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BASS Net: Band-Adaptive Spectral-Spatial Feature
Learning Neural Network for Hyperspectral
Image Classification

Anirban Santara, Kaustubh Mani, Pranoot Hatwar, Ankit Singh, Ankur Garg, Kirti Padia, and Pabitra Mitra

Abstract—Deep learning based land cover classification
algorithms have recently been proposed in the literature.
In hyperspectral images (HSIs), they face the challenges of
large dimensionality, spatial variability of spectral signatures,
and scarcity of labeled data. In this paper, we propose an
end-to-end deep learning architecture that extracts band specific
spectral-spatial features and performs land cover classification.
The architecture has fewer independent connection weights and
thus requires fewer training samples. The method is found to out-
perform the highest reported accuracies on popular HSI data sets.

Index Terms— Convolutional neural network (CNN), deep
learning, feature extraction, hyperspectral imagery, landcover
classification, pattern classification.

I. INTRODUCTION

YPERSPECTRAL imaging [1], [2] measures reflected
radiation from a surface at a series of narrow, contiguous
frequency bands. It differs from multispectral imaging, which
senses a few wide, separated frequency bands. Hyperspectral
imaging produces 3-D (x, y, 1) data volumes, where x and y
represent spatial dimensions and A represents spectral dimen-
sion. Such a detailed spectrum provides richer spectral infor-
mation about the identity and characteristics of the material at
the location of a pixel than is available from a multispectral
image.
This paper studies land-cover classification in hyperspectral
images (HSIs) [3] where the task is to predict the type of land-
cover present in the location of each pixel. There are several
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challenges associated with the predictive analysis of hyper-
spectral data, the most critical of which are: 1) curse of dimen-
sionality resulting from a large number of spectral dimensions;
2) scarcity of labeled training examples; and 3) large spatial
variability of spectral signature [4]. Challenges 1) and 2) lead
to the Hughes phenomenon [5], which means that for a fixed
number of training samples, the predictive power reduces with
increasing dimensionality of the feature space.

Several approaches have been followed in the literature for
HSI classification. The simplest of them are based on the
k-nearest neighbors (k-NNs). In these methods, given a test
sample, Euclidean distance in the input space or a transformed
space is used to find the k nearest training examples and a class
is assigned on the basis of them. In [6] and [7], some modified
versions of the k-NN algorithm have been proposed for HSI
classification. A major drawback of these approaches is poor
generalization in the absence of adequate training data.

Support vector machine (SVM) classifier is a maximum
margin linear classifier [8]. Melgani and Lorenzo [9] intro-
duced SVM for HSI classification. The SVM-based methods,
in general, follow a two-step approach. First, dimensionality
reduction in order to address the problems of high spectral
dimensionality and scarcity of labeled training examples.
Some of the methods followed for dimensionality reduction
are subspace projection [10], random feature selection [11],
and kernel local Fisher discriminant analysis [12]. Second,
classification in the reduced dimensional space using
SVM [9], [10], [13]. The dimensionality reduction step in
these algorithms is not data-driven as a result of which,
the extracted features might be suboptimal for classification.
This paper focuses on fully data-driven feature learning for
classification.

Li et al. [13] propose local Fisher’s discriminant analysis for
dimensionality reduction and the Gaussian mixture model for
classification. Mianji and Zhang [14] propose Gaussian non-
linear discriminant analysis for dimensionality reduction and
relevance vector machine for classification. Samat et al. [15]
introduce extreme learning machine (ELM) for HSI classifica-
tion. ELM [16] is a two layer artificial neural network in which
the input to hidden weights is randomly chosen and the hidden
to output weights is learned by minimizing a least squares
objective function. In [17], local binary pattern (LBP) is used
to extract texture-based local descriptors, which are combined
with global descriptors such as Gabor and spectral features,
and fed into an ELM for classification. However, the minimal
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architecture of ELM has limited discriminative power. Also
the fact that the weights from the input to the hidden layer
are not trainable limits the extraction of expressive features.
In this paper, we have designed a neural network that has
many hidden layers and is fully trainable by gradient descent.
Lu et al. [18] proposed a set-to-set distance-based method for
HSI classification.

