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In this article a dense subgraph finding approach is adopted for the unsupervised feature selection prob-
lem. The feature set of a data is mapped to a graph representation with individual features constituting
the vertex set and inter-feature mutual information denoting the edge weights. Feature selection is per-
formed in a two-phase approach where the densest subgraph is first obtained so that the features are
maximally non-redundant among each other. Finally, in the second stage, feature clustering around
the non-redundant features is performed to produce the reduced feature set. An approximation algorithm
is used for the densest subgraph finding. Empirically, the proposed approach is found to be competitive
with several state of art unsupervised feature selection algorithms.
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1. Introduction

Over the past decade pattern recognition techniques have been
extensively used to solve several real-life problems that involve
very high dimensional data. Dimensionality reduction is almost al-
ways necessary to remove the redundant features while retaining
the salient characteristics of the data as far as possible (Kwak
and Choi, 2002).

Feature selection algorithms can be divided into two categories
based on the feature evaluation methodology, namely, filter and
wrapper methods (Dash and Liu, 1997). In the filter approaches,
a candidate feature subset is evaluated at each iteration based on
certain statistical measures. Some known filter type approaches
are based on t-test (Hua et al., 2008), chi-square test (Jin et al.,
2006), Wilcoxon Mann–Whitney test (Liao et al., 2007), mutual
information (Battiti, 1994; Kwak and Choi, 2002; Peng et al.,
2005; Estévez et al., 2009; Vinh et al., 2010), Pearson correlation
coefficients (Biesiada and Duch, 2008), etc. On the other hand,
wrapper methods utilize the performance of a classifier as the eval-
uation criteria for measuring the goodness of a candidate feature
subset (Kohavi and John, 1997).

Based on the availability of class labels, feature selection algo-
rithms can also be classified in two ways, namely, supervised
and unsupervised feature selection. Supervised feature selection
is generally employed when the class information are in hand,
otherwise unsupervised approach is used. Most known filter type
approaches, belong to the category of supervised learning. On the
other hand, a limited number of researches have been conducted
in the field of unsupervised feature selection. Unsupervised feature
selection using feature similarity measure (FSFS) (Mitra et al.,
2002), Laplacian Score for Feature Selection (LSFS) (He et al.,
2005), SPectral Feature Selection (SPFS) (Zhao and Liu, 2007), Multi
Cluster Feature Selection (MCFS) (Cai et al., 2010), Unsupervised
Discriminative Feature Selection (UDFS) (Yang et al., 2011), etc.
are some existing algorithms in this domain.

Feature selection is inherently a combinatorial optimization
problem (Kohavi and John, 1997). Conventional feature selection
methods usually follow a greedy approach and choose top-ranking
features on an individual level. This ignore the mutual dependency
among the selected features. As a result of this, the optimal feature
subset is sometimes difficult to find. The above mentioned five
unsupervised feature selection algorithms except MCFS and UDFS
follow the same methodology for obtaining the reduced feature
set.

We attempt to incorporate the combinatorial effect, by adopt-
ing a graph theoretic approach utilising the notion of densest sub-
graph. The subgraph finding task is a known problem for a diverse
number of applications like community mining, web mining, com-
putational biology (Bahmani et al., 2012). Densest subgraph find-
ing is a NP-hard problem. Recently, approximation algorithms for
finding the densest subgraph have been devised in literature
(Bahmani et al., 2012). Finding a subset of representative features
by mining dense subgraph has also been addressed in Liu et al.
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(2011) and Mandal and Mukhopadhyay (2013). Liu et al. (2011)
proposed a supervised method for obtaining the most informative
features while Mandal and Mukhopadhyay (2013) used an unsu-
pervised approach for obtaining the minimally redundant features.
Here we have developed a new unsupervised feature selection
technique based on the principle of densest subgraph finding fol-
lowed by feature clustering.

We first obtain a graph representation by considering the entire
feature set as the vertex set and having the inter-feature similarity
as the corresponding edge weight. Here, the inter-feature similar-
ity is computed using a normalized form of mutual information.

The densest subgraph finding approach has one major advan-
tage that the vertices of this densest subgraph, i.e., the features
of the reduced feature set, will be highly dissimilar. However, it
is likely that these features may not be the optimal feature set.
The reason behind this is that these features may not be the best
representatives of the features that have been excluded, even
though they are highly dissimilar to each other. To overcome this
situation, a clustering approach is further applied on this densest
subgraph for obtaining a better subgraph so that no important fea-
ture can be excluded from this set. The variance is used in the clus-
tering phase to select the prototype feature while the same
normalized mutual information is utilized for assigning each
non-selected feature into its closest cluster representative. The
subgraph thus obtained essentially contains a subset of the original
features that can maximally represent the entire feature space.
Thus our approach proceeds in a two-phase manner in which the
first phase deals with finding out the densest subgraph while clus-
tering the subgraph is performed in the second.

