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ABSTRACT
Active learning is a generic approach to accelerate training of
classifiers in order to achieve a higher accuracy with a small
number of training examples. In the past, simple active
learning algorithms like random learning and query learning
have been proposed for the design of support vector machine
(SVM) classifiers. In random learning, examples are chosen
randomly, while in query learning examples closer to the
current separating hyperplane are chosen at each learning
step. However, it is observed that a better scheme would
be to use random learning in the initial stages (more ex-
ploration) and query learning in the final stages (more ex-
ploitation) of learning. Here we present two novel active
SV learning algorithms which use adaptive mixtures of ran-
dom and query learning. One of the proposed algorithms
is inspired by online decision problems, and involves a hard
choice among the pure strategies at each step. The other
extends this to soft choices using a mixture of instances rec-
ommended by the individual pure strategies. Both strategies
handle the exploration-exploitation trade-off in an efficient
manner. The efficacy of the algorithms is demonstrated by
experiments on benchmark datasets.

Keywords
SVM, Pool Based Active Learning, Multi-Arm Bandit Prob-
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1. INTRODUCTION
Active learning is a popular paradigm for reducing the

sample complexity of a learning algorithm [6] where the
learner selects its own training data. Here, instead of learn-
ing from instances selected randomly, the learner can select
its own training data. This is done iteratively, and the out-
put of a learning step is used to select the examples of the
next step. A particular setting of this framework is referred
to as pool based active learning [1], where the learner is pre-
sented with a fixed pool of unlabeled instances and on each
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trial it chooses a set of instances from the pool to be labeled.
The learner is then provided the true label of the instances
and it induces a new classifier based on all the labeled sam-
ples seen so far. Several strategies for choosing the set of
instances from the pool exist in practice, e.g., random selec-
tion, error driven techniques, uncertainty sampling, version
space reduction and adaptive resampling. Pool based active
learning is highly suited for applications where unlabeled
data is abundant but labeling instances is costly and time
consuming. Such a scenario is often encountered in text cat-
egorization and information retrieval, where the labeling is
obtained by a human user [12]. In the case of remote sensing
and biomedical image analysis, labeling is even more costly
as it can be done only by experts. Labelling in drug dis-
overy and molecule screening problems also involve costly
and time consuming chemical experiments.

The support vector machine (SVM) [4, 13] has been suc-
cessful as a high performance classifier in several domains
including pattern recognition, data mining and bioinformat-
ics. It has strong theoretical foundations and demonstrates
good generalization capability. A limitation of the SVM de-
sign algorithm, particularly for large data sets, is the need
to solve a quadratic programming (QP) problem involving
a dense n × n matrix, where n is the number of points in
the data set. Since most QP routines have cubic complexity,
SVM design requires huge memory and computational time
for large data applications. Reducing the sample complex-
ity (n) of SVM design using pool based active learning thus
makes SVMs suitable for large data applications.

In the context of SVM, several pool based active learning
algorithms have been proposed. The earliest ones selected
the new set of instances randomly [9] (refered to as Ran-
dom SVM in the rest of the paper). In [5], a query learning
strategy for large margin classifiers is presented, which it-
eratively requests the label of the data point closest to the
current separating hyperplane (referred to as Query SVM in
the remainder of the paper). Similarly, [3] choses the next
batch of training points w.r.t. the angles made by the ex-
amples with the current hyperplane. A strategy based on
version space splitting is presented in [12]. The points which
split the current version space into two halves having equal
volumes are selected at each step, as they are likely to be
the actual support vectors. A greedy optimal strategy is de-
scribed in [11]. Here logistic regression is used to compute
the class probabilities, which are further used to estimate the
expected error after adding an example. The example that
minimizes this error is the candidate SV. This approach,
though optimal, is not practical because the selection of each
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candidate point requires solving two QP problems and can
be a bottleneck for large datasets.

Inspite of the wide varity of techniques used, a limitation
these strategies is that they are essentially pure strategies in
the sense that throughout the training process they either
query for points close to the current separating hyperplane
or select random samples consisting mostly of interior points
of a class. Both these strategies represent extreme cases; the
former one is fast but unstable, while the latter one is robust
but slowly converging. The former strategy is useful in the
final phase of learning, while the latter one is more suitable
in the initial phase. An adaptive mixture of the above two
strategies is expected to yield better performance.