Efficient modeling of spectral-spatial context is necessary to
address the problem of spatial variability of spectral signatures.
This has been emphasized in the context of dimensionality
reduction [19] and salient band selection tasks [20]. Recently,
deep learning neural networks [21], [22] capable of effi-
cient context modeling have been employed for land cover
classification in HSI [23]. These deep learning algorithms
fall into two broad categories. The first category [24]-[28]
follows a two-step procedure. First, dimensionality reduc-
tion and spectral-spatial feature learning using autoencoder.
Autoencoder [29] is an artificial neural network architecture
that learns to reconstruct the input vector at the output with
minimum distortion after passing through a bottleneck. The
vector of activations in the bottleneck is a reduced dimensional
representation of the input vector that often encodes useful
semantic information. Second, classification using multiclass
logistic regression. The main drawback of these approaches
is the absence of task-specific feature learning. This is miti-
gated in our proposed method by using end-to-end supervised
learning to tune the features to the specific task of landcover
classification.

The second category of methods uses convolutional neural
networks (CNN5s) [22], [30] for feature learning and classifica-
tion in an end-to-end fashion. CNN uses extensive parameter-
sharing to tackle the curse of dimensionality. Hu er al. [31]
introduced CNN for HSI classification. The proposed archi-
tecture is designed to learn abstract spectral signatures in a
hierarchical fashion but does not take into account spatial
context. In [32], compressed spectral features from a local
discriminant embedding method are concatenated with spatial
features from a CNN and fed into a multiclass classifier.
Yu et al. [33] and Chen et al. [34] propose end-to-end
CNN architectures for spectral-spatial feature learning and
classification. In [35], the idea of classifying pixel-pair
features (PPFs) using CNN is introduced to compensate
for data scarcity. Also, a voting strategy is proposed for
test time to provide robustness in heterogeneous regions.
However, none of these methods simultaneously address
the three principal challenges of HSI classification—the
curse of dimensionality, scarcity of labeled examples, and
spatial variability of spectral signature. Ours is a novel
attempt at designing a single end-to-end deep learning neural
network architecture that simultaneously addresses these
challenges.

In this paper, we present a deep neural network architecture
that learns band-specific spectral-spatial features and gives
a state-of-the-art performance without any kind of data set
augmentation. The architecture consists of three cascaded
blocks. Block 1 takes a p x p x N, input volume (N, = number
of spectral channels) and performs a preliminary feature
transformation on the spectral axis. It splits the spectral
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channels into bands and feeds to Block 2 where parallel
neural networks are used to extract low and midlevel spectral-
spatial features. The outputs of the parallel networks are fused
by concatenation and fed into Block 3, which summarizes
them to form a high-level representation of the input. This
is eventually classified by logistic regression. Extensive use
of convolutional layers and weight sharing among the parallel
networks of Block 2 keeps the parameter budget and compu-
tational complexity low. Band-specific representation learning
and fusion via concatenation in Block 2 make the network
discriminative toward spectral locality of low and mid-level
features. Experiments on benchmark HSI classification data
sets show that the proposed network converges faster and gives
superior classification performance than other deep learning-
based methods in the literature. Our source code is publicly
available on GitHub.!

The idea of band specific spectral-spatial feature learning
is based on the fact that the data collected by HSI sensors
have the unique characteristic of grouped features. Some
frequency subbands are more discriminative about certain
material characteristics than others. This has motivated prior
work on supervised [36], [37] and unsupervised [38] HSI
classification. This paper makes a novel attempt at leveraging
this characteristic in a deep neural network architecture for
improved feature learning at a low parameter budget.

The contributions of this paper can be summarized as
follows.

1) A novel end-to-end deep neural network architecture has
been proposed that shows state-of-the-art performance
on benchmark HSI classification data sets. The design is
aimed at efficient band-specific feature learning keeping
the number of parameters low.

2) Considerable improvement in training time is observed
when compared with other popular deep learning archi-
tectures.