The remaining part of the paper is organized as follows:
Section 2 discusses some preliminary concepts following which
some of the existing unsupervised feature selection algorithms
are discussed in Section 3. The proposed two-phase unsupervised
feature selection algorithm is described in Section 4. Subsequently,
the experiential design and the comparative results are provided in
Section 5. Finally, some concluding comments are made in
Section 6.
2. Preliminary concepts

This section describes some fundamental information and
graph theory measures.

2.1. Density of a subgraph

Let G ¼ ðV ; EÞ be an unweighted undirected graph. The density
of a subgraph S # V , denoted as dðSÞ, is defined as dðSÞ ¼ jEðSÞjjSj , where

EðSÞ is the induced edge set of the subgraph S and jSj is the cardi-
nality of S.

The maximum density of the graph, denoted as d�ðGÞ, is defined
as d�ðGÞ ¼maxS # VfdðSÞg. Similarly, the density of a subgraph S # V
within a weighted graph G ¼ ðV ; EÞ can also be defined as

dðSÞ ¼
P

e2EðSÞ
we

jSj , where EðSÞ is the induced edge set of the subgraph

S and we is the weight of the edge e 2 EðSÞ.

2.2. Mutual information measures

2.2.1. Entropy
Entropy of a random variable is the amount of uncertainty asso-

ciated with it (Cover and Thomas, 2012). The entropy of a discrete
variable X, denoted by HðXÞ, is defined as

HðXÞ ¼ �
X
x2X

pðxÞlogbpðxÞ; ð1Þ
where pðxÞ indicates the probability mass function of X. The value of
b is generally assumed to be 2:0 and this value is used in the present
paper.

2.2.2. Mutual information
Mutual information between two random variables measures

how much information can be extracted through the knowledge
of the other (Cover and Thomas, 2012). The value of mutual infor-
mation becomes zero when the associated variables are completely
independent whereas its higher value signifies their high mutual
dependency. The mutual information between two discrete vari-
ables X and Y, denoted as IðX; YÞ, is defined as follows

IðX; YÞ ¼
X
x2X

X
y2Y

pðx; yÞlogb
pðx; yÞ

pðxÞpðyÞ

� �
; ð2Þ

where pðxÞ;pðyÞ and pðx; yÞ denote the probability mass function of
X, the probability mass function of Y and the joint probability mass
function between X and Y, respectively.

2.2.3. Normalized mutual information
Mutual information has a disadvantage due to its non-compara-

bility among variable pairs that have different mutual information
values in various ranges. To overcome this, mutual information is
often normalized into a closed interval, say [0;1].

Several researchers have used various methods to construct
normalized mutual information. A few of them are mentioned
below

I
�
ðX;YÞ ¼ 2IðX; YÞ

HðXÞ þ HðYÞ ; ð3Þ

ÎðX;YÞ ¼ IðX; YÞ
minðHðXÞ;HðYÞÞ ; ð4Þ

I
0
ðX;YÞ ¼ IðX; YÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

HðXÞHðYÞ
p : ð5Þ

Witten and Frank (2005) proposed the first one, known as symmet-
ric uncertainty in the form of the weighted average of the two
uncertainty coefficients. Strehl and Ghosh (2002) favoured the third
form over the second one for ensembling several clusters due to the
closeness to a normalized inner product in Hilbert space.

3. Review of unsupervised feature selection

Many of the earlier feature selection algorithms are based on
supervised learning. Among the unsupervised feature selection ap-
proaches, data variance is the simplest measure for evaluating the
discriminating power of a feature.

In the context of unsupervised feature selection algorithm, FSFS,
proposed by Mitra et al. (2002), is a popular one. In this work, Mitra
et al. (2002) proposed a new similarity measure, known as Maxi-
mal Information Compression Index (MICI) that was used to itera-
tively remove some number of features, say k, decrementing k until
no removal was possible. The MICI between two variables x and y,
denoted by k2ðx; yÞ, was defined as follows

k2ðx; yÞ ¼ ðvarðxÞ þ varðyÞÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvarðxÞ þ varðyÞÞ2 � 4varðxÞvarðyÞð1� qðx; yÞ2Þ

q
;

ð6Þ

where var(x), var(y) and qðx; yÞ denote the variance of x, the vari-
ance of y, and the correlation coefficient between x and y,
respectively.

A benefit of the approach is that it does not require any search
which in turn makes the selection problem fast. However, this
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approach has a major drawback regarding choosing the proper va-
lue for k.

Laplacian Score for Feature Selection (LSFS) is another feature
selection algorithm that is designed for serving both supervised
and unsupervised learning (He et al., 2005). Like any other filter
type approach, LSFS selects some top-ranking features that have
maximum locality preserving power computed in terms of Lapla-
cian score. The motivation behind LSFS is that two closest data
points are likely to be in the same class. The underlying idea for
this is that the local structure of the data is given more priority
over the global structure for several classification problems like
K-NN rule, etc.

