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Abstract Hydrological impacts of global climate change
on regional scale are generally assessed by downscaling
large-scale climatic variables, simulated by General Circu-
lation Models (GCMs), to regional, small-scale hydromete-
orological variables like precipitation, temperature, etc. In
this study, we propose a new statistical downscaling model
based on Recurrent Neural Network with Long Short-Term
Memory which captures the spatio-temporal dependencies
in local rainfall. The previous studies have used several
other methods such as linear regression, quantile regression,
kernel regression, beta regression, and artificial neural net-
works. Deep neural networks and recurrent neural networks
have been shown to be highly promising in modeling com-
plex and highly non-linear relationships between input and
output variables in different domains and hence we inves-
tigated their performance in the task of statistical down-
scaling. We have tested this model on two datasets—one
on precipitation in Mahanadi basin in India and the sec-
ond on precipitation in Campbell River basin in Canada.
Our autoencoder coupled long short-term memory recurrent
neural network model performs the best compared to other

This work was supported by MHRD, Govt. of India and Indian
Institute of Technology, Kharagpur.

� Saptarshi Misra
saptarshimisra2011@gmail.com

Sudeshna Sarkar
sudeshna@cse.iitkgp.ernet.in

Pabitra Mitra
pabitra@cse.iitkgp.ernet.in

1 Department of Computer Science and Engineering,
Indian Institute of Technology, Kharagpur,
West Bengal, India

existing methods on both the datasets with respect to tempo-
ral cross-correlation, mean squared error, and capturing the
extremes.

1 Introduction

Neural networks, especially deep neural networks, are a
powerful class of machine learning models. The tremendous
impact of global warming and climate change are already
observed throughout the world in all spheres of ecosystems,
be it terrestrial or aquatic. Water is the lifeline of our soci-
ety and hence assessing the effects of climate change on
hydro-meteorology is of utmost importance. General Circu-
lationModels (GCMs) provide the most reliable simulations
of the global climate systems, and they provide present and
future time series of climate variables for the entire globe
(Prudhomme et al. 2002; Intergovernmental Panel on Cli-
mate Change - Task Group on Scenarios for Climate Impact
Assessment 1999). Though they are capable of capturing
large-scale circulations and smoothly varying fields such
as mean sea level pressure well enough, they often fail to
capture the non-smooth fields such as precipitation, temper-
ature, soil moisture, etc. on a regional scale (Hughes and
Guttorp 1994). GCMs have a large spatial resolution (say,
3.75◦ × 3.75◦ in case of coupled global circulation model
(CGCM2)). Downscaling is therefore necessary to model
these regional-scale hydrometeorological variables.

The downscaling methods can be primarily classified
into dynamic and statistical downscaling. While dynamic
downscaling involves deriving a high-resolution RCM
(Regional Climate Model) from the coarse-grid GCM,
statistical downscaling deals with developing a linear or
non-linear relationship between the large scale atmospheric
variables (predictor) to the small-scale surface variable of
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interest (precipitation in our case). The statistical down-
scaling models are based on the major assumptions that
regional climate is largely affected by the global-scale circu-
lation patterns (von Storch 1995, 1999) and the relationship
between the predictor and the predictand variables is invari-
ant under future climate scenarios. A detailed review of
the downscaling approaches can be found in the works
of von Storch (1995), Wilby and Wigley (1997), Murphy
(1999), Haylock et al. (2006), Hanssen-Bauer et al. (2005),
Christensen and et al (2007), and Bi et al. (2015).

Neural networks, especially deep neural networks, have
drawn a lot of interest due to their success in solving some
of the most computationally difficult problems with highly
non-linear relationships between input and output vari-
ables. The success of neural networks is mainly attributed
to their ability to learn hierarchical representations, unlike
traditional machine learning models that build up on hand-
engineered features. Long short-term memory, an improved
version of recurrent neural networks, performs exception-
ally well in modeling temporal dependencies, in tasks with
inherent temporal dependencies such as image captioning,
video captioning, sequence learning, translation in natural
language processing, etc.

The recent advances of deep learning has helped in solv-
ing complex computational problems in all fields (computer
vision, image processing, and related fields). A few such
applications in climate data mining using deep learning
techniques (Liu et al. 2014; Gope et al. 2016) has motivated
us to use deep neural networks and Long Short-Term Mem-
ory Recurrent Neural Networks (RNN-LSTMs) as models
for statistical downscaling of precipitation. As Kannan and
Ghosh (2013) and Mandal et al. (2016) have used the lag-
1 precipitation states as conditioning input for their model,
we have used the precipitation state as one of the inputs
in our neural network models. The details of the method
are given in the next sections. For model performance eval-
uation, the results obtained by our proposed method are
compared with that from the existing non-parametric ker-
nel regression and beta regression methods and our model
(RNN-LSTM) is found to perform considerably better com-
pared to these methods. Details regarding the case study
areas and the datasets used are given in the Section 2,
followed by methodology and the results obtained.

2 Related work

The statistical downscaling methodologies developed so far
can principally be grouped into three categories, namely,
weather classification or weather typing (e.g., Hay et al.
1991; Bardossy and Plate 1992; Corte-Real et al. 1995;
Conway and Jones 1998), regression or transfer function
(Murphy 1999; von Storch et al. 1993; Bardossy et al. 1995),

and weather generators (Hughes et al. 1993; Hughes and
Guttorp 1994; Wilks 1999). The weather typing and transfer
function based approaches, generally known as perfect-
prognosis downscaling, establish a relationship between
large-scale climate variables and regional-scale predictand
variable (Wilks 2006). The selection of large-scale pre-
dictors (Wilby and Wigley 1997; Wilby et al. 1998) and
developing a statistical model linking the large-scale with
the small-scale variables are the main constituents of this
class of downscaling techniques. Linear regression (Karl
et al. 1990), generalized linear model (GLM) (Dobson
2001), the generalized additive model (Hastie and Tibshi-
rani 1990), and vector GLM (Yee and Wild 1996) are some
models belonging to this category. The weather generators,
on the other hand, are statistical models generating random
sequences of climate variables, which preserves statistical
properties of observed weather (Richardson 1981; Richard-
son and Wright 1984; Wilks 1998). Some other noteworthy
statistical downscaling models are CRF model (Raje and
Mujumdar 2009), non-homogeneous hidden Markov mod-
els (NHMMs) (Hughes and Guttorp 1994; Hughes et al.
1999).

