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Abstract

The problem of scarcity of labeled pixels, required for segmentation of remotely sensed satellite images in supervised

pixel classification framework, is addressed in this article. A support vector machine (SVM) is considered for classifying

the pixels into different landcover types. It is initially designed using a small set of labeled points, and subsequently

refined by actively querying for the labels of pixels from a pool of unlabeled data. The label of the most interesting/

ambiguous unlabeled point is queried at each step. Here, active learning is exploited to minimize the number of labeled

data used by the SVM classifier by several orders. These features are demonstrated on an IRS-1A four band multi-

spectral image. Comparison with related methods is made in terms of number of data points used, computational time

and a cluster quality measure.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Segmentation is a process of partitioning an

image space into some nonoverlapping meaningful

homogeneous regions. The success of an image

analysis system depends on the quality of seg-

mentation. Two broad approaches to segmenta-

tion of remotely sensed images are gray level
thresholding and pixel classification (Richards,
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1993). In thresholding (Pal et al., 2000) one tries to

get a set of thresholds fT1; T2; . . . ; Tkg such that all

pixels with grey values in the range ½Ti; Tiþ1Þ con-

stitute the ith region type. On the other hand in

pixel classification, homogeneous regions are

determined by clustering the feature space of

multiple image bands. Multispectral nature of

most remote sensing images make pixel classifica-
tion the natural choice for segmentation.

In the unsupervised pixel classification frame-

work, several clustering algorithms like split-and-

merge (Laprade, 1988), fuzzy k-means (Pal et al.,

2000; Cannon et al., 1986), neural networks based

methods (Baraldi and Parmiggiani, 1995), scale

space techniques (Wong and Posner, 1993) and

statistical methods have been used for the purpose
ed.
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of segmentation. Statistical methods are widely

used in unsupervised pixel classification framework

because of their capability of handling uncertain-

ties arising from both measurement error and the

presence of mixed pixels which have certain degree

of membership to more than one class. A general
method of statistical clustering is by means of the

expectation maximization (EM) algorithm

(Dempster et al., 1977) and its variants (Pal and

Mitra, 2002). However, the unsupervised pixel

classification methods have many limitations. The

number of clusters are often unknown, which re-

sults in region merging/splitting and also hinders

the interpretation of the segmented images. Also,
unsupervised methods mostly generate convex

clusters, which leads to degradation in segmenta-

tion quality.

The aforesaid difficulties do not arise in super-

vised pixel classification, and several methods

based on neural networks, genetic algorithms

(Bandyopadhyay and Pal, 2001) has been devel-

oped in this framework. Recently, support vector
machines are becoming popular for classification

of multispectral remote sensing images (Brown

et al., 2000; Huang et al., 2002).

The primary problem in supervised pixel clas-

sification is the pure availability of labeled data,

which can be obtained only from ground truths

and by costly manual labeling. Recently, active

learning has become a popular paradigm for
reducing the data requirement of large scale

learning tasks (Angluin, 1988; Cohn et al., 1994).

Here, instead of learning from ‘random samples’,

the learner has the ability to select its own training

data. This is done iteratively, and the output of a

step is used to select the examples for the next step.

Several active learning strategies exist in practice,

e.g., error driven techniques, uncertainty sampling,
version space reduction and adaptive resampling.

Support vector machines (SVM) are particu-

larly suited for active learning since a SVM clas-

sifier is characterized by a small set of support

vectors (SVs) which can be easily updated over

successive learning steps. One of the most efficient

active SVM learning strategy is to iteratively re-

quests the label of the data point closest to the
current separating hyperplane or which violates

the margin constraint maximally (Mitra et al.,
2000; Campbell et al., 2000). This accelerates the

learning drastically compared to random data

selection. The above technique is often referred to

as active/query SVM. Besides active SVM, another

active learning strategy based on version space

splitting is presented in (Tong and Koller, 2001).
The points which split the current version space

into two halves having equal volumes are selected

at each step, as they are likely to be the actual

support vectors. Three heuristics for approximat-

ing the above criterion are described, the simplest

among them selects the point closest to the current

hyperplane as in (Campbell et al., 2000). A greedy

optimal strategy for active SV learning is also de-
scribed in (Schohn and Cohn, 2000). Here, logistic

regression is used to compute the class probabili-

ties, which is further used to estimate the expected

error after adding an example. The example that

minimizes this error is selected as a candidate SV.

The present article describes a pixel classifica-

tion algorithm based on the query SVM algorithm.

A conventional SVM is initially designed using a
small set of points labeled manually. The SVM is

subsequently refined by actively querying for the

labels of pixels from a pool of unlabeled data. The

most interesting/ambiguous unlabeled point is

queried at each step and is labeled by an human

expert. It is seen that the above active learning

strategy reduces the number of labeled data used

by the SVM classifier by several orders compared
to conventional SVM, while providing comparable

segmentation quality. These features are demon-

strated on an IRS-1A four band image. Compar-

ison with related methods is made in terms of the

number of data points used, computational time

and a cluster quality measure.