SPectral Feature Selection (SPFS), designed using spectral graph
theory, is one of the first research works where a general frame-
work of feature selection is proposed for both supervised as well
as unsupervised learning. This work deals with capturing the struc-
tural information of a graph from the corresponding spectrum. In
this study, the spectrum of the graph is used to measure the fea-
ture relevance. Furthermore, two existing feature selection algo-
rithms, namely, ReliefF (supervised) (Kononenko, 1994) and LSFS
(unsupervised), have been derived as a special case of this
framework.

All of these algorithms consider the feature importance individ-
ually and finally choose some user defined number of features as
the reduced feature set. The main problem of these approaches is
that the mutual relationship among the selected features is not
modeled adequately. To overcome this problem, MCFS is designed
by incorporating spectral clustering analyzes of the data (manifold
learning) with L1-regularized models (Cai et al., 2010). The main
motivation of using spectral analysis technique here is to effi-
ciently compute the correlations among different features of a can-
didate feature subset in an unsupervised manner. So identifying
the multi-cluster data structure is a major advantage of this
approach. Here the optimization problem related to feature
selection is effectively solved by employing a sparse eigen-problem
as well as a L1-regularized least squares problem.

Unsupervised Discriminative Feature Selection (UDFS) is a very
recently proposed unsupervised feature selection algorithm based
on the joint effect of discriminative analysis and L2;1-norm minimi-
zation. Similar to MCFS, UDFS also analyzes features collectively in
a batch mode. Additionally, UDFS exploits the discriminative
power of a feature set along with considering the local structure
of data distribution.
4. Proposed feature selection technique

We attempt to model the feature selection and dependency
modeling problem using a graph theoretic representation. For this
purpose, we have mapped the given feature set into its equivalent
graph G ¼ ðV ; E;WFÞ, where V is the set of features, E is the set of
edges between the feature pairs and WF : ei ! R indicates the mu-
tual redundancy between two features connected by edge ei. In the
present work we have used the variant of normalized mutual infor-
mation (NMI), defined by Strehl and Ghosh (2002), to measure the
inter-feature redundancy. The main intuition for representing the
feature selection problem into an equivalent graph notation is to
apply the existing densest subgraph finding approach for finding
a good feature set in optimal time. Moreover, we will be able to ob-
tain an optimal densest feature subset, the features of which will
be minimally redundant with each other.

Recently densest subgraph finding problem has attracted a
great deal of attention for obtaining a smaller subset of vertices
that has the highest ratio of the number of edges to the number
of vertices. The above problem is a natural mapping of the maxi-
mally independent feature subset finding task. Selected feature
subset, however, needs to address the criterion of ‘representing’
the non-selected features in addition to being maximally indepen-
dent. To address this issue we have proposed a two-phase
approach so that one can get a subset of original features that
are not only highly dissimilar to each other but also hold sufficient
similarity with respect to the non-selected features. We first
describe the dense subgraph finding algorithm that we have used.

4.1. Approximate dense subgraph finding algorithm

Dense subgraph finding either for directed or undirected graph
is a hard problem that lies at the centre of very large-scale graph
algorithms (Bahmani et al., 2012). Several researchers have made
valuable contributions towards a good approximation to this prob-
lem. Recently Bahmani et al. (2012) have provided three approxi-
mation algorithms in which the first two deal with the densest
subgraph finding approach for directed as well as undirected
graphs without any size constraint while the last one, Densest At
Least k Subgraph (DALS), is applicable for the graph with a size
constraint k (Bahmani et al., 2012). They have proved that each
of the first two algorithms leads a ð2þ 2�Þ-approximation whereas
the last one DALS is a ð3þ 3�Þ-approximation. These algorithms
have been tested on large scale graph with more than half billion
vertices and six billion edges signifying the scalability of their
algorithms.

4.2. Two stage feature selection algorithm

Recently Mandal and Mukhopadhyay (2013) proposed a graph
theoretic approach for solving the unsupervised feature selection
problem. The outcome of this approach produces a dense feature
subset, the features of which are maximally non-redundant to
each other. However they did not verify whether the reduced fea-
tures are the optimal representatives of the features that have
been excluded. To address this issue, we have integrated the
densest subgraph finding approach with feature clustering in this
paper.