Despite reasonable advancements in the development
of statistical downscaling techniques, especially for sim-
ulation of precipitation, challenges still exist in simulat-
ing precipitation series with realistic spatial and temporal
dependencies and capturing extremities in precipitation.
Modeling spatial dependence in a nonstationary climate
is one of the most significant challenges in downscaling
(Yang et al. 2005). This problem was addressed well by
the recently developed methods of nonparametric kernel
regression (Kannan and Ghosh 2013) and beta regression
conditioned on rainfall states (Mandal et al. 2016).

3 Case study area considered

Two case study areas are considered to test the model.
Details of the case study areas are mentioned below.

Case study area 1: The Campbell river is a significant
river located on the Vancouver island in the British
Columbia province of Canada. It is both snow and rain-
fed. Details regarding the river can be found in the work
of Mandal et al. (2016). The location of the Campbell
River basin in Canada and the exact downscaling loca-
tions are depicted in Fig. 1 and Table 1 respectively.

Case study area 2: The Mahanadi is a major peninsular
river in East Central India, flowing through the states of
Orissa and Chattisgarh and acting as a lifeline for mil-
lions of people residing there. The details regarding the
Mahanadi river is discussed in the works of Kannan and
Ghosh (2011, 2013). The location of the Mahanadi basin
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Fig. 1 Location of Campbell river basin in Canada

in India is pointed out in Fig. 2. The exact downscaling
locations used for our study in sync with Kannan and
Ghosh (2013)’s work are depicted in Table 2.

4 Climatic variables used

The climatic variables of the two datasets used for testing
our proposed statistical downscaling model are discussed
subsequently.

4.1 Dataset 1 [Campbell basin]

The daily precipitation data (0.1◦ latitude × 0.1◦ longitude)
for 40 years from 1961 to 2013 at ten locations covering
the entire Campbell river basin have been obtained from the
ANUSPLIN dataset, Environment Canada (Hutchinson and
Xu 2013). The ANUSPLIN data is developed using “thin

Table 1 Precipitation stations in Campbell river basin, Canada

Station Latitude Longitude Station

(◦N) (◦W) abbreviation

Elk R ab Campbell Lk 49.85 125.8 ELK

Eric creek 49.6 125.3 ERC

Gold R below Ucona R 49.7 126.1 GLD

Heber river near gold river 49.82 125.98 HEB

John hart substation 50.05 125.31 JHT

Quinsam R at agronaut Br 49.93 125.51 QIN

Quinsam R nr Campbell R 50.03 125.3 QSM

Salmon R ab Campbell div 50.09 125.67 SAM

Strathcona dam 49.98 125.58 SCA

Wolf river upper 49.68 125.74 WOL

Fig. 2 Location of Mahanadi river basin in India

plate smoothing splines” algorithm. This method interpo-
lates climate variables as a function of latitude, longitude,
and elevation.

Following the methodology of Wilby et al. (1999) as
mentioned in the previous section, daily maximum and min-
imum temperature (T max and T min), mean sea level pres-
sure (mslp), specific humidity at 500 hpa (hus), zonal wind
velocity (Uwind), and meridional wind velocity (V wind)
are used as predictors for the downscaling task. Due to
unavailability of sufficient data for the predictor variables,
predictor data is extracted from the NCEP/NCAR (National
Centers for Environmental Prediction/National Center for
Atmospheric Research) reanalysis dataset (Kalnay et al.
1996) for 53 years from 1961 to 2013. NCEP/NCAR dataset

Table 2 Precipitation stations in Mahanadi river basin, India

Station Latitude Longitude

ID (◦N) (◦E)

1 20.5 82.5

2 20.5 83.5

3 20.5 84.5

4 21.5 81.5

5 21.5 82.5

6 21.5 83.5

7 22.5 82.5

8 22.5 83.5
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is a combination of actual and model-forecasted gridded
data at 2.5◦ × 2.5◦ resolution.

So, the predictor variables are T max, T min, mslp, hus,
uwind , vwind and the predictand variable is the Campbell
basin region precipitation data extracted from the gridded
ANUSPLIN precipitation data for Canada (0.1◦ latitude ×
0.1◦ longitude). Data from 1961 to 1990 is used for training
and data from 1991 to 2013 is used for testing the model.

4.2 Dataset 2 [Mahanadi basin]

The gridded daily rainfall data (1◦ latitude × 1◦ longi-
tude) developed by Rajeevan et al. (2006) for the whole of
Indian subcontinent has been obtained from Indian Meteo-
rological Department (IMD). This data is based on actual
recorded rainfall data at 1803 gauging stations all over India,
which had a minimum of 90% data availability for the
period of 1951–2003. Unevenly spaced daily rainfall data
was interpolated by Rajeevan et al. (2006) to form a reg-
ular, n-dimensional array using a numerical interpolation
method proposed by Shephard (1968). This method uses an
ensemble of simple, local interpolation functions that match
suitably at their boundaries. More details of this interpola-
tion scheme can be found in the works of Shephard (1968)
and Rajeevan et al. (2006).

The selection of appropriate predictor variables is one of
the most challenging tasks, and there are contradicting opin-
ions for this. However, in general, as reported in the litera-
ture (Wilby et al. 1999; Wetterhall et al. 2005), the predic-
tors should be reliably simulated by GCMs, easily available
from the archives of GCM outputs, and highly correlated
with the local surface variable of interest (rainfall in this
case). There are several methods like partial mutual infor-
mation(PMI) criteria (Sharma 2000), Variable Convergence
Score (VCS) (Johnson and Sharma 2009). But, as these
methods may exclude predictors which may be important
for future climate scenarios, following Kannan and Ghosh
(2011), we adopt a conventional method suggested byWilby
et al. (1999). As historical data for climate variables are not
available uniformly, we use the NCEP/NCAR Reanalysis
data. Following Kannan’s work, we have selected surface
air temperature(AIR), mean sea level pressure (MSLP),
horizontal component of wind velocity (UWind), vertical
component of wind velocity (VWind), and surface specific
humidity (SHUM) as predictor variables.

To account for the physical processes, such as low pres-
sure area over northern and central India and the movement
of air current from the Indian Ocean through Bay of Bengal
toward the low-pressure area during the summer monsoon,
following Kannan and Ghosh (2011), we have extracted
surface air temperature, mean sea level pressure, surface
specific humidity, horizontal and vertical components of
wind velocity for the region spanning the latitudes 7.5◦

N–35◦ N and longitudes 70◦ E–97.5◦ N covering 144 grid
points (on 2.5◦×2.5◦ grid) for the monsoon months of June,
July, August and September from 1951 to 2000.

So, the predictor variables are AIR, MSLP, SHUM,
UWind, VWind, and the predictand variable is theMahanadi
basin region rainfall data extracted from the gridded all
India IMD rainfall data (1◦ latitude × 1◦ longitude). This
data has been truncated into two parts—data from 1951 to
1980 is used for training our model and that from 1981 to
2000 is used for validating the model.