In this paper, mixed active learning strategies, which are
combinations of two pure strategies, namely, Random SVM
and Query SVM, are proposed to achieve fast and robust
convergence. Here, the active support vector machine learn-
ing problem is treated as a stochastic scheduling problem,
more specifically as a multi-armed bandit problem. This is
then transformed to an equivalent online decision problem
of selecting a mixture of the two pure strategies. Two al-
gorithms for combining/mixing the pure strategies are pro-
posed. The first algorithm involves a hard choice between
one of the two pure strategies at each learning step. This
is done by a dynamic allocation algorithm called Follow the

Perturbed Leader [8]. On the other hand, the second one per-
forms a soft choice between the individual pure strategies to
determine the composition of the selected set of instances.
Experimental results on benchmark data sets demonstrate
the effectiveness of the strategies.

It may be noted that a multi-armed bandit formulation of
active learning problem has been proposed in [10] and [1].
However, there training instances are treated as slots of the
gambling machine. A probability distribution is maintained
over the training instances to determine which instance to
select next (i.e., which slot to play next). However, for large
data sets maintaining such a distribution would be infeasible
in terms of storage. Hence, in our algorithm we reformulate
the multi-armed bandit problem as an online decision prob-
lem involving choice of one of the two experts (i.e., pure
strategies). Here, one needs to only store a (dynamic al-
location) index per expert to determine which example to
chose next and is thus suitable for large data sets.

The organization of the article is as follows. In the next
section we describe Random and Query SVM. Section 3
reformulates the active SVM learning problem as a multi-
armed bandit problem. We also mention the equivalent on-
line decision problem. Two online algorithms for active SVM
learning are presented in Section 4. Experimental results
appear in Section 5. We conclude the paper in Section 6.

2. SUPPORT VECTOR MACHINES
SVMs are a general class of learning architectures inspired

by statistical learning theory that performs structural risk

minimization on a nested set structure of separating hyper-
planes [4, 13]. Given training data, SVMs obtain the optimal
separating hyperplane in terms of the generalization error.

2.1 SVM Design Using Active Learning
As discussed in the previous section, active learning is

a method of incremental learning which enables a learn-
ing algorithm to approach the maximum achievable clas-
sification accuracy very closely with relatively smaller num-

ber of training examples as compared to the batch learning
method. Active learning is equally applicable to Support
Vector Machines (SVMs) and various approaches have been
suggested for using it in SVM training and classification.
We present here two of the most common active learning
strategies for SVMs, namely random and query SVM. They
differ in the way examples are queried from the data set.

Random SVM: This is a universal and perhaps the sim-
plest active learning strategy for any learning algorithm. It
assumes that the probability of any example being chosen
at any stage of the training process is independent of that of
the others, i.e. all examples are given a uniform probability
of being chosen for training. The training progresses with
the choice of k random examples at each stage.

Query SVM: Random active learning, as discussed, is
an unguided strategy and hence it is expected that it will
not perform very well on many problems. An alternative
and more intuitive approach is to improve the confidence in
dimensions about which we already have information. This
can be achieved by continually narrowing the existing mar-
gin. Thus, at each stage of the training process, k training
examples closest to the current dividing hyperplane are se-
lected and added to the intermediate training set [5].

3. MULTI-ARMED BANDIT, ACTIVE LEARN-
ING AND STOCHASTIC SCHEDULING

The Multi-armed bandit (MAB) problem is a well studied
problem in stochastic scheduling and dynamic allocation. In
MAB [7], a gambler, visting a casino, must choose which of
K machines to play. At each time step, he pulls the arm of
one of the machines and receives a reward or payoff (possibly
zero or negative). The gambler’s purpose is to maximize his
total reward over a sequence of trials. Since each arm is
assumed to have a different distribution of rewards, the goal
is to find the arm with the best expected return as early as
possible, and then to keep gambling using that arm.

The problem is a classical example of the trade-off be-
tween exploration and exploitation. On the one hand, if the
gambler plays exclusively on one machine that he thinks is
best (exploitation), he may fail to discover that one of the
other arms actually has a higher average return. On the
other hand, if he spends too much time trying out all the
machines and gathering statistics (exploration), he may fail
to play the best arm often enough to get a high total return.

