
Pattern Recognition Letters 34 (2013) 335–343
Contents lists available at SciVerse ScienceDirect

Pattern Recognition Letters

journal homepage: www.elsevier .com/locate /patrec
Aging speech recognition with speaker adaptation techniques: Study
on medium vocabulary continuous Bengali speech

Biswajit Das ⇑, Sandipan Mandal, Pabitra Mitra, Anupam Basu
Department of Computer Science and Engineering, Indian Institute of Technology, Kharagpur 721302, West Bengal, India

a r t i c l e i n f o
Article history:
Received 23 May 2012
Available online 16 November 2012

Communicated by S. Sarkar

Keywords:
Aging speech recognition
Vocal tract length normalization (VTLN)
Maximum likelihood linear transform
(MLLT)
Maximum likelihood linear regression
(MLLR)
Maximum a posteriori (MAP)
Maximum mutual information estimation
(MMIE)
0167-8655/$ - see front matter � 2012 Elsevier B.V. A
http://dx.doi.org/10.1016/j.patrec.2012.10.029

⇑ Corresponding author. Mobile: +91 9775550915.
E-mail addresses: biswajit.net@gmail.com (B. Das),

(S. Mandal), pabitra@gmail.com (P. Mitra), anupamba
a b s t r a c t

The article describes the speech recognition system development in Bengali language for aging popula-
tion with various adaptation techniques. Variability in acoustic characteristics among different speakers
degrades speech recognition accuracy. In general, perceptual as well as acoustical variations exists among
speakers, but variations are more pronounced between young and aged population. Deviation in voice
source features between two age groups, affect the speech recognition performance. Existing automatic
speech recognition algorithms demands large amount of training data with all variability to develop a
robust speech recognition system. However, speaker normalization and adaptation techniques attempts
to reduce inter-speaker or intra-speaker acoustic variability without having large amount of training
data. Here, conventional acoustic model adaptation method e.g. vocal tract length normalization, maxi-
mum likelihood linear regression and/or maximum a posteriori are combined in the current study to
improve recognition accuracy. Moreover, maximum mutual information estimation technique has been
implemented in this study.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Automatic speech recognition (ASR) system having high recog-
nition accuracy have potential of being an useful part of our daily
life. It is a well established fact that ASR system performs satisfac-
torily under controlled condition. However, due to mismatch in
acoustic properties of training and testing data, ASR performance
degrades rapidly in uncontrolled environment. Among different
mismatch in training and testing speech data, aging contribute suf-
ficient deviation in spectral parameters. ASR system that had been
developed in Bengali with the training data collected from young
population performs well for test data of young people but recog-
nition accuracy degrades drastically for test data of aged popula-
tion. Due to this observation, it has been our endeavour to
develop a robust ASR system for aged population. In this work,
speaker adaptive acoustic modeling methods are investigated to
compensate acoustic mismatch between training and testing
observations due to aging.

Human articulatory system evolves during our life time. Physi-
ological and anatomical changes are studied in several studies
(Ulatowska, 1985; Lindblom, 1971; Linville and Rens, 2001; Rother
et al., 2002; Xue and Hao, 2003; Paulsen and Tillmann, 1998; Ro-
ll rights reserved.
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deo et al., 1993; Wilcox and Horii, 1980; Yumoto et al., 1984;
Krom, 1993; Hillenbrand et al., 1994; Tolep et al., 1995) Physiolog-
ical and anatomical changes of vocal tract affect different voice
source features e.g. fundamental frequency (F0), formant frequen-
cies (F1; F2; F3; . . . etc.), jitter, shimmer, voice-onset-time and har-
monic-to-noise ratio of speech signal. In the study Torre and
Barlow (2009) and Vipperla et al. (2010), patterns of variations of
those voice source feature with aging has been reported. Different
parts of vocal tract are directly or indirectly responsible for differ-
ent phoneme pronunciation. If a particular part of vocal tract is af-
fected due to aging, acoustic characteristics of related phone will
be changed. Physiological and anatomical changes that take place
in our articulatory system with aging (Linville, 2001) will be dis-
cussed next.

Physiological changes of vocal tract not only depends on chro-
nological age, but other factors which can deteriorate the health
of articulatory organs; alcohol absorption, smoking habit, food ha-
bit, and medical condition (Linville, 2001; Gorham-Rowan and
Laures-Gore, 2006). Another important factor for voice quality deg-
radation is hereditary traits of the family.