5 Methodology for statistical downscaling
using LSTM

The task is to perform statistical downscaling of precipitation
for two regions—Mahanadi basin and Campbell basin using a
LSTM based neural network model and compare the results
of this model with those of a suite of existing approaches
like non-parametric kernel regression (Kannan and Ghosh)
and beta regression (Mandal, Srivastav and Simonovic).

On Mahanadi basin dataset, the existing state of the art
statistical downscaling model, to the best of our knowledge,
is the non-parametric kernel regression based model devel-
oped by Kannan and Ghosh (2013). On Campbell basin
dataset, the existing state of the art model, to the best of our
knowledge, is the beta regression based model developed by
Mandal, Srivastav and Simonovic (2016). An overview of
these models is presented in Fig. 3.

The basic steps involved in the non-parametric kernel
regression based statistical downscaling model developed
by Kannan and Ghosh (2013) are as follows:

• Standardization of NCEP/NCAR variables is performed.
• Principal component analysis is used to reduce the size

of this predictor data.
• kmeans clustering is used to classify days based on

precipitation of all stations in a region. The classi-
fied days are grouped into three categories—heavy,
medium, and low. These three categories are named
as precipitation states. This helps to capture the spa-
tial dependency among the stations by considering a
common precipitation state for an entire region.

• A decision tree based CART model (Breiman et al.
1984) is developed using the principal components of
NCEP/NCAR data and lag-1 NCEP/NCAR data, and
the precipitation state of the river basin as input and
actual precipitation value of each station as output. The
following functional form is assumed for training: st
= f(pt , pt−1, st−1) where st is the precipitation state
and pt is the set of predictor variables on t th day and
st−1 and pt−1 are the precipitation state and the set of
predictor variables on (t − 1)th day.
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Fig. 3 Overview of the
downscaling algorithm proposed
by Kannan and Ghosh (2013)
and Mandal et al. (2016)

• Next, a non-parametric kernel regression model is used
to predict the multisite precipitation. The predictors
used to develop this model are current day principal
components of NCEP predictor data and current day
precipitation state of the river basin and the predictand
is the present day precipitation at each station.

In the beta regression-based statistical downscaling
methodology developed byMandal et al. (2016), all the steps
discussed above are exactly same except the use of beta
regression model instead of kernel regression in the last step.

In the next two paragraphs, we give a brief overview of
the LSTM based model developed by us.

The first part [part 1] (Fig. 4a) of developing the model
deals with generation of a common precipitation state for
capturing the spatial dependencies in the precipitation pat-
tern of a particular region, following the work of Kannan
and Ghosh (2013). But, we have incorporated few changes
in order to provide better predictability to the model. Unlike
PCA which is a linear mapping method for feature reduc-
tion, autoencoders (Hinton et al. 2006) capture non-linearity
in the data much better. Unlike PCA which is just a lin-
ear transformation of the feature space, autoencoders are
supervised machine learning models, which can produce
meaningful features by capturing the information content in

the predictor data properly. Hence, we have used autoen-
coder instead of PCA to reduce the standardized predictors.
Deep neural networks are much more powerful machine
learning models than the decision tree based CART model.
So, instead of the CART model used previously, we have
used a deep neural network with 2 hidden layers. Archi-
tectural details of the deep neural network are presented in
Section 5.2.1.

In the second part [part 2] (Fig. 4b), we have replaced
the previously used regression models like kernel regres-
sion and beta regression with neural network based models.
The overall basic steps in developing the model are shown
in Fig. 3b. As neural networks have been very successful
in capturing complex input-output relationships, we investi-
gated their performance in statistical downscaling. We have
used recurrent neural networks as they have been proved to
be successful in modeling temporal dependencies in various
tasks with high accuracy and our hypothesis is that climatic
patterns have signatures in the past. The whole methodol-
ogy has two parts—the first part (Fig. 4a) is concerned with
the generation of daily precipitation states (heavy, medium,
and low) using a deep neural network (DNN) and the second
part (Fig. 4b) deals with the generation of the daily precip-
itation sequences for a specific location using deep neural
network (DNN)/ long short term memory recurrent neural
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Fig. 4 Overview of our
downscaling algorithm
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network (RNN-LSTM) model. The following Sections 5.1
and 5.2 describe the detailed steps for developing the model:

5.1 Generation of daily precipitation states

This is the first part in the development of our model, which
partially follows Kannan and Ghosh (2013) and Mandal
et al. (2016). It is a weather typing approach. The daily pre-
cipitation state, as referenced in literature, represents the
approximate range of precipitation in a particular region on
a given day. Instead of CART model as used in the previ-
ous works, we have used a deep neural network with two
layers to build a relationship between the continuous-valued
independent variables extracted from NCEP/NCAR and the
categorical dependent variable (precipitation in our case).
This neural net acts as a classifier and predicts the precip-
itation state. Unsupervised kmeans algorithm is used along
with this deep neural network classifier model in this step.

The overview of this procedure is briefly stated as
follows:

i) The NCEP/NCAR predictor variables in the training
period are standardized by subtracting mean of the
data and dividing by its standard deviation in order to
reduce the systematic bias among the variable means
and standard deviations.

ii) The NCEP/NCAR variables in the testing period are
also standardized.

iii) The k-means clustering method (McQueen 1967) is
used to classify the days in the training period into pre-
cipitation states (representing the precipitation pattern
of the entire region). Number of clusters used is three
following Kannan and Ghosh (2013) and Mandal et al.
(2016).

iv) A single hidden layer autoencoder is trained on the
standardized predictor data in the training period to
reduce its dimension and remove multicollinearity
from the data.

v) The deep neural network classifier model built using
the principal components of NCEP/NCAR data and
the precipitation states in the river basin is used to pre-
dict the next day rainfall state from the previous day
rainfall state using the following function:

st = f (pt , pt−1, st−1) where st is the precipitation
state and pt is the set of predictor variables on t th day
and st−1 and pt−1 are the precipitation state and the set
of predictor variables on (t − 1)th day.

The precipitation states are one hot encoded. The
inputs to the neural net are the one hot encoded lag-1
precipitation states and the reduced predictor variables
for the same day and previous day and the output is the
one hot encoded precipitation state.
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Fig. 5 Basic architecture of autoencoder used in our study

vi) The developed neural classifier is applied to the
reduced NCEP/NCAR predictor data in the testing
period to predict rainfall states in the river basin in the
testing period.