Section II gives a detailed description of the proposed
architecture along with the design methodology followed.
Experimental results are presented in Section III. Comparison
with existing methods is also reported. Section IV concludes
this paper with a summary of the proposed method and scope
of future work.

II. PROPOSED FRAMEWORK

The BASS Net architecture, shown in Fig. 1, combines
spectral and spatial information processing in a systematic
way with a focus on efficient use of parameters. The input
to the network is a pixel X; from the image with its p X p
neighborhood (for spatial context) in the form of a p x p x N,
volume, where N, is the number of channels in the input
image. The output is the predicted class label y; for Xj. The
entire network is differentiable end-to-end and can be trained
by backpropagation [39].

A. Overview of Architecture

The architecture is organized as three cascaded blocks.
1) Block 1 (Spectral Feature Selection and Band Partition-
ing): Block 1 takes the input p x p x N, volume X; and

1 https://github.com/kaustubhOmani/BASS-Net
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Fig. 1. Block diagram of the BASS Net architecture.
TABLE I

COMPARISON OF DIFFERENT ARCHITECTURAL DESIGN CHOICES IN TERMS OF ACCURACY ON THE VALIDATION SPLIT OF THE INDIAN PINES DATA SET

[ Configuration [ [ Configuration 2 Configuration 3 [ Configuration 4
Input volume: 3 x 3 x 220
Block 1 [ — — “convgy — 1,220 [ convgy — 1,220
Split into n;, bands along the A-axis
fe—150 *convy — 3,20 convy — 3,20 convy — 3,20
fe—100 o *convy — 3,20 - convy — 3,20 - *convy — 3,20 _
Block 2 F————— np =10 Fe— 100 np = 10 Fc =100 npy = 10 Foonvy — 3. 10 np = 10
convy — 5,5
Concatenate the outputs of the parallel networks
fc— 500 fc— 500 fc— 500 fc—100
Block 3 fc—100 Fc—100 fc—100 Fc—0
fc—9 fc—9 fc—9
9-way softmax layer for classification
Validation Accuracy
PS = OFF 93% 95.5% 97.5% 98%
Validati
alication Ascuracy 94% 97.5% 98.5% 99.5%
performs the operation described by Vj=1,2,..., N ny is a hyperparameter that can be tuned
to improve performance on the validation set. The set of bands
{B1, B, ..., By} = ¥ (Q(Xi), np). M {B1, B2, ..., By,} is passed as input to Block 2.
2) Block 2 (Band-Specific ~ Spectral-Spatial  Feature

Y(.,-) is a function that takes as input an HSI volume X with
N spectral channels and an integer np. It splits X into ny
nonoverlapping adjacent bands {B,-}l'-’i1 of equal bandwidth b,
where b = (N /np)

{BlaBza"'5Bl’l/;} = ‘{I(X, nb) (2)

®(-) is a function that applies a feature selection algorithm
along the spectral dimension of a p x p x Nj, HSI volume
X and produces another p X p X Ny output volume Y. Out
of the many different possibilities, for this function, we have
explored the identity function 7(-) and 1 x 1 spatial convolution
in this paper. Let X = [X(")]f-vzi"1 and Y = [y(j)]j,\’iult’
i, let X' and Y/ be the input and output channels along
the spectral dimension. If ®(-) be the identity function, then
Y = d(X) =7(X) =X. If ®() is implemented using 1 x 1
spatial convolution then it effectively performs the operation
described by
Nin
Y/ = Z wj,-Xi.

i=1

3)

Learning): Block 2 applies nj parallel networks, one on each
band. Table I explores a variety of choices for these networks.
Each convolutional and fully connected layer is followed by
a rectified linear unit (ReLU) layer [40], which applies the
following operation elementwise on the input volume

y = ReLU(x) = max(0, x). “4)

The outputs of the parallel networks are concatenated and fed
into Block 3.

3) Block 3 (Summarization and Classification): Block 3
summarizes the concatenated outputs of the band-specific
networks of Block 2 by using a set of fully connected layers,
each of which is followed by an ReL.U layer. A C-way softmax
layer does the final classification by calculating the conditional

probabilities of the C output classes, p = [p1, p2,..., pc] as
eZi
Pi= =g (%)
l iCZI et

where z = [z1, 22, . . ., zc] is the input to the softmax layer.
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Fig. 2. Diagrammatic representation of convyy — p,n on an A x B x C
input volume.