In the early years, the bandit problem was studied with
the aid of statistical assumptions on the process generating
the rewards for each arm. However, it is likely that the
cost associated with each arm is determined at each time
step by an adversary rather than by some benign stochastic
process. We can only assume that the rewards are chosen
from a bounded range. Here, there is no single machine
which gives the highest payoff at all the time steps. Hence on
should find a sequence of machines which gives the highest
total reward. The performance of any player is measured
in terms of ‘regret’, i.e., the expected difference between the
total reward scored by the player and the total reward scored
by the best sequence of arms.

3.1 Active Learning as an MAB Problem
In active learning, the learner has the freedom to choose

the examples to be used for learning. In other words, the
training instances are equivalent to the slots of a gambling
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machine that the learner chooses from. Using these queried
examples the learner updates itself and queries a new set
of examples. Thus the learner has to make a sequence of
choices of examples to query, without knowledge of the fu-
ture. The reward at each step here is the gain in classifica-
tion accuracy achieved by the learner by learning from the
set of examples queried. The learner should try to maximize
this reward over all time steps such that the final accuracy
is maximum. This is done by maintaining a selection proba-
bility distribution {pt

1, . . . , p
t
l}, where t is the learning step,

l is the total number of training instances, and choosing the
set of instances having high probabilities for the (t + 1)th

step. In boosting [10], this distribution is maintained by
repetitive multiplicative updates on an initial set of uniform
probabilities.

3.2 Active Learning & Stochastic Scheduling
An alternate way of formulating the above scheduling

problem is to consider a set of experts which advises the
learner on which set of examples to choose next. The ex-
perts may represent some pure choice strategies themselves.
The learner uses a combination or mixture of the experts to
select the next set of examples. In our algorithms we have
considered a set of two experts, namely, the Random SVM
and Query SVM. These are discussed in Section 2. The for-
mer expert represents high exploration in learning while the
later represents high exploitation. The set of examples to
be queried by the learner consists of examples recommended
by either or both of the experts. One may note that in the
formulation of active learning as a MAB problem the de-
cision consists of choosing the sequence of examples to be
queried for learning. However, selecting a particular mix-
ture of experts also leads to querying a particular set of
examples and active learning in the MAB setting can also
be considered as a sequence of decisions which choose cer-
tain mixture of individual experts. In fact, there exists a
correspondence between the two decision processes in active
learning, namely, the selection of a set of examples and the
selection of a mixture of experts. However, in the latter pro-
cess, one needs to maintain a probability distribution over
the set of experts rather than the set of examples, and thus
requires considerably less storage for large data sets.

4. PROPOSED ALGORITHMS FOR ACTIVE
SUPPORT VECTOR LEARNING

In this section we present two algorithms for online schedul-
ing of a mixture of experts. The experts here are the pure
strategies for active learning, namely Random SVM and
Query SVM. They are described in Section 2.

The first mixture strategy is a hard strategy which chooses
a single expert in each step, although the choice of experts
may vary over different steps, while the second one is a soft
strategy which chooses a composition of examples recom-
mended by both the experts. The ratio of examples rec-
ommended by each expert varies adaptively over the steps.
The first strategy uses an efficient online decision algorithm
called ‘follow the perturbed leader’ (FPL) [8] and the sec-
ond uses classification errors in a manner similar to boosting
[10]. The algorithms are described in the next two sections.

4.1 Hard Choice: Follow the Perturbed Leader
The correspondence between the problem of active learn-

ing for support vector machines and online decision prob-

Data : Unlabeled and Labeled examples
Tunlabeled,Tlabeled

Result: Final classifier Cfinal

Q← ChooseRandom(Tunlabeled, k);
Label(Q);
C ← SV MTrain(Q);
cost0,random ← GetError(Tlabeled, C);
cost0,query ← 0;
t← 1;
while termination condition is not met do

Q← SV (C);
pt,query ← ExpDistribution(pt−1,query)/*Choose
the perturbation factor according to the
exponential distribution e−|x|, x = rs ∗ pt−1,query,
rs is a random number taking on value in
{+1,−1}*/;
pt,random ← ExpDistribution(pt−1,random);
if (costt−1,query + pt,query) <