The autoencoder architecture is shown in Fig. 5. For
Mahanadi basin data, it has 142 hidden nodes and for
Campbell data, it has 5 hidden nodes. Out of 720 dimen-
sions for each input instance, 142 input dimensions of each
input sample are extracted using the autoencoder for the
Mahanadi region and out of 10 variables for 10 locations
for each input instance, 5 input dimensions are extracted
using the autoencoder for the Campbell River basin region
of Canada.

The neural net classifier’s architecture is depicted in
Fig. 6. For Mahanadi basin data, it has 142 (reduced same
day predictor data) + 142 (reduced lag-1 predictor data) + 3
(one-hot encoded rainfall state) = 287 input nodes, 3 (cur-
rent day one-hot encoded predicted precipitation state) as
output and 150, 70 hidden nodes on hidden layers 1 and 2.
Similarly, for Campbell data, 5 + 5 + 3 = 13 input nodes
and 10, 5 output nodes are there in the neural network.

Fig. 6 Basic architecture of deep neural network classifier used in our
study

Instead of directly performing regression, the use of the
precipitation states as an additional information helps to
preserve the spatial correlation in the predictand (here, pre-
cipitation). It also helps to give better results in finding the
actual precipitation series as it adds an extra information to
the input.

5.2 Multisite precipitation generation

This is part 2 of our downscaling model. First, we will
discuss the intuition behind the usage of LSTM in this
part of our statistical downscaling model. Recurrent Neu-
ral Networks are neural networks with loops in them so that
data from hidden layer at previous timestep is fed as input
to the next step. In theory, RNNs can preserve long-term
dependencies at an arbitrarily large historical timeframe.
But Hochreiter and Schmidhuber (1997) and Bengio et al.
(2015) showed that RNNs suffer from several problems like
vanishing gradient and exploding gradient while preserving
long-term dependencies. Hence, training RNNs become dif-
ficult. The problem arises when there are long-term depen-
dencies with some input features at a considerably earlier
timeframe—then the training time and hardware require-
ments to get the desired efficacy from the system increases
exponentially. In order to make the system feasible to train,
we need to decide how much earlier data we need to keep
and how much we need to dispose. This problem was solved
by a modified version of RNNs- Long Short-Term Mem-
ory (LSTM) networks. LSTMs consist of a memory cell
that can preserve long-term information and a set of gates
- input gate and forget gate which is used to control how
much information to store and howmuch to discard. A basic
LSTM cell is depicted in Fig. 7.

The recent successes of LSTMs has inspired us to apply
this to the statistical downscaling problem which has an

Fig. 7 Basic repeating module in a standard RNN-LSTM
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inherent temporal component attached to it. LSTMs, a
special variant of recurrent neural networks, are finding
renewed interest in the machine learning and the entire sci-
entific community currently as a result of its exceptionally
successful applications in a wide variety of applications
involving sequential data. LSTMs have achieved state of
the art results in sequence related problems like speech
recognition (Hinton et al. 2012; Dahl et al. 2012), lan-
guage modeling (Mikolov et al. 2010), machine translation
(Sutskever et al. 2014; Bahdanau et al. 2014), etc. It has
also proved to be successful in some of its recent manifes-
tations in the area of weather forecasting (Zaytar and El
Amrani 2016).

Our hypothesis is based on the fact that climate data
may have signatures at a considerably earlier time. This
characteristic can be captured well by LSTM networks.

In this part of developing the downscaling model, we use
DNN and LSTM for prediction of actual multisite precip-
itation series. The inputs to the models are the predicted
current day one-hot encoded precipitation states and the cur-
rent day reduced NCEP/NCAR variables and the output is
the predicted current precipitation at each station.

5.2.1 Deep neural network

In the previous literature in statistical downscaling, single-
hidden layer neural network was already used.We have used
two-layer deep neural network instead, making the model
more robust and achieving a better performance. The basic
structure of the multilayer neural net used in our study is
depicted in Fig. 8.

Fig. 8 Multilayer neural network architecture used in our study [L1:
145 nodes (Mahanadi basin data), 8 nodes (Campbell basin data). L2:
60 nodes (Mahanadi basin data), 15 nodes (Campbell basin data). L3:
30 nodes (Mahanadi basin data), 5 nodes (Campbell basin data). L4: 8
nodes (Mahanadi data), 10 nodes (Campbell data)]

The learning is done using Adaptive Moment Estimation
algorithm (Adam), a variant of stochastic gradient descent
algorithm. Details of this algorithm can be found in Kingma
and Ba (2015). The authors have shown in their paper that
this method performs better compared to other versions of
stochastic gradient descent algorithm. A multilayer neu-
ral network can learn highly complex functions—hence we
tested its performance.

The deep neural network model (henceforth referred to
as DNN) is constructed using the following function: Rt =
f(pt , st ) where Rt is the rainfall value, st is the precipitation
state and pt is the set of predictor variables on t th day.

There are 142 + 3 = 145 input nodes in the neural net-
work for the Mahanadi region data of India and 5 + 3 = 8
input nodes for the Campbell river basin data as shown in
Fig. 4. For the Dataset 1, 15 and 5 nodes are considered in
the first and second hidden layers and for the Dataset 2, 60
and 30 nodes are considered in the first and second hidden
layers as these configurations give the best possible result.
For both cases, number of nodes in the output layer is equal
to the number of precipitation stations in the river basin - 10
for Campbell basin data and 8 for Mahanadi basin data. We
build a single neural network for predicting precipitation at
all locations in a single river basin. tanh activation function
is used in the first two activation layers and linear activation
function is used in the last activation layer for Dataset 1 and
log-sigmoid activation function is used in all the activation
ayers for Dataset 2. Adam training function (a variant of
stochastic gradient descent algorithm) is used in both cases.

5.2.2 RNN and LSTM

The basic architecture of the LSTM model used in our
study and a block diagram for a simplified version of the
same are shown in Figs. 9 and 10 respectively. The LSTM
model is constructed using the following function: Rt =
f (pt , st , Rt−1) where Rt is the rainfall value, st is the

Fig. 9 Basic architecture of RNN-LSTM used in our study [At each
timestep, input vector of size 8 for Campbell basin dataset and size
145 for Mahanadi basin dataset and output vectors of size 10 and 8 for
Campbell and Mahanadi data are used respectively]
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Fig. 10 Block diagram of
LSTM model used in our study

precipitation state and pt is the set of predictor variables on
t th day and Rt−1 is the rainfall value on (t − 1)th day.