Fig. 3. Diagrammatic representation of conv, — p,n on an A X B x C input
volume.

B. Architectures Explored

Table I shows four different network configurations (1-4)
and their validation accuracies on the Indian Pines data set
(see Section III-A) in an attempt to demonstrate the effect of
different architectural design choices on the performance of
the network. Only weight layers have been shown to avoid
clutter. In all the four configurations, the parallel networks
in Block 2 have identical architecture. Block 2 row shows
the architecture of one of the parallel networks. Each conv
and fc layer (except the last one in Block 3) is followed by
an ReLU layer. Cells with an asterisk (*) in the beginning
mark the salient points of difference of the corresponding
configuration from the one to the left of it. PS = ON/OFF
indicates whether parameter-sharing is ON/OFF among the
networks of Block 2. When PS = ON, the corresponding
weights and biases of the networks are tied and their update-
values are averaged across all the networks during back-
propagation. Thus, all the networks remain identical. When
PS = OFF, the networks are allowed to train independently.
convyy — p,n represents a spatial convolutional layer with a
receptive field size of p x p and n output spectral-channels.
conv,; — p,n represents a spectral convolutional layer with a
spectral receptive field of size p and n output spatial-channels.
Each convolutional layer, spatial or spectral, consists of a
set of 3-D filters, one corresponding to each output channel.
Each filter in a convy, — p,n layer has a spatial extent of
p x p and extends throughout the entire spectral axis of
the input volume (Fig. 2). On the other hand, a filter in a
conv; — p,n layer has a spectral extent of p and extends
throughout the spatial extent of the input volume (Fig. 3).
All convolutions used in our networks are ‘“valid,” which
means that there is no zero-padding at the boundaries of the
input volume during convolution. As shown in Figs. 2 and 3,
if we have an A x B x C input volume then the output volumes
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of a convyy — p,n layer and a conv; — p,n layer with valid
convolutions will, respectively, be (A—p+1)x (B—p+1)xn
andn x 1 x (C — p+1). fc —n denotes a fully connected
layer with n nodes. Spectral pooling [31] layers, which tend to
induce spectral invariance, are avoided, because our networks
are supposed to be discriminative to spectral location.

Significances of different design choices, described
in Table I, are as follows.

1) Parameter sharing of the parallel networks in Block 2
(PS = ON) yields an improvement of validation accu-
racy by at least 1% over PS = OFF in all the four
configurations. This confirms that reducing the number
of free parameters through parameter sharing leads to
better generalization by reducing chances of overfitting.

2) Configuration 2 is constructed by replacing the first fully
connected layer in Block 2 in Configuration 1 with two
spectral convolution layers. Higher validation accuracy
of Configuration 2 can be attributed to fewer parameters
in Block 2 than Configuration 1.

3) Configurations 1 and 2 have ®() = I().
Configuration 3 is constructed by replacing I(-)
in Block 1 in Configuration 2 with a 1 x 1 spatial
convolution followed by an ReLU. An improvement
in validation accuracy is observed. This demonstrates
the importance of a nontrivial spectral feature selection
function. Such a function increases the discriminative
power of the network by adding more parameters and
nonlinearity.

4) Configuration 4 is constructed by replacing the last fully
connected layer in Block 2 in Configuration 3 with two
spectral convolution layers and removing the first fully
connected layer of Block 3. This construction improves
the validation accuracy further by 1% with parameter
sharing in Block 2 and 0.5% without. This shows that
in the presence of a nontrivial spectral feature selection
function in Block 1, reducing the number of parameters
in Blocks 2 and 3 can help achieve better generalization
by reducing overfitting. This also shows that adding
more spectral convolution layers in Block 2 and reducing
the number of fully connected layers in Block 3 lead to
better performance.

