maximiza-

tion model of eye movements’, Advances in Neural information Processing Systems, 2004, 17.

[http://books.nips.cc/papers/files/nips17/NIPS2004 0869.pdf]

[22] Tsotsos, J. K., Culhane, S. M., Wai, W. Y. K., Lai, Y., Davis, N., and Nuflo, F.: ‘Modeling visual

attention via selective tuning’, Artificial Intelligence, 1995, 78, (1-2), pp. 507-547.

[23] Stentiford, F. W. M.: ‘An evolutionary programming approach to the simulation of visual attention’,

Proc. 2001 Congress on Evolutionary Computation, May 2001, 2, pp. 851-858.

[24] Ma, Y.-F., and Zhang, H.-J.: ‘Contrast-based image attention analysis by using fuzzy growing’,

Proc. 11th ACM International Conference on Multimedia, November 2003, pp. 374-381.

[25] Hu, Y., Rajan, D., and Chia, L.-T.: ‘Robust subspace analysis for detecting visual attention regions

in images’, Proc. 13th Annual ACM International Conference on Multimedia, November 2005, pp.

716-724.

[26] Hu, Y., Rajan, D., and Chia, L. -T.: ‘Scale adaptive visual attention detection by subspace analysis’,

Proc. 15th International Conference on Multimedia, September 2007, pp. 525-528.

16



[27] Kienzle, W., Wichmann, F. A., Scholkopf, B., and Franz, M. O.: ‘A non-parametric approach

to bottom-up visual saliency’, Advances in Neural Information Processing Systems, 2006, 19.

[http://books.nips.cc/papers/files/nips19/NIPS2006 0480.pdf]

[28] Hou, X., and Zhang, L.: ‘Saliency detection: a spectral residual approach’, Proc. IEEE Conference

on Computer Vision and Pattern Recognition, June 2007, pp. 1-8.

[29] Harel, J., Koch, C., and Perona, P.: ‘Graph-based visual saliency’, Advances in Neural Information

Processing Systems, 2006, 19. [http://books.nips.cc/papers/files/nips19/NIPS2006 0897.pdf]

[30] Sato, T., Murthy, A., Thompson, K. G., and Schall, J. D.: ‘Search Efficiency but Not Response

Interference Affects Visual Selection in Frontal Eye Field’, Neuron, 2001, 30, pp. 583-591.

[31] Greenspan, H., Belongie, S., Goodman, R., Perona, P., Rakshit, S., and Anderson, C. H.: ‘Overcom-

plete steerable pyramid filters and rotation invariance’, Proc. IEEE Computer Society Conference

on Computer Vision and Pattern Recognition, June 1994, pp. 222-228.

[32] Simoncelli, E. P., and Freeman, W. T.: ‘The steerable pyramid: a flexible architecture for multi-

scale derivative computation’, Proc. of IEEE International Conference on Image Processing, 1995,

pp. III-444-447.

[33] Young, R. A.:, ‘The gaussian derivative model for spatial vision: l. retinal mechanisms’, Spatial

Vision, 1987, 2(4), pp. 273-293.

[34] Pizer, S. M., Eberly, D., and Fritsch, D. S.: ‘Zoom-invariant vision of figural shape: the mathematics

of cores’, Computer Vision and Image understanding, 1998, 69, (1), pp. 55-71.

[35] Sabidussi, G.: ‘The centrality index of a graph’, Psychometrica, 1966, 31, pp. 581-603.

[36] Itti, L., and Koch, C.: ‘Feature combination strategies for saliency-based visual attention systems’,

Journal of Electronic Imaging, 2001, 10, (1), pp. 161-169.

[37] Cannon, M. W., and Fullenkamp, S. C.: ‘A model for inhibitory lateral interaction effects in per-

ceived contrast’, Vision Research, 1996, 36, (8), pp. 1115-1125.

[38] Schaefer, G., and Stich, M., ‘UCID - an uncompressed colour image database’, Proc. SPIE Storage

and Retrieval Methods and Applications for Multimedia, 2004, 5307, pp. 472-480.

[39] Tsotsos, J. K.:, ‘Analyzing vision at the complexity level’, Behavioral and Brain Sciences, 1990, 13,

pp. 423-469.

17



Figures

Figure 1: Edge weight distribution in ViSaNet.

Figure 2: Entropy varies with threshold.
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Figure 3: Degree distribution in ViSaNet.
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Figure 4: Image set used in experiments (aspect ratios are changed to fit all the images). Numbering is

in row major order.
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Figure 5: Rows from top to bottom: input image, groundtruth (binary image B stated above), saliency

map according to proposed method, [4] and [29], respectively.
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Figure 6: Mean ROC curves.

Figure 7: Rows from top to bottom: noisy input images (10dB), saliency maps of the noisy images

according to proposed method, [4] and [29], respectively.
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Figure 8: Mean ROC curves for noisy input images (10dB).
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