So, there are 142 + 3 = 145 input nodes in the neural
network for the Mahanadi region data of India and 5+3 = 8
input nodes for the Campbell river basin data. We consider a
LSTM with 1 hidden layer and lag-1 feedback loop. For the
Dataset 1, 8 hidden nodes are considered and for dataset 2,
90 hidden nodes are considered as these configurations give
the optimum result. For both the cases, number of nodes
in the output layer is equal to the number of precipitation
stations in the river basin - 10 for Campbell basin data and 8
for Mahanadi basin data. We build a single neural network
for predicting precipitation at all locations in a particular
basin. Linear activation function is used at the final layer
for both the datasets. The Adam training function is used in
both cases. The details of the Adam method can be found in
the work of Kingma and Ba (2015).

Use of the common precipitation state for the entire river
basin as an input helps to maintain the spatial correlation
pattern in the multisite precipitation sequence.

5.3 Model application

In order to compare our model with their work, we have
used precipitation data for the monsoon months of June,
July, August, and September (JJAS) for Mahanadi basin
data and for Campbell river basin data, we have used
precipitation data for the whole year.

For the second part, we use DNN and RNN-LSTM
models to generate the daily precipitation series using
NCEP/NCAR predictor variables and predicted rainfall
state (which we get as output from Part a) of the model) of
the same day as inputs.

Both the models are implemented in Theano (Bergstra
et al. 2010; Bastien et al. 2012) using Keras library. Each
epoch takes about 15–20 s on a multicore CPU machine on
an average.

The Pearson product-moment correlation coefficient and
mean squared error between the predicted precipitation
series and the observed precipitation series for the test
period are calculated for both the datasets to test the effi-
ciency of the model.

For the null hypothesis test used to test whether the
means of the predicted and the observed precipitation series
are similar and for computing the actual means and stan-
dard deviation of the predicted data, we denormalize the
precipitation dataset.

Both our models give considerable improvement in terms
of all metrics considered and the RNN-LSTM performs the
best overall. It captures the spatio-temporal variability and
extremities in the precipitation data quite well.

6 Results and discussions

The aim of this study is to demonstrate the efficiency of the
proposed RNN-LSTM based statistical downscaling model.
Using RNN-LSTM model, we compute correlation coef-
ficient, mean squared error, etc. by varying the number
of iterations for which the model is run and the best val-
ues are considered. Performance evaluation of the model is
done based on comparing the following parameters with the
historically observed data:

• Temporal mean and standard deviation
• Mean squared error
• Temporal and Spatial cross-correlation
• Basin averaged annual and monthly precipitation
• Skill score of the model
• Ability to downscale extreme events
• Computational scalability of the model

Table 3 Brief description of models used for comparison

Abbreviation Description

Dataset 1 Precipitation in Campbell Basin

Dataset 2 Precipitation in Mahanadi Basin

BR Beta regression

KR Kernel regression

DNN Deep neural network

RNN-LSTM Recurrent neural network

with long short-term memory

LSTMWS LSTM without states
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6.1 Comparison of statistical characteristics—mean,
standard deviation and normalized mean squared error

Some abbreviations used for the ease of our comparative
analysis are depicted in Table 3. Means and standard devia-
tion of the observed precipitation data for the test period
(1991–2013 for Dataset 1 and 1981–2000 for Dataset 2)
are compared with the means and standard deviation of the
model-simulated precipitation time series for the same time

period. This is shown in Tables 4 and 5 for Dataset 1 and
Dataset 2 respectively. Next, Student’s t test is performed to
check whether the means of the predicted and the observed
precipitation time series are similar at some significance
level (Here, 5% significance level is considered for both
datasets). The results for this test are depicted in Tables 4
and 5. We can see from here that for both Dataset 1 and
Dataset 2, the null hypothesis at 5% significance level is
accepted for all stations for both our DNN and RNN-LSTM

Table 4 Mean and standard deviation of observed and simulated precipitation series (mm) and mean squared error and temporal correlation
between them [DATA 1]

Downscaling location

ELK ERC GLD HEB JHT QIN QSM SAM SCA WOL Average

Mean
Observed 6.01 5.91 7.29 7 4.56 5.45 4.53 5.5 5.47 6.31 5.80
BR 5.4 7.2 7.37 6.65 3.95 3.49 3.94 4.27 4 7.16 5.34
KR 9.00 9.08 10.50 9.77 6.02 7.71 6.00 7.69 7.49 9.61 8.29
DNN 5.87 6.35 7.44 7.32 3.83 5.11 3.94 4.79 4.71 6.65 5.58
RNN-LSTM 6.22 6.18 7.22 6.59 4.65 5.39 4.62 5.39 5.30 6.65 5.82
LSTMWS 6.95 6.75 7.08 8.21 6.48 4.72 5.48 6.77 6.36 6.65 6.74

Standard deviation
Observed 10.22 10.22 12.7 12.4 8.19 9.84 8.20 9.63 9.79 10.81 12.24
BR 10.58 11.65 10.5 12.8 7.89 9.62 7.63 10.02 8.8 9.8 9.93
KR 12.9 13.02 15.76 14.93 9.26 11.67 9.25 11.47 11.45 13.87 12.36
DNN 10.23 9.99 11.53 12.03 6.03 8.51 5.97 7.49 7.82 9.96 8.96
RNN-LSTM 9.75 10.48 13.08 12.13 7.09 9.57 9.12 9.21 9.28 10.55 10.02
LSTMWS 8.46 7.58 15.08 14.13 9.32 10.46 10.25 8.14 9.89 11.43 10.77

Mean squared error
BR 0.0085 0.0054 0.0046 0.0038 0.0035 0.0040 0.0039 0.0036 0.0058 0.0043 0.0047
KR 0.0132 0.0102 0.0100 0.0060 0.0083 0.0056 0.0065 0.0042 0.0128 0.0107 0.0175
DNN 0.0015 0.0020 0.0014 0.0012 0.0029 0.0014 0.0029 0.0017 0.0017 0.0015 0.0018
RNN-LSTM 0.0013 0.0019 0.0014 0.0012 0.0021 0.0012 0.0020 0.0012 0.0012 0.0014 0.0015
LSTMWS 0.0043 0.0057 0.0054 0.0039 0.0065 0.0049 0.0053 0.0041 0.0032 0.0034 0.0047

Correlation coefficient between observed and simulated precipitation series[1991–2013]
BR 0.6999 0.6804 0.7086 0.6925 0.6312 0.6842 0.6299 0.6997 0.6858 0.6906 0.6802
KR 0.5697 0.4737 0.5389 0.5674 0.5282 0.5678 0.4685 0.6075 0.4480 0.3938 0.5163
DNN 0.7153 0.7993 0.7178 0.7185 0.8631 0.7171 0.7615 0.7216 0.8158 0.8187 0.7649
RNN-LSTM 0.7624 0.8186 0.7501 0.7760 0.8744 0.7468 0.7741 0.7354 0.8222 0.8250 0.7884
LSTMWS 0.6624 0.6153 0.5145 0.6967 0.6456 0.6864 0.6421 0.6344 0.7421 0.7735 0.6613