The detailed two-phase feature selection algorithm, named as
Dense Subgraph Finding with Feature Clustering (DSFFC), is pro-
vided in Algorithm 1. Steps 1–18 constitute the first phase, i.e.,
finding the densest subgraph of size at least k, while steps 19–25
form the second phase, i.e., feature clustering for obtaining the
reduced features. The input of the first phase is a graph representa-
tion G ¼ ðV ; E;WFÞ of the dataset and three user parameters k; l; r
denoting the minimum size of the reduced feature set, the number
of features that needs to be inserted at each iteration and the num-
ber of features that needs to be discarded at each iteration, respec-
tively. The main objective of this phase is to find out a subset of
vertices R # V having size at least k whose average density is the
minimum. For this purpose, we first assign the set V to two other
sets, say, S and R. Then, the vertex i from the set S is put into the
A0ðSÞ provided the induced degree of the vertex i in the induced
edge set EðSÞð¼ E \ S2Þ, denoted by degSðiÞ, is greater than or equal
to twice the density of the set S, denoted by dðSÞ. Here density is
computed (as described in Section 2.1) by using only the edge
weights of the set S where the edge weights are measured in terms
of Í (X,Y) as defined in Eq. (5) in Section 2.2.3. Then we follow dif-
ferent strategies depending upon the cardinality value of the set
A0ðSÞ. If the cardinality value equals to 0 we stop the first phase
and go for the second phase. If the cardinality value becomes 1
we explicitly set the value of r to be 1; otherwise we set r equals
to be half of the cardinality value. Then we rearrange the elements
of the set A0ðSÞ based on decreasing values of the degrees of all the
vertices and remove the top-ranking r vertices. Afterwards we
check the two conditions: (i) whether the cardinality of the set S
is greater than or equal to k and (ii) whether density of the set S
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is less than that of the set R. If both the conditions become true,
then we replace the set R by S. As an important feature that is re-
moved at an earlier stage may join at a later phase of the algorithm,
we check this condition at the end of each iteration and update the
set S accordingly. Basically, we have incorporated the advantage of
so called l-r principle of feature selection in the core stage of the
algorithm. In this way steps 1–18 constitute the first phase of the
algorithm which provides a subset of at least k features. These con-
stitute the k0 (k0 P k) prototype features for the second phase, i.e.,
feature clustering. In the second phase, k0 clusters are first created
by using these k0 prototype features. All the other non-selected fea-
tures are put into their nearest cluster (by using maximal similarity
measure in terms of NMI). Next, each cluster prototype is replaced
by a feature whose variance is the maximum among those belong-
ing to the same cluster. The above two-steps are repeated until no
further change occurs in the cluster structure or the prototype
elements.

Algorithm 1. DSFFC

Input: Graph G ¼ ðV ; E;WFÞ; Parameters k > 0; l P 0 and
r > 0.

Output: R be the resultant reduced feature set.
Algorithm:
Step 1: Set S V ;R V;
Step 2: while S – 0 do
Step 3: A0ðSÞ  fi 2 SjdegSðiÞP 2 � dðSÞg;
Step 4: if jA0ðSÞj ¼ 0 then
Step 5: goto Step 19;
Step 6: else if jA0ðSÞj ¼ 1 then
Step 7: r ¼ 1;
Step 8: else if jA0ðSÞj < r then
Step 9: r ¼ 0:5 � jA0ðSÞj;
Step 10: end if
Step 11: Arrange A0ðSÞ in descending order based on

degSðiÞ; i 2 A0ðSÞ;
Step 12: Assign top-ranking r features from A0ðSÞ into AðSÞ;
Step 13: S S n AðSÞ;
Step 14: if jSjP k and dðSÞ < dðRÞ then
Step 15: R S;
Step 16: end if
Step 17: Set S S [ Sl if dðS [ SlÞ < dðSÞ; Sl \ S – 0;
Step 18: end while
Step 19: k0 ¼ jRj;
Step 20: Set pj ¼ Rj, where Rj is the j-th element (feature) of

R;8j ¼ 1; . . . ; k0;
Step 21: Let pj be initial center corresponding to j-th cluster

Cj;8j ¼ 1; . . . ; k0;
Step 22: Associate each non-selected feature fi; i ¼ 1; . . . ; jV j

and fi R fp1; . . . ; pk0 g, to cluster Cj; j 2 f1; . . . ; k0g iff

NMIðfi; pjÞ ¼maxk0
m¼1ðNMIðfi; pmÞÞ;

Step 23: Select new prototype feature p0j;8j ¼ 1; . . . ; k0 such

that varðp0jÞ ¼maxðvarðfiÞÞ;8fi 2 Cj;

Step 24: If pj ¼ p0j;8j ¼ 1; . . . ; k0 then goto Step 25 else goto

Step 22;
Step 25: Output k0 number of prototype features as the set R.

The overall schematic of the proposed two-phase approach
DSFFC is illustrated in Fig. 1. First, the feature space is mapped into
an equivalent graph representation (as described in Section 4)
shown in Fig. 1(a). The edge weights denote the similarity values
between the corresponding pair of features. In the figure, a longer
(shorter) edge denotes less (more) similarity. After applying the
densest subgraph approximation algorithm to this graph, a
subgraph with eight features is obtained as an output of the first
phase as shown in Fig. 1(b). Finally the second phase, i.e., feature
clustering produces eight feature clusters as shown in Fig. 1(c).
One feature for each cluster is selected as the prototype feature
corresponding to that cluster.
5. Experimental results

Extensive experiments have been conducted to evaluate the
proposed algorithm with respect to three existing unsupervised
feature selection algorithms, namely, FSFS (Mitra et al., 2002), LSFS
(He et al., 2005) and MCFS (Cai et al., 2010). For the present work,
we have set the values of both the user parameters, i.e., l and r, to
be 1. For all the feature selection algorithms the number of reduced
features (k) has been kept to be half of the number of original fea-
tures. The detailed descriptions about used datasets, used classifi-
ers, evaluation criteria and experimental results, are mentioned
below.

