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dependence of the dead time on the amplitude of the gate drive voltage
makes the feedback circuit design very simple.

V. DESIGN PROCEDURE

We perform the design for the specifications: operating frequency
fo = 1:0 MHz, deadtime duty-ratio = 0.25, load resistanceRL = 12:5

, quality factorQ = 10 and input dc voltageVcc = 20 V (see,
Fig. 7). From [2], the relationship between the input dc voltage and
output sinusoidal voltage is

jvoj =
Vcc

�
: (27)

Therefore, the output voltagevo is 6.37 V. Using (1)–(4) and (9)–(19),
we find the values of the circuit elements of the inverter part as

Cs1 =Cs2 =
1

2� � (2� � 1:0 � 106) � 12:5

=2:03 [nF] (28)

Lr =10 �
12:5

2� � 1:0 � 106

=19:89 [�H] (29)

Cf =
1

(2� � 1:0 � 106) � 10�
�

2
� 12:5

=151 [pF]: (30)

IRF510 MOSFET’s were used as switchesS1 andS2. Their character-
istics of are shown in Table I. Using (9)–(22) and (28)–(30), we find the
values of the circuit elements of the phase-shift part of the oscillator as

C1 =264 [pF] (31)

C2 =50 [pF] (32)

L1 =126:65 [�H]: (33)

VI. EXPERIMENTAL RESULTS

An experimental circuit designed in Section V was tested. For
starting, we gave the driving signalsDs1 andDs2 from reference
inverter because the circuit needs an external trigger signal to start the
oscillation.

Fig. 6 shows the waveforms of the switch voltagevs1 and output
voltagevo. They agreed well with theoretical predictions. The mea-
sured efficiency was 93.3% at the output of 2.3 W and operating fre-
quency of 1.0 MHz.

VII. CONCLUSION

In this paper, a high-efficiency class DE tuned power oscillator was
introduced. The proposed circuit can be used as a simple high-effi-
ciency tuned power inverter. The analysis, design examples, and ex-
perimental results were presented. The measured performance showed
good agreement with the theoretical predictions.
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Self-Control of Chaotic Dynamics using LTI Filters

Pabitra Mitra

Abstract—In this brief, an algorithm for controlling chaotic systems
using small, continuous-time perturbations is presented. Stabilization is
achieved by self controlling feedback using low order LTI filters. The
algorithm alleviates the need of complex calculations or costly delay
elements and can be implemented in a wide variety of systems using simple
circuit elements only.

Index Terms—Feedback control of chaos, linear time invariant filters,
unstable periodic orbits.

I. INTRODUCTION

There has been some increasing interest in recent years in the study
of controlling chaotic nonlinear systems [2], [7]. The possibility of ob-
taining periodic waveforms from a chaotic system by stabilizing any of
the numerous embedded unstable periodic orbits (UPO’s) has been the
guiding control philosophy. The breakthrough in this direction is the
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Fig. 1. Block Diagram of the Control Algorithm.

OGY algorithm [1], which stabilizes the UPO by applying occasional,
small, well-calculated perturbations to the system parameters.

The above methods are in essence discrete in nature and calculate the
perturbation based upon local behavior of the system in a neighborhood
of the UPO. This is an advantage, as knowledge about the entire global
dynamics is not necessary. However, since control is exercised only
occasionally in a small neighborhood of the UPO, the system becomes
susceptible to occasional bursts away from the UPO under moderate
noise. To overcome this limitation the idea of time continuous control
was proposed by Pyragas [3]. Among the two algorithms suggested
by Pyragas one required an external periodic signal approximating the
UPO, while the other recovered the periodic signal by delay coordinate
method. Though various implementations of the second method has
been reported, the inspiration behind the present report is to replace
the delay element which is difficult and costly to obtain at some time
scales.

The present algorithm also achieves control by perturbing the system
parameters in proportion to the error signal between the output signal
to be controlled and a periodic signal, but the periodic signal is derived
from the chaotic attractor itself, by passing the chaotic output of the
system through a bank of band pass filters with narrow pass bands.
The filters may be simple LTI ones, which can be implemented using
resistor, capacitor and opamps only. It has been observed that though
LTI filters are unable to filter out a periodic signal from a chaotic one
[8], when connected in the above configuration, the whole system can
be controlled to periodic orbits.

II. CONTROL ALGORITHM

Let us consider a dynamical system given by the model

_X = f(X; p)

y =CpX (1)

where,p is a parameter available for perturbation andy is the output
signal to be controlled. We assume bothy andp to be scalars.

The system is connected in the configuration shown in Fig. 1. The
feedback path consists of an inverter and a bank of filters connected in
parallel. The filters are band pass type with narrow pass bands, second-
order notch filters are found to be sufficient for effective control. The
number of filters required depends on the periodicity of the UPO’s to
be stabilized. To obtain a period-1 output only a single filter would be
necessary, while two filters are required to obtain a period-2 output. It
may be noted in this context that if only the inverter loop is present,

the system gets stabilized to an equilibrium point for an high gainK.
To select the pass frequency of the filter, an FFT of the output signal is
obtained, which would be typically spread spectrum, with broad peaks
centered around frequencies corresponding to the UPO’s. We select
the pass frequency of the filters (fi’s) to be within this windows. A
sufficiently highQ-value is selected for the filters and is assumed to be
tunable. If the output of theith filter is yf (t) the perturbation applied
to the system parameterp is of the form

�p(t) = K yf (t)� y(t) : (2)

The value of gainK is tuned to obtain stabilization.
When stabilization is achieved the output of the filter bank and the

system both become periodic and close to each other; also, the pertur-
bation�p(t) becomes extremely small. Therefore, as well as in OGY
and Pyragas’s method small external force is used for stabilization.
Also since the pass frequency of the filters were chosen to be in the
same window as that of the UPO’s, the stabilized orbit lies in a small
neighborhood of the UPO of the original system.