(costt−1,random + pt,random) then

Q← Q ∪ ChooseNearest(Tunlabeled, k, C);
Label(Q)/*Only newly added examples are
labeled*/;
C ← SV MTrain(Q);
costt,query ←
costt−1,query + GetError(Tlabeled, C);

end

else

Q← Q ∪ ChooseRandom(Tunlabeled, k);
Label(Q)/*Only newly added examples are
labeled*/;
C ← SV MTrain(Q);
costt,random ←
costt−1,random + GetError(Tlabeled, C);

end

end

return C;

Algorithm 1: Active learning of SVMs using Follow the
Perturbed Leader

lems was shown in a previous section. Based on this analysis,
let us consider the two available active learning strategies,
namely Query SVM and Random SVM, as experts recom-
mending which machines (instances) to play (chose) next.
The cost incurred is equal to the classification error when a
strategy is chosen.

Gittin’s indices [7], or dynamic allocation indices, are the
proven optimal solution to the above problem, i.e. pro-
vides the optimal strategy for choosing the most beneficial
machine to play with at each stage. However, calculating
these indices is a hard problem and only approximate al-
gorithms have been designed to calculate them. For our
solution the online decision algorithm Follow the Perturbed

Leader (FPL) [8] was used. In this algorithm, for each ma-
chine (pure active learning strategy in our case), the total
cost incurred whenever the particular machine was chosen, is
maintained, and is used in combination with a perturbation
factor to choose the optimal machine for the next round.

It should be noted that in the proposed strategy, which is
formulated in Algorithm 1, the cost of each active learning
strategy (machine) is the classification error committed by
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it at each step where it is selected. For the other strategies,
the cost incurred for this step is zero. Using this notion,
FPL is captured in brief in the following steps:

FPL(α): On each period t,
1. Choose pt,d, the perturbation vector, at random ac-

cording to the density dµ(x) ∝ e−α|x|1 , for each strategy
d.

2. Use M(s1:t−1 +pt) = argmind∈D[s1:t−1,d +pt,d], where
s1:t−1,d is the total cost incurred by strategy d till period
t− 1.

The FPL algorithm has been shown to be optimal within a
(1+ ε) bound. Experiments on the hard choice strategy also
show its superior performance compared to the random and
query learning strategies. It is seen that initially random
SVM is the leader and is followed by the above algorithm,
while after some time the algorithm switches over to query
SVM and follows it for subsequent steps. Some oscillations
between these two occur in the intermittent phases.

4.2 Soft Choice
Various observations show that random SVM performs

better classification initially, while query SVM does better
in the later part. Since initially the training is done on a
very small sized sample, the initial hyperplane found will be
very far from the optimal hyperplane. Using query SVM
to choose a training point that is closest to this hyperplane
will result only in a small drift towards the optimal hyper-
plane. Choosing a random training point seems to be a bet-
ter idea as it may lie close to the optimal hyperplane, and its
inclusion in the training set will imply significant progress
towards the optimal hyperplane. In the later stages, the cur-
rent hyperplane is close to the optimal hyperplane. Thus,
choosing the data point closest to the current hyperplane
will be better as it ensures that the point chosen is close to
the optimal hyperplane as well. This analysis suggests that
an optimal strategy of choosing data points at each stage
would be to select some points randomly and some other
points close to the current hyperplane, i.e., a soft mixture of
the two pure strategies random SVM and query SVM. The
ratio of the points recommended by these individual pure
strategies varies adaptively over the learning steps.

The strategy at any step consists of two substeps: (i) se-
lecting points randomly, obtaining an updated SVM, and
calculating its error on the labeled data set (denote this as
εrandom) and, (ii) selecting data points closest to the current
separating hyperplane, obtaining an updated SVM, and de-
termining its error on labeled data set (denote this as εquery).
A final decision of the number of points to be selected ran-
domly and that of those to be selected on the basis of their
distance from the current separating hyperplane is made us-
ing εrandom and εquery. An outline of this strategy is given
in Algorithm 2. For λquery and λrandom, a form similar to
AdaBoost [10] has been chosen.