5.1. Used datasets

In our experimental evaluation, eight publicly available datasets
have been used to show the effectiveness of the proposed algo-
rithm. These are Colon, Multiple Features, Isolet, Spambase, Iono-
sphere, WDBC, Sonar and SPECTF. All of them are collected from
UCI machine learning repository (Bache and Lichman, 2013). Some
basic characteristics of these eight datasets are summarized in
Table 1. As the features of these datasets contain values of different
ranges, the datasets are normalized using max–min normalization.
The main objective of taking max–min normalization over other
kind of normalization such as z-score is that the former can par-
tially preserve the information related to standard deviation while
the latter one can not retain the topological structure of the data-
sets in many cases. For the sake of simplicity, the feature values are
scaled in the [0, 1] interval. These datasets have been chosen by
considering diverse characteristics of the datasets such as number
of samples, number of features, number of different classes, etc. For
example, Colon is a very high dimensional dataset with a small
sample size while Spambase is the example of a very large sample
size dataset. Multiple Features and Isolet are two multi-class data-
sets that have 10 and 25 different kind of classes, respectively.

5.2. Used classifiers

Four classifiers, namely, Support Vector Machines (SVM), Naive
Bayes, K-nearest neighbor (KNN) and AdaBoost are used to com-
pare the classification performance of the feature selection
algorithms.

For the SVM classifier, we have used the famous RBF kernel
whose performance is dependent on two user defined parameters,
namely, C and c. In our experiment, their suitable values are ob-
tained by using a grid search done on the training data. For the
KNN classifier, the value of K is set as the square root of the sample
size. The second classifier Naive Bayes has one advantage of not
owing any such user defined parameter. For the same reason, the
Naive Bayes classifier is also employed as the underlying base clas-
sifier for the last one, i.e., Adaboost classifier. However, Adaboost
also has some parameters for which the default values are consid-
ered in the present work. Corresponding to each classifier, we have
run the 10-fold cross validation ten times on the training data and
subsequently calculated the average results.

In the present work, LIBSVM software (Chang and Lin, 2011) is
used for building the SVM classifier while the remaining three clas-
sifiers are built using WEKA tool (Hall et al., 2009).



Fig. 1. Illustration of the proposed graph-based clustering algorithm for unsupervised feature selection. (a) Original set of features in a graph representation, (b) the features
in the densest subgraph, and (c) the prototype features in the finally obtained clusters are marked as red stars. (For interpretation of the references to colour in this figure
caption, the reader is referred to the web version of this article.)

Table 1
Characteristics of the used datasets.

Dataset No. of Samples No. of Features No. of Classes

Colon 62 2000 2
Multiple Features 2000 649 10
Isolet 6238 617 26
Spambase 4601 57 2
Ionosphere 351 34 2
WDBC 569 30 2
Sonar 208 60 2
SPECTF 80 44 2
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5.3. Evaluation criteria

For all the two-class datasets, the performance of each of the
above mentioned four classifiers are measured using two
evaluation criteria, i.e., accuracy (Acc) and Matthews correlation
coefficient (MCC). On the other hand, only Acc values are consid-
ered for the multi-class datasets. These two criteria are obtained
as follows Acc ¼ TPþTN

TPþTNþFPþFN and MCC ¼ ðTP�TN�FP�FNÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþFPÞðTPþFNÞðTNþFPÞðTNþFNÞ
p ,

where TP; TN; FP and FN stand for the number of true positives, true
negatives, false positives and false negatives, respectively.

In addition to the above mentioned two supervised measures,
we have also computed one unsupervised measure, namely, repre-
sentation entropy (RE) that helps us to identify the discriminative
power of the respective feature subsets (Mitra et al., 2002). The RE
of a d-size feature set, denoted by HR, is defined as follows

HR ¼ �
Xd

j¼1
ekj log ekj ;

where ekj ; j ¼ 1; . . . ;d, are obtained as follows

ekj ¼
kjPd
j¼1kj

:
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Here, kj; j ¼ 1; . . . ;d, are the eigenvalues of the d� d covariance ma-
trix of the respective feature space of size d.

The value of HR attains a maximum value when all the eigen
vectors become equally important, i.e., the level of uncertainty is
maximum. On the other hand, its value equals to zero when all
the eigen values except one are zero. Higher value of RE indicates
better selection of features. RE is one of the most desired property
to compare several feature selection algorithms.