Inter-speaker or intra-speaker acoustic variations are the major
sources of error in ASR (Huang and Lee, 1991; Digalakis et al.,
1995; Wilpon et al., 1996). Different sources of acoustic variations
are anatomical characteristics such as vocal tract length, dimen-
sion of mouth, nasal cavities and speaking style (e.g. accent, dialect
and speaking rate). Variability can be reduced with speaker
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normalization or adaptation techniques. Vocal tract length nor-
malization (VTLN) (Lee and Rose, 1996; Wegmann et al., 1996;
Eide and Gish, 1996; Welling et al., 1999; Uebel and Woodland,
1999) and maximum likelihood linear regression (MLLR) (Legget-
ter and Woodland, 1995; Gales et al., 1996a) are two conven-
tional techniques which are capable to reduce variability, and
also reduce word error rate (WER). There are numerous studies
have been done on vocal aging, but there are limited number of
experiment has been reported about effect of aging on ASR. In
(Vipperla et al., 2010; Giuliani et al., 2006), comparison of speech
recognition performance of different age groups with VTLN and
MLLR techniques have been reported. In (Huda et al., 2009b,a),
modification of expectation maximization algorithm has been
reported.

Bengali is one of most widely spoken languages in the world
with about 230 million speakers across the globe. Although most
predominantly spoken in south-east Asia. It ranks 6th1 in the list
of most commonly spoken languages. In this paper, we will analyze
the effect of aging on Bengali phoneme recognition with a large
vocabulary corpus of aging Bengali speech. Corpus of elderly people
is illustrated in Section 2. Furthermore, we have analyzed word rec-
ognition accuracy of different acoustic models. Number of normali-
zation and adaptation techniques are employed to compensate
mismatch between training and testing data and improve the recog-
nition accuracy. We have proposed a hybrid adaptation method
(Combination of VTLN, LDA, MLLR, MAP and MMIE) in the current
study. Proposed hybrid model improves recognition accuracy up to
10–12% in average than baseline ASR system.
2. Bengali speech corpus used in our study

Two Bengali speech corpora are used in this study. One of these
corpora consists of speech samples of young speakers, and is
marked as BENG_YO. Another corpora is consist of speech signal
of aged population, and is referred as BENG_OL. We have used
same set of text corpora for building both speech corpora. Bengali
speech corpus design has been reported in (Das et al., 2011)
previously.

In BENG_OL corpus, we have recorded speech signal from 40
male and 20 female aged speakers having age 60–80 years. Speech
data collection from elderly people is a challenging task because
older people are unable to record speech for long sessions. Further-
more, most of the aged people do not feel excited to record their
voice. Speakers who are suffering from low vision face difficulty
to read the text. We have enlarge the font of the text sufficiently
so that elderly people can read without difficulty. As voice quality
changes in different session of a single speaker due to different
mental and physical states, speech data has been recorded in two
sessions. All the recording has been done at room environment.
Mother tongue of all speakers is Bengali.

We have selected 7500 text sentences for recording. These are
sourced from the Bengali News daily Anandabazar patrika and
Bengali literature. Sentences are selected with optimal text selec-
tion procedure, where a process of balanced phoneme and tri-
phone selection in the text corpus is adopted (Mandal et al.,
2011). Optimal text selection aims to keep balance in frequency
of each phone in the text corpus. Each sentence is recorded with
sample frequency 16000 Hz in mono channel. Speech signals are
encoded with 16 bit Pulse Code Modulation. Sony FV-220 micro-
phone and Emu speech tool has been used for speech recording.
We have maintained 15 cm distance from mouth to microphone
for each speakers at the time of voice recording. Each speaker
1 ‘Bengali language’. http://en.wikipedia.org/wiki/Bengali_language.
has recorded almost 200 sentences. There are 19500 words in
the phonetic dictionary. Total duration of BENG_OL corpus is
12 h. According to place of articulation and manner of articula-
tion, 42 unique phoneme have been considered in this corpus.
The Bengali phonetic dictionary has been created initially with
grapheme to phoneme conversion procedure on the words. Final-
ly, the dictionary is corrected manually according to pronuncia-
tion variation.

BENG_YO corpus of younger adults is created using the same set
of sentences. BENG_YO corpus consists of 60 male and 30 female
speakers. Speech recording configurations are same as stated
above. Young speakers are considered with age between 20 and
40 years. Although, we have selected 60 speakers (40 male and
20 female) from 90 speakers to balance with speech corpus of el-
derly in this experiment. This corpus has been used for compara-
tive purpose. Total duration of BENG_YO corpus is 21 h.

In test data set, there are five male and five female speakers of
both age groups. Average age of elderly test speakers is 72 and
young speakers is 26. Each speaker has recorded 20 sentences. That
are phonetically well balanced. Speakers in test data set are not be-
long to training set.
3. Acoustic speaker adaptation techniques

Speaker adaptive acoustic model reduces variability among dif-
ferent speakers. A number of physiological and anatomical charac-
teristics of our auditory system are the source of spectral variation
e.g. vocal tract length differs from speaker to speaker, speaker’s
age.