Hypothesis test results for predicting means of predicted and observed rainfall series
BR – – X – – – – – – X
KR X X X – – – – – – X
DNN – – – – – – – – – –
RNN-LSTM – – – – – – – – – –
LSTMWS – – – – – – – – – –

XRejection of null hypothesis
–Acceptance of null hypothesis
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Table 5 Mean and standard deviation of observed and simulated precipitation series (mm) and mean squared error and temporal correlation
between them [DATA 2]

Downscaling location

1 2 3 4 5 6 7 8 Average

Mean

Observed 8.75 9.76 9.46 8.07 7.20 9.30 9.72 10.77 9.14

BR 9.86 7.67 7.73 7.15 9.59 10.49 8.94 6.68 6.81

KR 9.20 9.21 8.28 8.24 9.11 10.17 11.04 9.98 9.52

DNN 8.41 8.35 8.44 7.22 5.83 9.81 10.94 9.79 9.37

RNN-LSTM 9.22 9.23 11.68 6.92 7.38 9.43 9.54 9.63 9.13

LSTMWS 7.23 6.57 6.44 6.36 4.79 5.98 6.46 7.33 6.39

Standard deviation

Observed 15.80 19.36 20.85 15.71 12.14 15.63 18.44 15.35 16.66

BR 12.56 18.65 15.5 16.8 12.97 18.62 17.63 16.02 16.09

KR 14.66 16.16 14.18 14.40 13.85 16.60 17.88 18.26 15.75

DNN 14.68 17.15 16.44 15.32 12.83 16.21 20.54 14.79 15.99

RNN-LSTM 16.31 16.89 17.85 14.67 13.44 15.17 19.30 13.35 16.15

LSTMWS 16.31 16.89 17.85 14.67 13.44 15.17 19.30 13.35 16.15

Mean squared error

BR 0.0080 0.0034 0.0046 0.0035 0.0032 0.0052 0.0069 0.0077 0.0047

KR 0.0109 0.0041 0.0060 0.0042 0.0045 0.0077 0.0092 0.0132 0.0059

DNN 0.0043 0.0027 0.0028 0.0026 0.0025 0.0041 0.0065 0.0068 0.0040

RNN-LSTM 0.0029 0.0025 0.0016 0.0035 0.0019 0.0022 0.0031 0.0060 0.0029

LSTMWS 0.0085 0.0045 0.0036 0.0049 0.0038 0.0042 0.0041 0.0054 0.0097

Correlation coefficient between observed and simulated precipitation series [1981–2000]

BR 0.6989 0.6544 0.5784 0.6827 0.6312 0.6732 0.6299 0.5997 0.6435

KR 0.7087 0.6453 0.5809 0.6624 0.7266 0.7225 0.6686 0.6708 0.6732

DNN 0.7183 0.6643 0.5978 0.7085 0.7331 0.7235 0.6705 0.6786 0.6868

RNN-LSTM 0.7476 0.6720 0.6174 0.7237 0.7343 0.7265 0.6760 0.6994 0.6996

LSTMWS 0.6537 0.5432 0.5899 0.6018 0.6245 0.5463 0.4965 0.5873 0.5804

Hypothesis test results for predicting means of predicted and observed rainfall series

BR – – – – X – – –

KR – X – – X – – –

DNN – – – – – – – –

RNN-LSTM – – – – – – – –

LSTMWS – – – – – – – –

XRejection of null hypothesis
–Acceptance of null hypothesis

models. This has not been achieved by any other method
like KR or BR till now.

Mean squared error is a very good measure of accuracy
for any regression problem. The same thing applies to our
problem as basically we are trying to solve a regression
problem. Normalized mean squared error is mean squared
error in [0,1]. The RNN-LSTM model gives significant im-
provement in the normalized mean squared error compared

to the BR, KR, and DNN models. These results are given in
Tables 4 and 5.

6.2 Temporal and spatial correlation

The temporal correlation between the observed and pre-
dicted precipitation series for all the locations for Dataset 1
and Dataset 2 are depicted in Tables 4 and 5. Figures 11
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Fig. 11 Interstation correlation coefficient for RNN-LSTM model
(Campbell basin data)

and 12 represents the scatter plot of interstation corre-
lation coefficients computed from model-simulated daily
precipitation series and observed precipitation series for all
station pairs using the RNN-LSTM model we have used
for statistical downscaling. From the results and the plot,
it can be concluded that the temporal and spatial variabil-
ity of precipitation is modeled well enough by our pro-
posed RNN-LSTM model for both Dataset 1 and Dataset 2.

6.3 Basin averaged annual and monthly precipitation

The basin averaged annual and monthly precipitation shows
better correlation with the observed precipitation in the
testing period compared to the existing methods, which is
depicted in Figs. 13 and 14. For Campbell basin dataset,
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Fig. 12 Interstation correlation coefficient for RNN-LSTM model
(Mahanadi basin data)

(a) Correlation between annual predicted and observed precip-
itation

(b) Correlation between monthly predicted and observed pre-
cipitation

Fig. 13 Temporal correlation for spatially averaged rainfall over
Campbell river basin (1991–2013)

the DNN and RNN-LSTM models shows correlations of
0.94 and 0.99 for annual precipitation and 0.91 and 0.93 for
monthly precipitation whereas BR and KR models shows
correlations of 0.88 and 0.43 for annual precipitation and
0.83 and 0.64 for monthly precipitation. For Mahanadi basin
dataset, the DNN and RNN-LSTM models shows correla-
tions of 0.90 and 0.93 for annual precipitation and 0.94 and
0.96 for monthly precipitation whereas BR and KR models
shows correlations of 0.62 and 0.88 for annual precipitation
and 0.54 and 0.92 for monthly precipitation.

6.4 Skill score of the model

We use the skill score presented by Perkins et al. (2007)
that measures how similar two probability density functions
are from a range of 0 to 1 where 1 corresponds to identical
distributions. It is one of the effective measures to cap-
ture the ability of the model to properly simulate the output
data distribution. The skill scores for predictions of different
models are compared with the LSTMmodel for each station
in Dataset 1 and Dataset 2 in Tables 6 and 7 respectively.
LSTM performs better than most of the models on most
stations, as seen from the results depicted in these tables.
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(a) Correlation between annual predicted and observed precip-
itation

(b) Correlation between monthly predicted and observed pre-
cipitation

Fig. 14 Temporal correlation for spatially averaged rainfall over
Mahanadi river basin (1981–2000)

6.5 Ability to downscale extreme events

The ability of a statistical downscaling model to estimate
extreme events is assessed using some climate indices. Four
such climate indices from ClimDEX (http://clim-dex.org)
has been chosen following Burger et al. (2011) and Vandal
et al. (2017) to encompass a range of extremes. These are:

• CWD—Maximum length of wet spell, i.e., maximum
no. of consecutive wet days with precipitation ≥ 1mm.