5.4. Comparative study

We have performed a number of experiments to evaluate the
usefulness of the proposed approach. First, to show the efficacy
of the proposed two-phase approach over its first phase, the per-
formance of the classifier corresponding to features selected after
the first phase only and after both the phases are evaluated. These
are shown in Fig. 2. It is seen from the figure that the proposed
two-phase approach generally results in some improvement over
only the first phase. The improvement appears to be significantly
more for three datasets, namely, Isolet, Spambase and SPECTF. In
case of the remaining five datasets, the performance of the pro-
posed method is slightly better than the first phase except the Co-
lon data. For the Colon data, the performance of first phase is found
to be better than the proposed two-phase method only using SVM
classifier whereas the two-phase method supersedes the single
Fig. 2. Comparing the classification accuracy of the proposed feature selection meth
corresponding to four classifiers, namely, (a) SVM, (b) Naive Bayes, (c) KNN and (d) Ada
phase for the remaining three classifiers. One of the major reason
behind this performance degradation is probably due to the mis-
match between the number of samples with the number of fea-
tures. Therefore our method guarantees that it will definitely
perform well or fairly better as compared to the first phase.

Next, extensive experiments have been carried out to show the
effectiveness of the proposed approach over some existing unsu-
pervised feature selection algorithms, namely, FSFS, LSFS and
MCFS. The experimental results are provided in Table 2. The table
reveals that, on the Colon data, the proposed algorithm performs
better than the other feature selection algorithms for the three
classifiers, namely, SVM, Naive Bayes and AdaBoost. For KNN,
MCFS performs the best while the proposed approach performs
the second best, providing almost comparable result with the best
one. In terms of MCC, the proposed method comprehensively out-
performs the others for SVM, Naive Bayes and AdaBoost, while
MCFS provides the best value for KNN followed by our DSFFC.
For this dataset, the performance of LSFS is very poor as compared
to the other three. For the second data, Multiple Features, all the
methods provide high (> 93%) and comparable accuracies, with
the proposed approach performing the best for SVM as well as
KNN while MCFS performs the best for the other classifiers. For
the third data Isolet, the proposed method performs the best on
two classifiers, namely, Naive Bayes and AdaBoost while MCFS
beats the others on the remaining two classifiers. FSFS provides
od when only the first phase is used (M1) and both the phases are used (M2),
Boost.



Table 3
Summary of number of times the best results are obtained by different unsupervised
feature selection algorithms.

Dataset FSFS LSFS MCFS DSFFC

Colon 1 0 2 6
Multiple Features 0 0 2 3
Isolet 0 0 2 3
Spambase 0 0 0 9
Ionosphere 1 2 2 4
WDBC 1 2 2 4
Sonar 0 2 2 5
SPECTF 1 2 0 6
Overall 4 8 12 40

Table 2
Performance comparison of different unsupervised feature selection algorithms on eight datasets. The mean value of ten independent runs is mentioned in each table entry while
their standard deviation is shown in parentheses. The best mean values of percentage accuracy and MCC are marked in boldface.

Dataset Algorithm Evaluation criteria

SVM Naive Bayes KNN AdaBoost RE

Acc MCC Acc MCC Acc MCC Acc MCC

Colon FSFS 81.45(0.85) 0.585(0.02) 73.39(3.16) 0.439(0.07) 74.84(1.56) 0.439(0.044) 76.29(3.57) 0.465(0.092) 4.06
LSFS 71.62(2.04) 0.336(0.061) 51.29(1.83) 0.16(0.042) 73.55(1.56) 0.406(0.052) 60.97(4.35) 0.232(0.088) 2.42
MCFS 79.52(1.09) 0.54(0.026) 67.96(3.41) 0.347(0.076) 78.06(1.13) 0.528(0.025) 77.10(2.72) 0.495(0.056) 3.81
DSFFC 82.10(1.19) 0.600(0.028) 73.87(1.67) 0.461(0.039) 77.42(1.32) 0.512(0.037) 79.03(3.48) 0.537(0.084) 3.94

Multiple Features FSFS 97.91(0.11) – 95.51(0.16) – 94.49(0.21) – 96.54(0.29) – 5.43
LSFS 97.74(0.11) – 94.32(0.2) – 93.02(0.2) – 96.15(0.20) – 4.38
MCFS 98.13(0.13) – 95.59(0.13) – 95.58(0.13) – 97.06(0.19) – 4.59
DSFFC 98.35(0.13) – 94.43(0.12) – 95.61(0.12) – 96.22(0.17) – 5.52

Isolet FSFS 88.17(0.23) – 65.82(0.21) – 71.42(0.25) – 65.78(0.19) – 5.34
LSFS 92.95(0.11) – 75.49(0.27) – 82.6(0.19) – 75.53(0.31) – 4.42
MCFS 95.75(0.12) – 82.09(0.33) – 87.99(0.13) – 81.99(0.21) – 5.02
DSFFC 95.26(0.08) – 83.61(0.22) – 86.19(0.14) – 84.82(0.38) – 5.74

Spambase FSFS 78.95(0.11) 0.554(0.002) 66.68(0.10) 0.456(0.002) 80.81(0.18) 0.613(0.004) 66.85(0.15) 0.459(0.003) 4
LSFS 83.84(0.16) 0.659(0.004) 69.26(0.11) 0.497(0.002) 82.68(0.16) 0.633(0.003) 69.28(0.22) 0.497(0.004) 4.15
MCFS 80(0.09) 0.586(0.002) 65.27(0.09) 0.451(0.002) 82.27(0.14) 0.624(0.003) 65.24(0.12) 0.449(0.002) 4.11
DSFFC 86.69(0.07) 0.719(0.002) 75.63(0.12) 0.585(0.002) 84.31(0.11) 0.668(0.002) 75.71(0.15) 0.586(0.002) 4.31