The Lorentz system is used to illustrate the main results for the al-
gorithm. The system equations for the Lorentz system are given by

_x1 =�x1 + x2x3

_x2 =3(x3 � x2)

_x3 =�x1x2 + rx2 � x3: (3)

The statex2 is selected as the output signal to be controlled andr is
the system parameter available for perturbation. The nominal value of
r is taken as 26.0.

The second-order filter with transfer function

F (s) =
C!0

s2 +
!0

Q
s+ !2

0

is used in the feedback loop. The spectrum of the output signal is shown
in Fig. 2(b). For stabilization of the period-1 orbit a single filter with
pass frequency of 1.2 Hz is chosen, which lies in the pass window of
the chaotic system. Stabilization is obtained atQ = 8:0, K = 0:52
andC = 0:90. Fig. 3(b) and (a) shows the stabilized output signal and
the perturbation in the system parameter, respectively. Fig. 3(c) shows
the spectrum of the controlled output.

For stabilization of a period-2 orbit two filters with pass frequencies
f1 = 1:2 Hz andf2 = 0:4 Hz are chosen. Stabilization is achieved at
Q1 = 8:0, Q2 = 6:0, C1 = C2 = 0:9, with a gain ofK = 0:60. Fig.
4 shows the stabilized orbit.
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Fig. 2. Dynamics of the uncontrolled Lorentz system. (a) Phase portrait and output (x ) for the uncontrolled system. (b) Power spectrum of the output over a
time scale of 50 s, sampled at 50 Hz, (c) Frequency response of the filter used in feedback path.

Fig. 3. Controlled period-1 orbit for the Lorentz system: (a) Phase Portrait and perturbation inr, (note that unlike Pyragas’s method where perturbation can be
large during the transient period, leading to problems like multistabilty, here perturbation is small even during the transients). (b) Output signal. (c) Spectrum of the
output after the transients are over, (the peak at dc is due to the dc bias of the output), the stabilized orbit is analmostp-1 orbit, a small higher frequency component
is present along with the main frequency component atf � 1:2 Hz.
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Fig. 4. Dynamics of the controlled period-2 orbit of the Lorentz system. (a)
Phase portrait (b) Output (x )

Though general validity and sufficiency conditions for the effective-
ness of the above algorithm is difficult to prove, it appears that stabi-
lization in the above method is achieved through additional degrees
of freedom introduced into the system by the filter in the feedback
loop. The filter does not change much the projection of the system dy-
namics into the original low dimensional state space, but change only
the Lyapunov exponent of the UPO. As compared to the delayed feed-
back method suggested by Pyragas [3], where the system dimension
increases to infinity, a finite increase in system dimension occurs here,
i.e., the finite dimensional LTI filter (a second-order transfer function
for a single filter) approximates the delay element (having a transfer
functione�Ts) up to some frequency.

III. CONCLUSION

The above algorithm offers in a naive form a paradigm in which
the problem of control of chaotic systems can also be viewed as that
of synchronization of two back to back, mutually coupled system, of
which one may be a chaotic system with numerous embedded UPO’s
and the other may be a LTI or a simpler nonlinear system whose natural
dynamics is periodic. There is scope for future studies in using higher
order filters and nonlinear systems in the feedback path.

In conclusion, a method of stabilizing chaotic systems approxi-
mately to a UPO, by small continuous-time perturbations, is presented.

The main advantage of the above method lies in its easy applicability
to a wide variety of systems. No complex calculations are involved and
the algorithm can be implemented using low-order LTI filters only.
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CMOS Circuits Generating Arbitrary Chaos by Using
Pulsewidth Modulation Techniques

Takashi Morie, Souta Sakabayashi, Makoto Nagata, and Atsushi Iwata

Abstract—This paper describes CMOS circuits generating arbitrary
chaotic signals. The proposed circuits implement discrete-time contin-
uous-state dynamics by means of analog processing in a time domain.
Arbitrary nonlinear transformation functions can be generated by
using the conversion from an analog voltage to a pulsewidth modulation
(PWM) signal; for the transformation, time-domain nonlinear voltage
waveforms having the same shape as the inverse function of the desired
transformation function are used. The circuit simultaneously outputs
both voltage and PWM signals following the desired dynamics. If the
nonlinear voltage waveforms are generated by digital circuits and D/A
converters with low-pass filters, high flexibility and controllability are
obtained. Moreover, the nonlinear dynamics can be changed in realtime.
Common waveform generators can be shared by many independent
chaos generator circuits. Because the proposed circuits mainly consist of
capacitors, switches, and CMOS logic gates, they are suitable for scaled
VLSI implementation. CMOS circuits generating arbitrary chaos with
up to third-order nonlinearity and two variables have been designed and
fabricated using a 0.4 m CMOS process. Chaos has been successfully
generated by using tent, logistic, and Hénon maps, and a chaotic neuron
model.

Index Terms—Chaos, CMOS analog integrated circuits, nonlinear cir-
cuits, nonlinear functions, pulse width modulation.
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