We use Configuration 4 with input patch-size 3 x 3 and
PS = ON in all the experiments of our comparative study in
Sections III-D and III-E with some minor modifications for
the Salinas and U. Pavia data sets as listed in the following.

1) The 1 x 1 spatial convolution layer of Block 1 has
224 and 100 output channels for Salinas and U. Pavia,
respectively.

2) The number of parallel networks in Block 2, np,
is 14 and 5 for Salinas and U. Pavia, respectively.

3) In the case of Salinas data set, the last layer of Block 3
is fc — 16 as the number of output classes is 16.

C. Learning Algorithm

The networks are trained by minimizing the cross-entropy
loss function [22]. If C be the total number of output classes,
{X;, y,-}lN=1 be the training set, Pgaa(class = c¢|X) and
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Pmoder(class = ¢|X), Ve = 1,2,...,C be the observed and
model conditional distributions, respectively, then the cross
entropy loss function, £ _entropy is given by

N C
L:x—entropy = - Z Z Pyata(c] X;) 10g(Pmoder (¢|X;)).  (6)
i=1 c=1
In our data sets, the observed conditional distribution Py, 1S
a one-hot distribution, that is
) 1, ify=i
Poaa(class = i1X) = {0, otherwise. M
Hence, the expression of cross-entropy loss function
becomes
N
Lx—entropy = — Z log(Pmodel (yi1X:)). (8)
i=1
Thus, minimizing this expression is equivalent to maximiz-
ing the log-likelihood of the target labels given the inputs.
The Adam optimizer [41] is used for making the parameter
updates. It computes adaptive learning rates for each para-
meter. The base learning rate is set to 0.0005 and batch-size
to 200. Dropout, with probability 0.5, is applied to the fully
connected layers of Block 3. Dropout is an effective method
of regularizing neural networks by preventing coadaptation
of features [42]. Batchnorm [43] is observed to degrade the
performance of our network and, hence, is not used.

II1. EXPERIMENTAL RESULTS

We first present the details of the data set used; followed
by the classification performances.

A. Data Sets

The experiments are performed on three popular HSI clas-
sification data sets—Indian Pines [44], Salinas, and Pavia
University scene (U. Pavia).2 Some classes in the Indian Pines
data set have very few samples. We reject those classes and
select the top nine classes by population for experimentation.
The problem of insufficient samples is less severe for Salinas
and U. Pavia and all the classes are taken into account;
200 labeled pixels from each class are randomly picked to
construct a training set. The rest of the labeled samples
constitute the test set. A validation set is extracted from the
available training set for tuning the hyperparameters of the
model. As different frequency channels have different dynamic
ranges, their values are normalized to the range [0, 1] using
the transformation f(-) defined in (9), where x denotes the
random variable corresponding to the pixel values of a given

channel ~ min(x)

Fl)=—

max(x) — min(x) "

©)

B. Evaluation Metrics
We evaluate the proposed architecture in terms of the
following metrics.

2http://www‘ehu.eus/ccwintco/index.php?title=HyperspectraLRem0te,
Sensing_Scenes
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TABLE II
DATA SETS USED
| Indian Pines | Salinas | U. Pavia
Sensor AVIRIS AVIRIS ROSIS
Place Northwestern | Salinas Val- | Pavia, North-
Indiana ley Califor- | ern Italy
nia
Frequency Band 0.4-0.45pum | 0.4-0.45pum | 0.43-
0.86um
Spatial Resolution | 20m 20m 1.3m
No. of Channels 220 224 103
No. of Classes 16 16 9

1) Class-Specific Accuracy: Class specific accuracy for
class C; is calculated as the fraction of samples from class C;,
which were correctly classified.

2) Overall Accuracy: Overall accuracy (OA) is the ratio of
the total number of correctly classified samples to the total
number of samples of all classes.