Ionosphere FSFS 91.77(0.49) 0.823(0.011) 73.73(0.61) 0.435(0.013) 75.41(0.64) 0.462(0.016) 85.93(1.36) 0.689(0.030) 3.60
LSFS 91.37(0.43) 0.814(0.01) 76.84(0.71) 0.521(0.01) 84.67(0.6) 0.669(0.013) 88.83(1.18) 0.755(0.026) 2.82
MCFS 94.22(0.7) 0.874(0.015) 87.89(0.73) 0.746(0.013) 82.11(0.6) 0.615(0.013) 90.46(0.91) 0.792(0.020) 3.3
DSFFC 94.07(0.29) 0.873(0.006) 89.06(0.57) 0.766(0.011) 82.54(0.72) 0.627(0.017) 90.85(0.81) 0.822(0.015) 3.47

WDBC FSFS 94.41(0.18) 0.88(0.004) 91.11(0.22) 0.809(0.005) 93.22(0.43) 0.854(0.01) 94.22(0.63) 0.876(0.014) 2.56
LSFS 96.87(0.2) 0.933(0.004) 93.71(0.16) 0.866(0.003) 95.87(0.21) 0.912(0.004) 95.85(0.50) 0.911(0.011) 1.59
MCFS 96.68(0.24) 0.929(0.005) 93.39(0.24) 0.859(0.005) 96.22(0.24) 0.92(0.005) 95.11(0.44) 0.895(0.009) 2.06
DSFFC 96.82(0.15) 0.932(0.003) 94.34(0.16) 0.879(0.003) 95.73(0.17) 0.909(0.004) 96.22(0.31) 0.919(0.007) 2.54

Sonar FSFS 80.24(1.35) 0.606(0.026) 70.82(2.41) 0.415(0.048) 68.51(1.62) 0374(0.036) 77.16(1.97) 0.541(0.039) 3.37
LSFS 81.01(1.27) 0.620(0.026) 71.88(1.98) 0.438(0.039) 67.98(1.20) 0.360(0.027) 75.67(1.64) 0.511(0.033) 3.2
MCFS 82.45(1.04) 0.650(0.021) 67.36(1.37) 0.379(0.026) 70.14(1.12) 0.408(0.024) 77.21(2.07) 0.543(0.042) 3.4
DSFFC 82.21(1.38) 0.642(0.028) 69.42(0.94) 0.409(0.020) 71.83(1.09) 0.440(0.022) 79.09(1.94) 0.580(0.039) 3.88

SPECTF FSFS 73.38(2.13) 0.493(0.039) 73.63(1.61) 0.480(0.032) 66(1.94) 0.424(0.037) 65.50(2.78) 0.312(0.055) 3.69
LSFS 74(1.42) 0.513(0.030) 72.75(1.42) 0.474(0.029) 69.63(2.50) 0.472(0.060) 69(3.48) 0.381(0.069) 3.31
MCFS 71.88(2.14) 0.479(0.039) 72.13(1.45) 0.468(0.028) 66.38(2.32) 0.383(0.047) 72.75(3.16) 0.458(0.066) 3.29
DSFFC 76.88(1.79) 0.540(0.033) 79.75(1.84) 0.600(0.038) 68.13(1.59) 0.468(0.027) 76.88(1.79) 0.540(0.033) 3.67
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the very worst results as compared to the others for this data. For
the fourth data Spambase, the performance of the proposed algo-
rithm is the best among the four candidates irrespective of the
underlying used classifiers in terms of both accuracy and MCC. In
fact, the gain in performance obtained by DSFFC is remarkable
for this dataset. For the fifth data Inonosphere, each of LSFS and
MCFS performs the best only for one classifier, i.e., KNN and
SVM, respectively. On the other hand, the proposed DSFFC provides
the best performances for the remaining two classifiers. For the
sixth data WDBC, the proposed approach supersedes the others
for two classifiers, namely, Naive Bayes and AdaBoost, whereas
each of LSFS and MCFS provides the best value only for one classi-
fier. For the seventh data Sonar, DSFFC beats the others for two
classifiers, namely, KNN and AdaBoost whereas each of LSFS and
MCFS offers one best result. For the last data SPECTF, the proposed
approach outperforms the others for all the classifiers except KNN.
In terms of the RE, FSFS and DSFFC emerge as the top performers.
Overall, the proposed method appears to be the most effective
among the four competitors, being the top performer in a majority
of the cases, while never being the worst in any case.