Normalization and adaptation can be categorized into two cat-
egories. First one is responsible for feature vector normalization
and transformation. Cepstral mean normalization, cepstral vari-
ance normalization, linear discriminant analysis and maximum
likelihood linear transformation are examples of feature space nor-
malization and transformation techniques. Second one is related to
model space transformation techniques such as vocal tract length
normalization (VTLN), maximum-a posteriori (MAP) and maxi-
mum likelihood linear regression (MLLR).
3.1. Cepstral mean and variance normalization

Cepstral mean and variance normalization is performed on sta-
tic feature (Liu et al., 1993). It is applied at the time of mel fre-
quency cepstral coefficient computation from speech signal. It
forces feature vectors to be zero mean and unit variance. These
methods reduce the speaker-to-speaker acoustic variation, and
additive noise induced from channel and environment.
3.2. Linear discriminant analysis (LDA)

Linear discriminant analysis (LDA) (Haeb-Umbach and Ney,
1992) is the statistical technique used for maximizing separability
among different classes. LDA method try to find out linear transfor-
mation of feature vector from n-dimensional to m-dimensional
(m < n) so that inter class statistical distance increases. The implicit
assumption is that the rejected sub-vector does not carry any clas-
sification information. For Gaussian models, this assumption is
equivalent to the assumption that the means and variances of
the class distributions are the same for all classes, in the rejected
subspace. Furthermore, LDA assumes that the within-class vari-
ances are equal for all the classes. It is applied at the time of con-
text independent model parameter optimization. As it reduces
feature vector length, decoding process performs faster than with-
out LDA.

http://en.wikipedia.org/wiki/Bengali_language
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3.3. Maximum likelihood linear transform

Maximum likelihood linear transform (MLLT) can also be em-
ployed for the purpose of feature decorrelation (Gopinath, 1998).
Under this approach, MLLT applies a linear transform to the acous-
tic features in an attempt to capture the correlation between the
feature vector components. MLLT is applied on top of LDA feature
vectors. MLLT is also computed from context independent HMM
models using training data. It does not require any extra adapta-
tion data. Transformations and model parameters are optimized
simultaneously by maximum likelihood criteria on training data.
Transformation matrix W is estimated by maximizing the auxiliary
function below:

QðM;M̂Þ ¼ K �1
2

XJ

s¼1

XT

t¼1

csðtÞ Ks þ logðjRsjÞ þ ðot � l̂sÞR̂�1
s ðot � l̂sÞ

T
h i

ð1Þ

where l̂s ¼Wls þ b and R̂s ¼WsRsW
T
s are transformed mean vec-

tor and covariance matrix respectively. M and M̂ are current model
parameters and re-estimated model parameters respectively. K is
the constant dependent only on transition probabilities, and Ks is
the normalization constant associated with Gaussian s. ot is the
training data. csðtÞ is the probability of being in state s at time t.
Moreover, transformation matrix W will be applied to the context
dependent training process for adapting model parameters. Fur-
thermore the transcription matrix W will be applied for decoding
process to adapt the test data. MLLT is a speaker independent adap-
tation method.

3.4. Maximum a posteriori (MAP)

Maximum a posteriori estimation (Gauvain and Lee, 1992; Lee
and Gauvain, 1993) is an way to incorporate prior information in
the training process. Maximum likelihood (ML) estimation ap-
proach gives inaccurate estimate of model parameters for sparse
training data. Baum–Welch re-estimation produces ML estimation
of model parameters k as

kML ¼ argmaxkPðOjkÞ ð2Þ

where PðOjkÞ is the likelihood estimation function. In MAP training,
it produces maximum-a posteriori estimation as

kMAP ¼ argmaxkPðOjkÞPðkÞ ð3Þ

where Pðk) is the prior probability information. For speaker adapta-
tion, Pðk) is derived from the speaker independent model.

3.5. Vocal tract length normalization (VTLN)

VTLN is a frequency warping method of the frequency axis of
power spectrum (Lee and Rose, 1996; Wegmann et al., 1996; Eide
and Gish, 1996). It is important to estimate perfect frequency scal-
ing factor for each speaker or each utterances. Frequency axis is
compressed or stretched for individual speaker with a scaling fac-
tor a. The conventional method to estimate scaling factor is the
grid search method, where scaling factor is selected from discrete
set of scaling factor which will increase likelihood of warped data
given a set of acoustic model. Vocal tract length normalization is
applied for both training and test data. In this work, we have se-
lected a inverse linear frequency warping method which will adapt
frequency axis of male-filter bank. We have used context indepen-
dent HMM model for finding out best warping factor for each spo-
ken sentence. Initial warping factor is chosen 0.8 which will
incremented by 0.05 at each training steps, and will stop at 1.2.
It will only consider those warping factor which are applied to nor-
malize the feature vector, and yield maximum likelihood
â ¼ argmaxa PðOajW ; kÞ
� �

ð4Þ

where â is the optimal scaling factor and Oa is observation se-
quences obtained by applying scaling factor a. W is the uttered
words. At the time of training, observation feature vectors of each
utterances rather than each speaker are normalized with set of scal-
ing factor. Select an optimal warping factor for each utterance,
according to Eq. (4). Then, optimally normalized utterances are
stored for further training.