3) Macroaveraged and Microaveraged Precision, Recall
and F-Score: Let TP, TN, FN, and FP denote, respectively,
the number of true positive, true negative, false negative, and
false positive samples. Then

. TP
Precision = —— (10)
TP 4 FP
TP
Recall = ———— (11)
TP + FN
2TP
F —score = ——————. (12)
2TP + FP + FN

Let M(TP, FP, TN, FN) be an evaluation metric, e.g., pre-
cision, recall, F-score. The macroaveraged and microaveraged
values of the metric can be calculated as

N N N N
Mmicro = M <Z TP,y FPe,» TNe, Y FNC> (13)
c=1 c=1 c=1 c=1

N
1
Mumaero = = > M(T Pe, FPe, TNe, FN) (14)

c=1

where N is the total number of output classes. A significantly
lower value of the microaverage of a metric than the macroav-
erage indicates that the less populated labels are correctly
classified, while the most populated labels have been grossly
misclassified and vice versa [45].

4) k-Score: The k-score or k-coefficient is a statistical
measure of the degree of agreement among different evalu-
ators [46]. Suppose there are two evaluators that classify N
items into C mutually exclusive classes. Then, the x-score is
given by the following equation:

K:PO—Pe (15)

1 — pe
where pg is the relative observed probability of agreement and
Pe 1s the hypothetical probability of chance agreement. x = 1
indicates complete agreement between the evaluators, while
x < 0 means there is no agreement at all.
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C. Implementation Platform

The networks are implemented in Torch,? a popular deep
learning library written in Lua. The models are trained on an
NVIDIA Tesla K20c GPU.

D. Comparison of Different Hyperparameter Settings

Figs. 4 and 5 show the effect of changing the number
of output channels of 1 x 1 spatial convolution in Block 1
and the number of networks in Block 2 in Configuration 4
on validation accuracy on Indian Pines. Fig. 6 shows test
accuracies on Indian Pines for different choices of input patch-
size. Increasing the patch-size gives more spatial context,
which results in a marginally better accuracy of classification.
However, due to an increased number of parameters, the model
might tend to learn the data set bias and fail to generalize to
samples outside the image region from which the training and
testing samples were extracted.

3 http://torch.ch
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TABLE III

CLASS-SPECIFIC ACCURACY (%) AND OA OF DIFFERENT
TECHNIQUES FOR THE INDIAN PINES DATA SET

Class | kNN | SVM | ELM | MLP | CNN PPF | BASS
1 61.83 | 88.73 | 86.06 | 77.77 | 78.58 | 92.99 | 96.09
2 72.65 | 91.20 | 88.19 | 79.05 | 85.23 | 96.66 | 98.25
3 95.65 | 97.52 | 96.07 | 94.70 | 95.75 | 98.58 100
4 98.90 | 99.86 | 99.73 | 98.11 | 99.81 100 99.24
5 100 100 100 99.64 | 99.64 100 100
6 80.76 | 91.67 | 90.02 | 83.68 | 89.63 | 96.24 | 94.82
7 59.39 | 78.79 | 71.00 | 79.60 | 81.55 | 87.80 | 94.41
8 7572 | 93.76 | 95.62 | 89.31 | 9542 | 98.98 | 97.46
9 94.86 | 98.74 | 98.66 | 98.12 | 98.59 | 99.81 | 99.90

OA 76.24 | 89.83 | 87.33 | 85.48 | 86.44 | 94.34 | 96.77
TABLE IV

CLASS-SPECIFIC ACCURACY (%) AND OA OF DIFFERENT
TECHNIQUES FOR THE SALINAS DATA SET

Class | kNN | SVM | ELM | MLP | CNN PPF BASS
1 98.71 | 99.55 | 99.75 | 99.67 | 97.34 100 100
2 99.65 | 99.92 | 99.87 | 99.77 | 99.29 | 99.88 | 99.97
3 99.09 | 99.44 | 99.60 | 98.37 | 96.51 | 99.60 100
4 99.78 | 99.86 | 99.64 | 99.75 | 99.66 | 99.49 | 99.66
5 9528 | 98.02 | 98.81 | 98.83 | 96.97 | 98.34 | 99.59
6 99.49 | 99.70 | 99.67 | 99.68 | 99.60 | 99.97 100
7 99.55 | 99.69 | 99.66 | 99.29 | 99.49 100 99.91
8 63.53 | 84.85 | 84.04 | 7596 | 72.25 | 88.68 | 90.11
9 95.94 | 99.58 | 99.89 | 99.27 | 97.53 | 98.33 | 99.73
10 9198 | 96.49 | 95.03 | 96.07 | 91.29 | 98.60 | 97.46
11 98.41 | 98.78 | 96.82 | 97.93 | 97.58 | 99.54 | 99.08
12 99.84 100 100 100 100 100 100
13 98.69 | 99.13 | 9825 | 99.58 | 99.02 | 99.44 | 99.44
14 97.38 | 98.97 | 97.94 | 9896 | 95.05 | 98.96 100
15 65.66 | 76.38 | 72.96 | 7593 | 76.83 | 83.53 | 83.94
16 99.00 | 99.56 | 99.06 | 98.51 | 98.94 | 99.31 | 99.38