• R20—Maximum no. of consecutive days with precipi-
tation ≥ 20mm.

• RX5day—Monthly maximum consecutive 5 day pre-
cipitation.

Table 7 Skill score [Dataset 2]

Downscaling location

1 2 3 4 5 6 7 8 Average

BR 0.84 0.72 0.59 0.61 0.67 0.75 0.78 0.79 0.75
KR 0.75 0.77 0.71 0.74 0.82 0.69 0.75 0.83 0.79
DNN 0.87 0.76 0.74 0.62 0.85 0.77 0.77 0.82 0.81
RNN- 0.97 0.79 0.96 0.80 0.81 0.80 0.70 0.84 0.85
LSTM

• SDII—Daily intensity index = Annual total / no. of days
with precipitation ≥ 1m.

These metrics are computed on both observed and down-
scaled precipitation for both datasets. Then we find a
correlation between these and also use a skill score to ascer-
tain the capability of the model in reproducing the statis-
tical distributions properly. These results are depicted for
Dataset 1 and Dataset 2 in Tables 8 and 9 respectively.
LSTM emerges as a clear winner here too.

6.6 Computational scalability of the model

The average time taken to train the LSTM model is 8 s per
epoch for Dataset 1 and 15 s per epoch for Dataset 2 on a
12-core Intel Xeon CPU. The model converges within 150
epochs. So, the average total training time taken is 20 min
for Dataset 1 and 37.5 min for Dataset 2. It will speed up
significantly if a GPU is used. In comparison, the BR, KR
AND DNNmethods, on an average, take 30, 45, and 15 min
for Dataset 1 and 36, 20, and 27 min for Dataset 2 for 150
epochs for all stations. So, the model scales quite well. For
large datasets also, the time taken will be negligible if only
a single GPU is used.

6.7 Uncertainty analysis of the model

It should be ascertained that the downscaled outputs can rep-
resent the current precipitation distribution reasonably well.
Only then, we can have full confidence and reliability on
the climate scenarios downscaled from the GCM outputs.
In other words, the ability of the outputs predicted from

Table 6 Skill score [Dataset 1]
Downscaling location

ELK ERC GLD HEB JHT QIN QSM SAM SCA WOL Average

Mean
BR 0.64 0.61 0.67 0.59 0.72 0.65 0.72 0.66 0.57 0.82 0.67
KR 0.67 0.60 0.62 0.62 0.55 0.46 0.52 0.62 0.49 0.73 0.59
DNN 0.77 0.71 0.77 0.79 0.76 0.69 0.77 0.72 0.71 0.92 0.73
RNN-LSTM 0.91 0.91 0.89 0.90 0.94 0.93 0.94 0.93 0.93 0.91 0.92

http://clim-dex.org
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Table 8 Correlation between climate index scores of observed and
predicted precipitation on a daily scale [Dataset 1]

Climate indices

CWD R20 RX5day SDII

BR 0.84 0.76 0.82 0.71
KR 0.78 0.85 0.75 0.66
DNN 0.93 0.93 0.89 0.84
RNN-LSTM 0.94 0.93 0.97 0.92

the downscaling model to properly represent the baseline
climate is a necessary condition to have good amount of
confidence on the reliability of the climate change anoma-
lies computed from the GCM scenario runs. Hence, the
primary objective of the uncertainty analysis is to measure
the performance of the downscaling method in reproducing
the mean value and standard deviation of observed mete-
orological variables properly when provided with climate
predictors for the baseline period.

Following Dibike et al. (2007), two complementary
methods have been used in our study to analyze the
uncertainty of the statistical downscaling model’s output-
hypothesis testing and confidence intervals.

The hypothesis testing method used in this study is the
Wilcoxon Signed Rank test (Wilcoxon 1945), is a non-
parametric method used to test the null hypothesis of no
median difference in a pair of samples. It involves calcu-
lating the test statistic and p value for the null hypothesis,
followed by either accepting or rejecting the hypothesis at
a given significance levels based on the p value. The p
value is the probability that the null hypothesis is wrongly
rejected when it is actually true. (type 1 error). A s value
of 0.05 which corresponds to 5% significance level is used
in this study. Small p values suggest that the null hypothe-
sis is unlikely to be true and the null hypothesis is rejected
when p < 0.05. In this study, the analysis was performed
by comparing observed precipitation with the corresponding
downscaled precipitation. The hypothesis tests are repeated
100 times for monthly precipitation of each station from
which we calculate the rejection percentage of the simulated
precipitation values.

Table 9 Correlation between climate index scores of observed and
predicted precipitation on a daily scale [Dataset 2]

Climate Indices

CWD R20 RX5day SDII

BR 0.69 0.65 0.73 0.57
KR 0.70 0.66 0.71 0.59
DNN 0.81 0.82 0.86 0.74
RNN-LSTM 0.86 0.81 0.89 0.79

A confidence interval is an estimate of uncertainty regar-
ding the true value of a statistic. Sampling with replacement
is used to estimate confidence intervals for the statistics of
a distribution. In this analysis, Bootstrap simulation (Efron
and Tibshirani 1993), a non-parametric technique is used
to estimate confidence intervals. Bootstrapping is a method
used to generate a pseudo population of a test statistic by re-
sampling from the original data set. The bootstrap method
takes random samples, known as pseudosamples, with
replacement from the original one repeatedly. The statis-
tics in question (mean values and standard deviations in our
case) is then evaluated for each pseudo-sample. Then, each
time series of observed precipitation is paired with each
of the corresponding downscaled precipitation taken from
the 100 simulations. 1000 boot strap samples are generated
from each such pairs to calculate two sets of statistic for
each of the bootstrap sample pairs—the differences between
the mean and the differences between the standard devia-
tion values of the observed and simulated variables. Then
the bootstrap percentile method is used to calculate the
confidence interval. It involves ranking the one thousand
statistics calculated from the bootstrap samples followed by
selecting the statistic corresponding to the appropriate per-
centile (5th percentile for the lower confidence limit and
95th percentile for the upper confidence limit) for the con-
fidence interval required (90% in our case). This procedure
is repeated for each of the one hundred simulation outputs
from our LSTM model. The overall upper bound and lower
bound of the statistic’s 90% confidence interval is then cal-
culated by averaging the upper bound and lower bounds of
the hundred simulations, respectively. All the above steps
are repeated for both the datasets. The ideal simulation
result is identified as the one with the smallest confidence
interval and which includes zero between its upper and
lower confidence limits.