Decoding procedure promotes the normalized model parame-
ters for recognizing the unwarped test data. Phoneme or word
hypotheses, generated from recognition are applied with normal-
ized model parameters to select optimal warping factor of test data
according to Eq. (4). Finally, optimally normalized feature vectors
are promoted to recognition process.

3.6. Maximum likelihood linear regression (MLLR)

A baseline acoustic model is necessary for the maximum likeli-
hood linear regression speaker adaptation technique (Leggetter
and Woodland, 1995; Gales et al., 1996a). Baseline acoustic model
is then adapted with some adaptive training data. Only the mean
vectors of each Gaussian mixture model are considered to adapt
in this work. In general, training data are assumed as parameter-
ized speech frame vector (o1; o2; . . . ; ot). Adaptation of mean vector
has been done with transformation matrix Wj and extended mean
vector fj, as

l̂j ¼ Alj þ b ¼Wjfj ð5Þ

where extended mean fj is represented as [x l1; . . . ;ln�
T (x = 1 to

include offset). Wj is the regression matrix which will maximize
likelihood of the adaptation data. This regression matrix is itera-
tively estimated by forward–backward algorithm in such a way to
maximize likelihood of adaptation data. Once Wj is created, it will
also be employed for the recognition of the test data. In this process
only transformation matrix Wj is to be re-estimated iteratively
which can be achieved through an auxiliary function as

QðM; M̂Þ ¼ K � 1
2

PðOjMÞ
XJ

s¼1

XT

t¼1

csðtÞ Ks þ logjRsj þ ot �WT
s fs

� �h

� R�1
s ot �WT

s fs

� �T
�

ð6Þ

where M and M̂ are current model parameters and re-estimated
model parameters respectively, and csðtÞ is the probability of being
in state s at time t. PðOjMÞ is the likelihood of the training data.

Equating the derivatives of Q (M,M̂) with respect to Wj, and
equating to zero will yield maximum value of Q (M,M̂). The general
form to compute Wj is given by

XT

t¼1

cjðtÞR
�1
j otf

T
j ¼

XT

t¼1

cjðtÞR
�1
j WT

j fjf
T
j ð7Þ

where cjðtÞ is the conditional probability of mixture component j at
time t and R�1

j is also a diagonal standard deviation matrix of mix-
ture component j. fj is the extended mean. Above auxiliary function
ensure the maximum likelihood estimation of adaptation data.

From Eq. (7), computation of Wj will be computationally expen-
sive for full co-variance matrix. Computation overload can be re-
duced considering diagonal covariance matrix (Leggetter and
Woodland, 1995; Gales et al., 1996b). Multiple iteration of MLLR
performs well at the time of decoding. In this work, we have imple-
mented multiclass regression matrix for better performance. Mul-
tiple regression class matrix can outperform single class regression
matrix method. In multiclass regression method, it is required to
tie transformation matrices across number of Gaussians. For this
reason, number of Gaussians are grouped together using regression
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class tree. In these process, number of Gaussian component will
share statistically similar group or class. It is an important decision
making method because depending on this method one good
regression class will be constructed. Gaussian component of same
acoustic phenomena will be transformed with a specified regres-
sion matrix.
4. Maximum mutual information estimation (MMIE)

Maximum mutual information estimation (MMIE) (Valtchev
et al., 1997) is a discriminative training approach. MMIE is an alter-
native method of maximum likelihood estimation (MLE) to re-esti-
mate the HMM model parameters. MMIE is computationally very
much complex and time consuming than MLE method. In case of
MLE, posterior probability maximization is the only aim with pro-
vided training data. Model parameters of other classes do not in-
volved in this parameter re-estimation. MMIE attempts to
maximize the posterior probability with corresponding training
data. Let there are T observation sequence O1;O2; . . . ;OT and corre-
sponding word transcription is Wt . Then, MMIE objective function
will be of the form:

FðkÞ ¼
XT

t¼1

log
PkðOtjlWt

ÞPðWtÞX
w

PkðOt jlW ÞPðWÞ
ð8Þ

lW is the composite model according to word sequence W and PðWÞ
is the probability of those sequence determined by language model.
So, it can be assumed as two stage optimization problem. In the first
stage, HMM model parameters are adapted to increase the numer-
ator function. Denominator term is responsible for minimizing its
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Table 1
Phoneme recognition accuracy (%) (standard deviation) of different acoustic models with

Models AM1 AM4 AM6 AM8 AM2 A

YO_AMs 51.8 (12.2) 52.7 (12.1) 52.9 (12.2) 53.5 (11.8) 53.5 (12.7) 5
OL_AMs 72.6 (11.6) 73.7 (11.7) 73.7 (11.6) 75.5 (8.2) 76.5 (10.6) 7
MIX_AMs 59.5 (18.6) 61.2 (18.9) 62.4 (17.9) 63.9 (17.8) 65.6 (16.2) 6
value so that overall likelihood can be maximized. Parameter
re-estimation methods has been beautifully described in (Valtchev
et al., 1997; Bahl et al., 1986; Normandin et al., 1991). We have
implemented the lattice based maximum mutual information
(MMI) training method where phone and word based lattices are
created with HMM model parameters and unigram language model
for phoneme and word recognition respectively. In this process, lat-
tices produces all likely hypothesis of a training utterances instead
of looking for single likely transcription.
5. Results and discussion: speech recognition

In this work, CMU SPHINX speech recognition toolkit (Lee et al.,
1990) has been employed for Bengali speech recognition system.
There are three basic module in speech recognition process e.g. fea-
ture extraction, acoustic modeling and language modeling.