OA 86.29 | 93.15 | 92.42 | 90.78 | 89.28 | 94.80 | 95.36
TABLE V

CLASS-SPECIFIC ACCURACY (%) AND OA OF DIFFERENT TECHNIQUES
FOR THE PAVIA UNIVERSITY SCENE DATA SET

Class | kNN | SVM | ELM | MLP | CNN PPF | BASS
1 77.70 | 87.95 | 81.32 | 91.73 | 88.38 | 97.42 | 97.71
2 7530 | 91.17 | 9091 | 94.79 | 91.27 | 95.76 | 97.93
3 7727 | 8699 | 85.09 | 85.41 | 85.88 | 94.05 | 94.95
4 92.46 | 9550 | 96.61 | 94.13 | 97.24 | 97.52 | 97.80
5 99.63 | 99.85 | 99.63 | 99.65 | 99.91 100 100
6 79.50 | 94.31 | 94.33 | 90.87 | 96.41 | 99.13 | 96.60
7 92.86 | 94.74 | 9594 | 9256 | 93.62 | 96.19 | 98.14
8 76.45 | 85.89 | 82.65 | 83.19 | 87.45 | 93.62 | 95.46
9 99.62 | 99.89 | 99.79 | 99.73 | 99.57 | 99.60 100

OA 79.45 | 91.10 | 89.86 | 92.54 | 92.27 | 96.48 | 97.48

E. Comparison With Other Methods

The test accuracies of the BASS Net architecture (BASS)
for the Indian Pines, Salinas, and U. Pavia data sets are
compared with other traditional and deep learning-based clas-
sifiers in Tables III-V. All the classifiers are trained on the
same training set and tested on the same test set for a fair
comparison. Among traditional classifiers k-NN, SVM with
random feature selection [11] and ELM [17] are compared.
k-NN is implemented in scikit learn* with k equal to the
number of classes for each data set. SVM with random feature
selection is implemented as described by Waske et al. [11]
with Gaussian (RBF) kernel, ensemble size 50, 200 training
samples per class, and feature subset sizes (percentage of total

4http://scikit-learn.org
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Fig. 7. Thematic maps resulting from classification for the Indian Pines data
set with nine classes. (a) Ground-truth map. (b) Decoded output from our
model.

number of features) sampled from a uniform distribution over
{10, 20, ...90}. The regularization parameter C and the kernel
parameter g are determined by grid search using threefold
cross validation. Libsvm?® is used as a platform. ELM is imple-
mented in the exact same way as described by Li et al. [17]
with the same data sets, sample size, and hyperparameter
values using code downloaded from the Web page.® The
number of selected bands of linear prediction error is set
to 11. (m,r) and patch-size for the LBP operator are set
to (8,2) and 21 x 21, respectively. Bandwidth of the Gabor
filter and Gaussian kernel parameters are optimized by fivefold
cross validation. Among deep learning-based classifiers,
an N.-150-100-50-C multilayer perceptron (MLP), the CNN
architecture of Hu er al. [31], and the CNN with PPFs of
Li et al. [35] are implemented in Torch. The MLP is trained
by Adam optimizer with base learning rate 0.0005 and batch-
size 200. Parameters of the learning algorithm of the CNN
as well as the training set size are set equal to the values
mentioned in [31] with the only exception that the number
of output classes for Indian Pines is chosen as 9 as opposed
to 8 in the original paper. PPF is implemented with the same
architecture, learning algorithm and hyperparameter values as
mentioned by Li et al. [35].