Our LSTM model performs reasonably well on both of
these measures and hence can be relied upon to a large
extent for future climate scenario projections.

TheWilcoxon signed rank hypothesis test results for test-
ing difference in means of both datasets on a daily scale are
presented in Tables 10 and 11.

Table 10 Error due to exclusion of each predictor variable [Dataset 1]

Variable Average mean Average temporal

excluded squared error correlation

None 0.0015 0.7884
Tmax 0.0018 0.6874
Tmin 0.0012 0.6375
mslp 0.0017 0.6997
Uwind 0.0010 0.5975
Vwind 0.0025 0.5597
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Table 11 Error due to exclusion of each predictor variable [Dataset 2]

Variable Average mean Average temporal

excluded squared error correlation

None 0.0029 0.6996

Air temperature 0.0035 0.6547

Mean sea level pressure 0.0037 0.6386

Specific humidity 0.0045 0.5795

Horizontal wind velocity 0.0046 0.5866

Vertical wind velocity 0.0037 0.6674

The confidence interval test results for difference
between means and standard deviation of predicted and
observed precipitation for station WOL in Dataset 1 and sta-
tion id 1 in Dataset 2 on a monthly scale are presented in
Figs. 15, 16, 17, and 18 respectively.

In order to understand how much significance each pre-
dictor variable individually holds in precipitation prediction,
we select each predictor variable, individually remove them
from the model input one at a time and run the models. The
corresponding mean squared error and correlation between
predicted and observed precipitation are compared with the
original model’s mean squared error and correlation. This
analysis is preformed for both Dataset 1 and Dataset 2 and
are demonstrated in Tables 10, 11, 12, and 13 respectively.

7 Key contributions

We have used an autoencoder coupled deep neural network
model for predicting the precipitation state, the weather

Fig. 15 90% confidence interval for rejected percentage in Wilcoxon
signed test that the difference in means between observed and down-
scaled precipitation is zero for station WOL in Campbell dataset

Fig. 16 90% confidence interval for rejected percentage in Wilcoxon
signed test that the difference in standard deviation between observed and
downscaled precipitation is zero for station WOL in Campbell dataset

Fig. 17 90% confidence interval for rejected percentage in Wilcoxon
signed test that the difference in means between observed and down-
scaled precipitation is zero for station id 1 in Mahanadi dataset

Fig. 18 90% confidence interval for rejected percentage in Wilcoxon
signed test that the difference in standard deviation between observed
and downscaled precipitation is zero for station id 1 in Mahanadi dataset
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Table 12 Rejected percentage
of null hypothesis (median
difference in observed and
downscaled precipitation is
zero) in Wilcoxon signed rank
test at 5% significance level
[Dataset 1]

Downscaling location

ELK ERC GLD HEB JHT QIN QSM SAM SCA WOL

BR 5 0.12 1.7 0.02 0 2.1 0 0.23 0.19 0

KR 1.04 2.15 0.24 1.03 0 0 2.09 0.18 0.12 0

DNN 0 0.07 0.09 0 0 0 0 0.05 0.07 0.01

RNN-LSTM 0 0.05 0.04 0 0 0 0 0.03 0.07 0

typing part of the entire algorithm. This shows superior
performance over the existing PCA + CART approach of
Kannan and Ghosh. While the PCA + CART approach
gave 63.81 accuracy in prediction of precipitation states for
Mahanadi basin, our neural network model gives 75.2%
accuracy. For the Campbell basin data, the CART model
gave 73.5% accuracy while the proposed neural network
model gives 82.4% accuracy. Autoencoders have been used
for the first time in this task, to the best of our knowledge.

The LSTM based model used for predicting the actual
precipitation series is also the first of its kind, to be used
in a statistical downscaling task, as per our knowledge. It
captures the temporal aspect of the statistical downscaling
problem well enough causing a considerable improvement
in the performance, measured in terms of metrics such as
mean squared error and cross-correlation.

Another important contribution of this work is the usage
of a single neural network model for predicting multi-
site precipitation. All the previous works like Kannan and
Ghosh’s non-parametric kernel regression based model,
Mandal, Srivastav and Simonovic’s beta regression based
model used separately trained models for each station while
predicting multisite precipitation. This is the first ever work,
to the best of our knowledge, where a single model pre-
dicts multisite precipitation, thereby speeding up the entire
training process and that too, with an improved level of
accuracy.

Table 13 Rejected percentage of null hypothesis (median difference
in observed and downscaled precipitation is zero) in Wilcoxon signed
rank test at 5% significance level [Dataset 2]

Downscaling location

1 2 3 4 5 6 7 8

BR 2.18 1.27 1.36 0.20 1.17 0.15 0.09 0.07

KR 2.23 0.35 2.27 0.16 0.24 1.19 0.15 0.09

DNN 0.12 0.23 0.25 0.15 0.04 0.07 0.16 0.08

RNN-LSTM 0.11 0.21 0.15 0.05 0.09 0.06 0.13 0.07

8 Conclusion and future scope of work

We see that the RNN-LSTM model shows satisfactory
improvements over the existing perfect prognosis statistical
downscaling techniques in capturing the temporal correla-
tion conforming with our hypothesis. On Campbell basin
dataset, it provides significant improvements of around 16%
in correlation and 68% in mean squared error over the
existing state of the art beta regression model.

The spatial correlation between the stations is captured
satisfactorily by our model

On the Campbell river basin dataset, the model gives bet-
ter results and shows more improvement than the Mahanadi
basin dataset, most probably due to the use of actual station
precipitation data which was available for that region.

On the Mahanadi river basin dataset also, the model
performs well enough but not as good as the Campbell
river basin dataset. The most probable reason is the lack
of actual station precipitation data and presence of highly
interpolated data.

There is a lot of scope to extend our present work. It is
possible to extend the process to GCMs and see how well
the model works on them and what predictions it gives and
whether they are at par with the predictions given by the
other models used on this data previously. We can extract
the principal components of the data by other methods. We
can also use some other model or an ensemble of different
models and find out if there is an improvement in prediction
accuracy, especially in the Mahanadi region.

Our study shows that the rainfall sequence has long term
dependencies with long-term predictor variables. That is
probably why our model performs better than the other
methods, which we have compared with where the authors
had used short-term dependencies on predictors, mainly lag-1.
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