We have used 39 dimensional mel frequency cepstral coeffi-
cients (MFCC) Molau et al., 2001 feature as input to the acoustic
modeling.

Trigram language model of phoneme and words are applied for
phoneme and word recognition using triphone acoustic model.
CMUCLTK toolkit has been used for building those trigram lan-
guage models.

Fig. 1 presents a schematic of various speaker adaptation tech-
niques employed in our study. Baseline acoustic model parameters
are estimated by maximum likelihood (ML) criteria. Speaker nor-
malization and adaptation techniques are explored to the current
study for better recognition performance. Vocal tract length nor-
malization (VTLN), linear discriminative analysis (LDA), maximum
likelihood linear transformation (MLLT), maximum likelihood lin-
TION

VTLN

        CD TRAINING

GNINIARTDCNLTV
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          SPLITING

AM6

AM8
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RECURSIVE GAUSSIAN
          SPLITING

MMIE (AMLV)

MLLR

MAP

AM7AM4

echniques in the acoustic models (AM).

test data of aged people.

M5 AM9 AMLM AMLV AM3 AM7

4.2 (12.6) 55.8 (11.2) 61.2 (11.2) 62.3 (11.3) 63.9 (11.1) 64.4 (11)
8.7 (10.8) 79.8 (10.2) 79.2 (10.1) 80.1 (10) 82.8 (9.5) 83.1 (8)
8.9 (16.4) 69.4 (15.1) 70.3 (15.4) 72.2 (15.2) 73.8 (15.3) 75.3 (15)
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ear regression (MLLR), maximum a posteriori (MAP) and maximum
mutual information estimation (MMIE) are applied alone as well as
in combination for both age group to compare recognition perfor-
mance of aged. Combination of adapted acoustic models men-
tioned in Fig. 1 will be described as follows:

� AM1: AM1 is the baseline system. Its model parameters are
estimated through a sequential process. At first, context inde-
pendent (monophone) HMM model (CIHMMs) parameters are
estimated by means of forward–backward algorithm by
employing unnormalized training data. We have considered
10 iterations for each stage of model parameter estimation.
Then, untied context dependent (triphone) HMM models
(CDHMMs) are trained on CIHMMs. A phonetic decision tree
built on linguistic questions is used for state tying across differ-
ent CDHMMs. Finally, the AM1 is obtained by dividing single
Gaussian mixture component into eight mixture components
by iterative Gaussian splitting method.
� AM2: In acoustic model AM2, we have adapted the AM1 by

MLLR and MAP subsequently. Multiple class linear regression
matrix is estimated by MLLR technique using adaptation data
of a particular speaker. Moreover, model parameters are
adapted by MAP adaptation method.
� AM3: It has been achieved after applying MLLR and MAP on

maximum mutual information training using adaptation data.
� AM4: This acoustic model is extended from CIHMMs. At first, 29

dimensional optimal MFCC features are extracted from 39
dimensional feature vector by means of LDA. After that speaker
independent transformation matrix is optimized by MLLT tech-
nique. Rest of the processes are creation of CDHMMs and Gauss-
ian mixture component splitting applying transformation
matrix. Same transformation matrix is used at the time of
decoding process.
� AM5: In AM5, model parameters of AM4 are adapted by MLLR

and MAP techniques as mentioned in AM2 using adaptation
data.
� AMLM: In this acoustic model, we have applied MMIE training

approach after obtaining acoustic model AM4. At first, phone
lattices and word lattices are generated using decoder for phone
and word recognition respectively. We have considered uni-
Fig. 2. Distribution of warp factor
gram phone and word label language model for phone and word
lattice generation respectively. Then, pruning of that lattices are
conducted by beam pruning method. Finally, model parameters
are re-estimated by Baum–Welch algorithm.
� AM6: It is the speaker normalized acoustic model. It has been

achieved after applying VTLN technique on CIHMMs.
� AM8: In this AM, we have applied VTLN after speaker LDA and

MLLT techniques.
� AM9: We have obtained this AM after applying MLLR and MAP

on AM6 using adaptation data.
� AMLV: We have implemented MMIE training on AM8. Proce-

dures are same as discussed in acoustic model AMLM.
� AM7: Acoustic model, AMLV is then adapted with MLLR and

MAP subsequently using adaptation data.