F. Results and Discussion

Thematic maps resulting from the classification of Indian
Pines, Salinas, and U. Pavia scenes using our network are
presented alongside ground truth in Figs. 7-9, respectively.
Tables III-V show the results of the comparison of the
proposed framework with traditional and deep learning-based
methods. The proposed framework outperforms all the other
methods on all the three data sets in terms of OA of clas-
sification. For example, on Indian Pines, the test accuracy
of our network exceeds SVM, CNN, and PPF by 6.94%,
10.33%, and 2.43%, respectively. Fig. 10 compares the varia-
tion of validation accuracy over epochs of training on Indian
Pines. Our network converges faster than MLP and CNN.
Table VI gives microaveraged and macroaveraged precision,

5 http://www.csie.ntu.edu.tw/~cjlin/libsvm/
(’http://www.ntu.edu. sg/home/egbhuang/elm_codes.html
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Fig. 8. Thematic maps resulting from classification for the Salinas data set
with 16 classes. (a) Ground-truth map. (b) Decoded output from our model.
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Fig. 9. Thematic maps resulting from classification for the Pavia University
scene data set with nine classes. (a) Ground-truth map. (b) Decoded output
from our model.
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Fig. 10. Variation of validation error over epochs of training on the Indian
Pines data set for the proposed architecture and other popular deep neural
networks.

recall, F-score, and x-score for our models trained on the
three data sets. High values of both macroaveraged and
microaveraged precision, recall, and F-score suggest that the
classifier is effective for both scarce and abundant classes.
To further validate our claim, we trained our Configuration 4
network on all 16 classes of Indian Pines, taking 200 samples
from each of the nine most populated classes and 80% of the
samples from each of the remaining seven classes. The results
obtained are corroborative and are presented in Table VII.
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TABLE VI
CLASSIFICATION PERFORMANCE STATISTICS
Indian Pines | Salinas | U. Pavia
precision 0.9677 0.9536 0.9748
micro-averaged recall 0.9677 0.9536 0.9748
F-score 0.9677 0.9536 0.9748
precision 0.9713 0.9730 0.9680
macro-averaged recall 0.9779 0.9802 0.9762
F-score 0.9745 0.9764 0.9719
K- score 0.9612 0.9480 0.9662
TABLE VII

CLASSIFICATION PERFORMANCE STATISTICS FOR
ALL 16 CLASSES OF INDIAN PINES

test accuracy 0.9503
precision | 0.9503
micro-averaged recall 0.9503
F-score 0.9503
precision | 0.9447
macro-averaged recall 0.9781
F-score 0.9591
K-score 0.9411
TABLE VIII
OA STATISTICS OVER 20 INDEPENDENT EXPERIMENTS
Indian Pines | Salinas | Pavia
mean 95.17 94.26 96.81
std 0.304 0.19 0.13

High values of x-score for all the data sets show that the
proposed classifier has a high degree of agreeability with the
ground truth generating mechanism. In order to test whether
our network architecture gives high performance consistently
across different choices of the training set, we repeat the
experiments 20 times with disjoint training sets. In each
experiment, we train the Configuration 4 network on a unique
sample of 200 pixels from each class and test on the remaining
pixels. Table VIII shows the mean and standard deviation of
OA over these 20 experiments for each data set. Mean OA is
high and standard deviation is low for all three data sets, which
show that the proposed architecture performs consistently and
the superior performance is not specific to a cherry-picked
selection of training and test sets.

IV. CONCLUSION

In this paper, an end-to-end deep learning neural network
architecture has been proposed to directly address the prob-
lems of the curse of dimensionality, scarcity of labeled data,
and spatial variability of spectral signature pertaining to HSI
classification. Band-specific spectral-spatial feature learning
and extensive parameter sharing in the neural network help
achieve superior classification performance and faster con-
vergence than other popular deep learning-based methods on
benchmark HSI classification data sets.
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