Table 3 shows the number of times the best results are obtained
by each of the above mentioned four algorithms. For Colon, it is ob-
served that our method provides the best results six times,
whereas MCFS provides the best results two times. For each of
the second data Multiple Features as well as the third data Isolet,
the proposed one provides the best results three times while MCFS
performs better than all others in two cases. For the fourth data
Spambase, the proposed method outperforms the others in all of
the nine cases. For the fifth as well as sixth data, namely,
Ionosphere and WDBC, the proposed one provides the best results
four times individually whereas this value becomes two for the
other two algorithms, namely, LSFS and MCFS. For the remaining
two data, i.e., Sonar and SPECTF, the proposed approach provides
the best results for five and six times, respectively. As an overall,
the table reveals that the proposed one performs the best by giving
the best results forty times among total sixty-four cases whereas
MCFS ranks the second acquiring the best results only for twelve
times. On the other hand, these values for FSFS and LSFS are only
four and eight, respectively. This seems that our algorithm ranks
the top position in terms of providing the number of best results
in maximum times.

The comparative performances of the proposed approach
against each of the three other existing algorithms have been



Table 4
Summary of comparative performances of different unsupervised feature selection algorithms. The entry in the row X under the column W–D–L (Y) means win–draw–loss of
DSFFC compared to Y on the X dataset. The entry in the row X under the column SW–SL (Y) means significant win–significant loss of DSFFC compared to Y on the X dataset.

W–D–L (FSFS) SW–SL (FSFS) W–D–L (LSFS) SW–SL (LSFS) W–D–L (MCFS) SW–SL (MCFS)

Colon 8–0–1 2–0 9–0–0 8–0 7–0–2 4–0
Multiple Features 3–0–2 2–2 5–0–0 2–0 3–0–2 1–2
Isolet 5–0–0 4–0 5–0–0 4–0 3–0–2 2–2
Spambase 9–0–0 8–0 9–0–0 8–0 9–0–0 8–0
Ionosphere 8–0–1 8–0 7–0–2 6–2 7–0–2 2–0
WDBC 8–0–1 8–0 5–0–4 2–0 7–0–2 4–2
Sonar 7–0–2 2–0 7–0–2 4–1 7–0–2 2–0
SPECTF 8–0–1 4–0 7–0–2 4–0 9–0–0 3–0
Overall 56–0–8 38–2 54–0–10 38–3 52–0–12 26–6
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summarized in Table 4. The table has mainly analyzed two criteria,
namely, Win-Draw-Loss (W–D–L) and Significant Win-Significant
Loss (SW–SL) in which the value of SW–SL is computed using
one-way paired sample t-test. In the present analysis, the
p-value = 0:01 is considered to be the threshold for showing the
corresponding result to be significant. For the first dataset Colon,
the W–D–L of the proposed algorithm over FSFS, LSFS and MCFS
are 8–0–1, 9–0–0 and 7–0–2, respectively. Also, the values of
SW–SL of DSFFC over the other three approaches are 2–0, 8–0
and 4–0, respectively. These results indicate that the proposed
one attains very good results as compared to the other three. For
the second dataset Multiple Features, the W–D–L of the proposed
technique over the other three are 3–0–2, 5–0–0 and 3–0–2,
respectively and accordingly the values corresponding to SW–SL
are 2–2, 2–0 and 1–2, respectively. These results indicate that
DSFFC performs better than LSFS and has almost similar perfor-
mance against FSFS. This is the only dataset in which any other fea-
ture selection algorithm (MCFS in this case) wins significantly the
most number of times than it loses significantly in comparison to
DSFFC. For the third dataset Isolet, DSFFC achieves better perfor-
mance as compared to FSFS as well as LSFS whereas it performs
equally well with respect to MCFS. For the fourth data Spambase,
the W–D–L and SW–SL of the proposed technique over each of
the remaining three algorithms are 9–0–0 and 8–0, respectively.
These results signify that DSFFC achieves outstanding performance
for this data. For the fifth dataset Ionosphere, almost the same
observation is found as compared to the remaining three methods.
However, each of LSFS and MCFS provides two win values against
the proposed approach in which the win of only LSFS is found to be
significant. For the sixth data WDBC, the proposed DSFFC performs
remarkably well as compared to FSFS just like the fourth and fifth
datasets. Although the proposed technique beats LSFS in terms of
the number of significant win, this is the only one case where LSFS
performs almost equally well as compared to DSFFC in terms of the
number of win. For the seventh as well as eight data, i.e., Sonar and
SPECTF, we observe that the proposed algorithm performs very
well as compared to each of the three competitors. These summary
information once again establish the superiority of the proposed
approach over the other existing unsupervised feature selection
algorithms.

6. Conclusion

In this paper, a novel unsupervised feature selection algorithm
has been developed by integrating the concept of densest subgraph
finding with feature clustering. The proposed two-phase approach
improves classifier performance by selecting an optimal feature
subset that not only minimizes the mutual dependency among
the chosen features but also maximizes the mutual dependency
of the selected features against the non-selected features. In this
work, a novel existing normalized mutual information is also uti-
lized to compute the similarity between two features.
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