In the decoding process, unnormalized, normalized feature and
different adapted AMs are exploited for analyzing phoneme and
word recognition performance. Test utterances are adapted and/
or normalized by transformation matrix, linear regression matrix
and VTLN respectively according to various AMs.

5.1. Phoneme recognition with triphone acoustic models

In our pronunciation pattern, current phone is influenced with
its left and right phone. In context dependent acoustic model,
every triphone is constructed as root phone and its immediate left
and right phone like =A�mþ i=. We have created triphone acous-
tic model exploiting monophone acoustic models of three different
training data. There are three baseline acoustic model, and rest of
the triphone models are representative of different adaptive and
normalized model. CDHMM models are represented with five state
and each state is considered as eight Gaussian mixture compo-
nents. The results are discussed in the following sections.

5.1.1. Linear discriminative analysis and maximum likelihood linear
transform

LDA is applied at the initial stage of training. It selects informa-
tive 29 feature entities out of 39 to increase inter-class separability.
Moreover, MLLT matrix is estimated through an iterative process
using LDA features. MLLT matrix is created on context independent
of young and aged speakers.



Table 2
Confusion matrix of significant vowels and consonants obtained from baseline acoustic model (AM1).

Actual Predicted

A a i o u b j t k n p r T

^A 15.26 10.53 – – – – – – – – – –
a – 79.5 – 11.5 – – – – – – – –
E 13.16 – – – – – – – – – – –
e – – 5.74 – – – – – – – – –
u – – – 9.02 – – – – – – – –
^o – – – 16.67 – – – – – – – –
^u – – – – 33.33 – – – – – – –
bh – – – – – 14.29 – – – –
ch – – – – – 7.21 8.93
dh – – – – – 3.85 7.69 7.69
jh – – – – – – 33.3 – – – – – –
kh – – – – – – – – 15.69 – – – –
m – – – – – 2.48 – – – 6.67 – – –
p – – – – – 10.26 – 5.13 – – – – –
ph – – – – – 20 – – – 14.29 14.29 – 14.29
R – – – – – – – – – 5.66 – 24.53 –
T – – – – – – – 13.21 4.08 – – 7.55 –
Th – – – – – – – 13.04 8.70 – – – 13.04
th – – – – – – – 15.64 – – – – –

Table 3
Confusion matrix of significant vowels and consonants obtained from best AMLV acoustic model.

Actual Predicted

A a i o u b j t k n p r th T

^A 5.26 5.26 – – – – – – – – – – –
a – 84.06 – 8.21 – – – – – – – – –
E 11.11 – – – – – – – – – – – –
e – – 4.08 – – – – – – – – – –
u – – – 5.14 – – – – – – – – –
^o – – – 16.67 – – – – – – – – –
^u – – – – 25 – – – – – – – –
bh – – – – – 8.29 – – – – – – – –
ch – – – – – – 5.45 9.09 – – – – – –
dh – – – – – – – 10.71 – – 3.57 – – –
jh – – – – – – 33.3 – – – – – – –
kh – – – – – – – 2.17 4.69 – – – – –
m – – – – – 2.38 – – – 5.75 – – – –
p – – – – – 9.64 – 3.61 – – – – – –
ph – – – – – – – – – – 20 – – –
R – – – – – – – – – 3.57 – 19.64 – –
T – – – – – – – 10.21 – – – – – –
Th – – – – – – – 4.35 8.70 – – – 8.70 –
th – – – – – – – 9.68 – – – – – –
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acoustic model, and it has been used in the subsequent training
process. We have used SCTK toolkit2 for recognition scoring in this
experiment.

In Table 1, We have presented phoneme recognition statistics of
baseline and AM3 (combination of LDA and MLLT) triphone acous-
tic model. It is obvious from Table 1 that combination of LDA and
MLLT techniques improve recognition accuracy by 1–2% in aver-
age. Combination of LDA and MLLT techniques make decoding pro-
cess faster. To improve the recognition accuracy further, VTLN has
been applied with LDA and MLLT in the next section.

5.1.2. Vocal tract length normalization
VTLN will normalize our vocal tract length which also reduce

mismatch in acoustic signal. VTLN has been applied alone for
speaker normalization is marked as AM6. Moreover, We have ap-
plied VTLN with LDA and MLLT in acoustic model AM8 to get fur-
2 ‘Speech recognition scoring toolkit’. http://www1.icsi.berkeley.edu/Speech/docs/
sctk-1.2/sclite.htm.
ther improvement. Warp factor a > 1 means compressing the
spectrum and a < 1 means stretching the spectrum. a ¼ 1 stands
for no warping. In VTLN, warp factors are selected from discrete
values of range 0.8 to 1.2 with step increment 0.05. In Fig. 2, distri-
bution of warp factors of range 0.75–1.2 of young and aged speak-
ers are provided. It has been observed from Fig. 2 that Most of the
young speakers are normalized with lower warp factor (a ¼ 1:2)
whereas most of the aged speakers are also normalized with warp
factor a ¼ 1:2.