5. EXPERIMENTAL RESULTS
Performance of the proposed active learning strategies has

been studied for four benchmark data sets, namely the iono-
sphere, contraceptive use, Australian credit approval and
the credit screening data sets. All data sets are from the
UCI Machine Learning Repository [2], and their details are
given in Table 1. Missing values were replaced by random
values within the range of the corresponding attribute to
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Figure 1: Convergence curves of different active

learning algorithms on different data sets. From top

to bottom 1. Contraceptive use data set 2. Iono-

sphere data set 3. Australian credit approval data

set 4. Credit screening data set
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Data : Unlabeled & Labeled examples
Tunlabeled,Tlabeled

Result: Final classifier Cfinal

Qsoft ← ChooseRandom(Tunlabeled, k)/*Initialize the
training set with k random examples*/;
Label(Qsoft);
Csoft ← SV MTrain(Qsoft);
Cquery ← Csoft;
Crandom ← Csoft;
while terminating condition is not met do

Qquery ← Qquery ∪
ChooseNearest(Tunlabeled, k, Cquery)/*Add k new
datapoints nearest to the hyperplane defined by
Cquery */;
Label(Qquery)/*Label new datapoints*/;
Cquery ← SV MTrain(Qquery);
εquery ← GetError(Tlabeled, Cquery);
Qrandom ←
Qrandom ∪ ChooseRandom(Tunlabeled, k)/*Add k

new datapoints nearest to the hyperplane defined
by Crandom */;
Label(Qrandom)/*Label new datapoints*/;
Crandom ← SV MTrain(Qrandom);
εrandom ← GetError(Tlabeled, Crandom);

λquery ← |ln
(

1−εquery

εquery

)

|;

λrandom ← |ln
(

1−εrandom

εrandom

)

|;

λ←
λquery

λquery+λrandom
;

Qsoft ← Qsoft ∪
ChooseNearest(Tunlabeled, kλ, Csoft)/*Mark these
selected points as old*/;
Qsoft ←
Qsoft∪ChooseRandom(Tunlabeled, k(1−λ))/*Mark
these selected points as old*/;
Csoft ← SV MTrain(Qsoft);
Qquery ← SV (Csoft);
Qrandom ← SV (Csoft);

end

return Csoft;

Algorithm 2: Soft active learning strategy for SVMs

prevent any bias. These data sets have a balanced mix of
continuous, few-value nominal and many-value nominal at-
tributes, and thus are appropriate for the experiments.

The convergence curves of all the active learning strate-
gies considered, namely random SVM, query SVM, active
learning using follow the perturbed leader and soft choice
algorithm, on the above mentioned datasets are shown in
Figure 1. The results presented are for a batch size of 10
(i.e., 10 instances are chosen actively at each step). The
average value of the classification accuracies over twenty ex-
ecutions are plotted in Figure 4.2.

From the plots, it can be seen that the proposed algo-
rithms achieve the maximum possible accuracy within a
close limit with much fewer exams as compared to query
and random SVM. This is clearly observed in the case of soft
switching in plots 2 and 3, and in the case of hard switching
in plots 1 and 4. This characteristic is precisely the goal of
active learning and proves expecially useful in applications

Table 1: Characteristics of data sets
Data Set #Samples #Attributes

Ionosphere 351 34
Contraceptive use 1473 10

Australian credit approval 690 14
Credit screening 690 15

such as bioinformatics, where labelling data may be costly
both in terms of money and time.

These approaches are expected to give better results gen-
erally since the most appropriate base strategy (random or
query SVM) is chosen (or weighted heavily in the case of soft
switching) in the most appropriate stage of learning. This
corresponds to choosing random SVM in the early stages and
query SVM in the later ones, as justified earlier. In order to
illustrate this general efficacy, results have been shown on
datasets with varied characteristics.

6. CONCLUSIONS AND DISCUSSION
We have proposed two algorithms for fast and robust

active support vector learning. The algorithms are moti-
vated by online decision problems and efficiently handle the
exploration-exploitation trade-off in active learning.

The superiority of the algorithms has been demonstrated
empirically on benchmark datasets. However, a large body
of theoretical results on online decision problems is available.
Theoretical bounds on the accuracies of the proposed active
learning algorithms will be reported in a subsequent article.
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