It has been observed in Table 1 that phoneme recognition accu-
racy is better for acoustic model of aged groups using test data of
aged population. We have provided phone recognition accuracy
obtained from all acoustic models. As our main aim of this study
is to create better recognition for elderly people, we have concen-
trated more on acoustic model of aged.

In Table 1, phoneme recognition performance achieved from
acoustic model AM6 and combined acoustic model AM8 has been
provided. Phoneme recognition accuracy improves more by AM8
acoustic model than AM6.

http://www1.icsi.berkeley.edu/Speech/docs/sctk-1.2/sclite.htm
http://www1.icsi.berkeley.edu/Speech/docs/sctk-1.2/sclite.htm
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5.1.3. Maximum likelihood linear regression and maximum a
posteriori

In theory, MAP and MLLR are equivalent if each Gaussian is as-
signed to a single regression class. In practice, it does not happen.
There is always an additive effect on ASR performance if those
techniques are combined. To do so, first MLLR transformation ma-
Fig. 3. Phoneme recognition accuracy (%) employing AM1

Table 4
Word recognition accuracy (standard deviation) of baseline and other normalized and ada

AM1 AM6 AM2

Young_OT 54.6 (24.1) 56.9 (23.4) 57.1 (24.4)
Old_OT 70.6 (12.2) 71.8 (12.1) 74.2 (13.4)
Mixed_OT 60.7 (15.6) 62.3 (15.8) 63.9 (15.2)
Young_YT 80.6 (12.1) 81.9 (10.4) 82.3 (10.1)
trix is derived from the speaker specific adaptation data. Then,
transformation matrix is applied to baseline mean. After that mod-
el parameters are re-estimated with transformed mean. At last,
MAP adaptation is applied to new model parameter set to produce
adapted acoustic model parameters. We have applied those two
adaptation techniques to the acoustic model, trained on BENG_YO,
and AMLV acoustic model and test sample of aged.

pted acoustic model with test data of aged people (OT) and young people (YT).

AMLM AMLV AM3 AM7

62.2 (24.7) 63.2 (24.1) 64.2 (24.5) 64.8 (22.6)
77.5 (11.4) 78.1 (11.4) 79.6 (11.4) 81.8 (11.6)
70.6 (15) 73.3 (15.1) 74.2 (14.6) 74.8 (14.9)
87.8 (9.8) 88.9 (9.2) 89.2 (8.8) 90.3 (8.5)
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BENG_OL and BENG_MIX corpus. MLLR and MAP adapted acoustic
model of elderly performs better than baseline system of aged.
Here, we have combined VTLN with MLLR and MAP for aiming bet-
ter accuracy.

We have achieved phoneme accuracy 79.8% in average using
combination of [VTLN + MLLR + MAP] whereas baseline system of
aged people yield phoneme recognition accuracy 72.6%. Tau is
the prior weight, a control parameter in the MAP adaptation. Opti-
mum ASR accuracy has been achieved at tau value near by 12800.

We have also employed VTLN, MLLR and MAP on baseline
acoustic model of combined age group. ASR performance of mixed
acoustic model adapted with combined MAP and MLLR is experi-
mented. We have tried to fix the value of tau which will provide
better ASR accuracy as well as less standard deviation (S.D.).

Adaptation on acoustic model of BENG_YO does not provide sat-
isfactory accuracy for test data of aged population with respect to
adapted acoustic model of aged population. We have calculated
accuracy of all baseline and adaptive acoustic model. Here, pho-
neme recognition result achieved by adapted acoustic model of
aged population is provided in Table 1.

5.1.4. Maximum mutual information estimation
We have combined LDA, MLLT, VTLN, MLLR, MAP and MMIE

techniques as mentioned in Fig. 1 to obtain acoustic model AMLM,
AM3, AMLV and AM7. It has been observed from recognition re-
sults that MMI based acoustic model performs better for aged pop-
ulation than the other methods. In Table 1, we have provided
phoneme recognition accuracy of MMIE model (AMLM) and other
speaker adaptive model AMLV, AM3 and AM7. Though MMIE con-
sumes huge amount of time at the time of training, it performs
good once acoustic model created.

5.1.5. Overall improvement in accuracy: phone recognition
We will now discuss about the confused phone in baseline and

final adaptive system. Confusion matrix of baseline and adaptive
system represents amount of confusion by percentage of a phone
with other phoneme. Here, most significant phoneme according
to confusion will be discussed. From Tables 2 and 3, it can be ob-
served that nasal vowels are confused with its base vowels like
=^A=) =A=, =^o=) =o=, and =^u=) =u=. Final speaker adaptive
model can reduce the amount of confusion for =^A= and =^u= but
not for =^o=. Inspite of nasal vowels, =E= has a tendency to be con-
fused with =A=, and =a=, =u= are confused with vowel =o=.

There are some consonants also have tendency to be confused
with other consonants e.g. =bh=) =b=, =ch=) =j=, =jh=) =j=,
=kh=) =k=, =ch=) =j=, =p=) =b=, =T=) =t=, and =th=) =t=. In
Tables 2 and 3, confusion matrix of some consonants are provided.

Phoneme recognition results are organized according to place of
articulation. In Fig. 3, recognition pattern of vowels, labial, dental,
retrophlex, palato-alveolar, and glottal phoneme are provided for
overall realization of phoneme recognition. It can be figured out
that labial, retroplex and dental phoneme are affected more than
other groups with aging. However, improvement of accuracy has
been achieved by combination of LDA, MLLT, VTLN and MMIE
based acoustic model.

We can conclude from Fig. 3 that recognition accuracy of vowel
=E=, =^u= and =^A= are lower than other vowels. Although recogni-
tion accuracy improves by exploiting speaker adapted model.
However, lower accuracy rate of those three vowels have correla-
tion with aging. Jaw and tongue movement is important to pro-
nounce those vowels. Recognition result shows recognition
accuracy of dental phone =dh= and =t= are affected more with aging
according to recognition accuracy. Although adapted model in-
crease the accuracy of those phoneme. All the labial phoneme
shows lower recognition accuracy. However, only =m= is recog-
nized with better accuracy than other labial phoneme. AMLV
acoustic model improves recognition accuracy of =ph=, =b= and
=bh= by 10–12% in average. Inspite of =gh=, all velar phoneme pro-
vide better recognition accuracy (80% in average) as shown in
Fig. 3. Recognition performance of retroplex phoneme (e.g. =T=,
=Th= and =D=) are affected more with aging. Although palato-alve-
olar phoneme (e.g. =chh=, =j=) and glottal phone =h= are recognized
quite well whereas =ch= and =jh= are affected by means of
accuracy.
5.1.6. Word recognition
Word recognition is the final goal of our study. As word recog-

nition is directly related to phoneme recognition, we have dis-
cussed it in earlier section. Words are constructed with affected
phoneme yield poor recognition rate. We only describe here the
word recognition accuracy of different acoustic model with test
data of aged population. However, among several methods has
been investigated in this study, adaptation techniques combined
with MMIE performs better than other methods. Acoustic model
of mixed training data performs better than AM of BENG_YO but
lagging faraway from performance of acoustic model of aged.

We have used Mann–Whitney–Wilcoxon (MWW) (Mann and
Whitney, 1947) non parametric unpaired test for measuring statis-
tical significance. Improvement of word recognition accuracy ob-
tained from AM7 is statistically significant at P value 0.0001 with
respect to AM1. It also has been observed that results obtained
from AM2 is statistically significant at P value 0.05.

Table 4 shows, word recognition accuracy exploiting test sam-
ple of young age group on different acoustic models of young.
We have achieved word recognition accuracy 90.3% on test data
of young age group by acoustic model AM7 which is statistically
significant with respect to AM1 at P value 0.0001. Although AM7
provides better accuracy, it is a speaker specific model. It only per-
forms better for a particular speaker who has been adapted to the
model by means of MLLR and MAP subsequently. Acoustic model
AM7 require training samples from respective speaker to adapt
the model. It is always an costly task. AMLV can outperform all
other acoustic model in speaker independent adaptation methods.
In AMLV, test samples are normalized first by VTLN approach, and
then transformation matrix obtained from MLLT is applied to
Gaussian parameters for speaker adaptation.
6. Conclusion

In this paper, speaker adaptive acoustic models has been devel-
oped with the aim of improving speech recognition accuracy of
aged population. Recognition experiments has been carried out
with two different test set made of same sentences recorded with
Adults (20–40 years of age) and aged (60–80 years of age). Trigram
language model has also been applied with the acoustic model to
incorporate linguistic information.

In the speaker adaptive acoustic modeling, different methods
has been experimented such as VTLN, LDA, MLLT, MLLR and
MAP. There is a baseline system which is developed with maxi-
mum likelihood estimation algorithm. Furthermore, different com-
bination of adaptation techniques e.g. [VTLN + LDA + MLLT],
[MAP + MLLR], MMIE and [VTLN + LDA + MLLT + MMIE] are imple-
mented in this study. All these techniques are implemented first on
baseline acoustic model of young population and then on aged
population. It has been observed that adapted or normalized
acoustic model of young group improves the performance with re-
spect to baseline system (AM1) but does not fulfill the desired
accuracy. This motivate us to build up the adapted acoustic model
of aged group. In every adaptation technique, speech recognition
accuracy improves with respect to baseline system. However, best
recognition result is obtained with speaker specific adapted acous-
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tic model AM7. AM7 performs well only for specific speaker. We
have used AMLV, a speaker independent adapted model to over-
come specified restriction in AM7.

According to phoneme recognition of test sample of aged popu-
lation, it can be conclude that dental, labial, retroplex consonants
are affected much with aging. Phoneme recognition results have
shown an important observation about nasal and fricative pho-
neme. Nasal and fricative phoneme are not affected much with
aging.
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