The article is organized as follows: the funda-

mentals of support vector machines are briefly
mentioned in Section 2. The active SVM learning

algorithm for pixel classification is described in

Section 3. Experimental results are provided in

Section 4, followed by conclusions in Section 5.
2. Support vector machines

Support vector machines are a general class of

learning architecture inspired from statistical
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learning theory that performs structural risk mini-

mization on a nested set structure of separating

hyperplanes (Vapnik, 1998). Given a training data,

the SVM training algorithm obtains the optimal

separating hyperplane in terms of generalization

error.We describe below the SVMdesign algorithm
for a two class problem. Multiclass extensions can

be done by designing a number of one-against-all

on one-against-one two class SVMs.

Algorithm 1:

Suppose we are given a set of examples

ðx1; y1Þ; . . . ; ðxl; ylÞ, x 2 RN , yi 2 f�1;þ1g. We

consider functions of the form sgnððw 	 xÞ þ bÞ, in
addition we impose the condition

inf
i¼1;...;l

jðw 	 xiÞ þ bj ¼ 1: ð1Þ

We would like to find a decision function fw;b with
the properties fw;bðxiÞ ¼ yi; i ¼ 1; . . . ; l. If this

function exists, condition (1) implies

yiððw 	 xiÞ þ bÞP 1; i ¼ 1; . . . ; l: ð2Þ

In many practical situations, a separating hyper-

plane does not exist. To allow for possibilities of

violating Eq. (2), slack variables are introduced

like

ni P 0; i ¼ 1; . . . ; l; ð3Þ

to get

yiððw 	 xiÞ þ bÞP 1� ni; i ¼ 1; . . . ; l: ð4Þ

The support vector approach for minimizing the

generalization error consists of the following:

Minimize: Uðw; nÞ ¼ ðw 	 wÞ þ C
Xl

i¼1

ni; ð5Þ

subject to the constraints (3) and (4).

It can be shown that minimizing the first term in
Eq. (5), amounts to minimizing the VC-dimension,

and minimizing the second term corresponds to

minimizing the misclassification error (Burges,

1998). The above minimization problem can be

posed as a constrained quadratic programming

(QP) problem.

The solution gives rise to a decision function of

the form:
f ðxÞ ¼ sgn
Xl

i¼1

yiaiðx 	 xiÞ
"

þ b

#
:

Only a small fraction of the ai coefficients are

nonzero. The corresponding pairs of xi entries are

known as support vectors and they fully define the

decision function. The support vectors are geo-

metrically the points lying near the class bound-

aries.
The linear SVM was described above. However,

nonlinear kernels like polynomial, sigmoidal and

radial basis functions (RBF) may also be used.

Here, the decision function is of the form:

f ðxÞ ¼ sgn
Xl

i¼1

yiaijðx; xiÞ
"

þ b

#
:

where jðx; xiÞ is the corresponding nonlinear ker-

nel function. In remote sensing images, classes are

usually spherical shaped and the use of spherical

RBF kernel is most appropriate. RBF kernels are
of the form jðx1; x2Þ ¼ e�wjx1�x2j2 . Again, the

aforesaid two class SVM can easily be extended for

multiclass classification by designing a number of

one-against-all two class SVMs, e.g., a k-class
problem is handled with k two class SVMs.
3. Active support vector learning for pixel classifi-
cation

A limitation of the SVM design algorithm, de-

scribed above, is the need to solve a quadratic

programming (QP) problem involving a dense

l� l matrix, where l is the number of points in the

data set. Since most QP routines have quadratic

complexity, SVM design requires huge memory
and computational time for large data applica-

tions. Several approaches exist for circumventing

the above shortcomings as well as to minimize the

number of labeled points required to design the

classifier. Many of them exploit the fact that

the solution of the SVM problem remains the same

if one removes the points that correspond to zero

Lagrange multipliers of the QP problem (the
nonSV points). The large QP problem can thus be

broken down into a series of smaller QP problems,

whose ultimate goal is to identify all of the
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nonzero Lagrange multipliers (SVs) while dis-

carding the zero Lagrange multipliers (nonSVs).

At every step, one solves a QP problem that con-

sists of the nonzero Lagrange multiplier points

from the previous step, and a number of other

points queried. At the final step, the entire set of
nonzero Lagrange multipliers has been identified;

thereby solving the large QP problem. The active

SVM design algorithm used here for pixel classi-

fication is based on the aforesaid principle. At each

step the most informative point not belonging to

the current SV set is queried along with its label;

the goal is to minimize the total number of labeled

points used by the learning algorithm. The method
is described below and illustrated in Fig. 1. The

steps need to be repeated k times for a k class

problem with data from respective classes.

Algorithm 2:

Let x ¼ ½x1; x2; . . . ; xd  represent a pixel of a d-
band multispectral image. Here, xi is the grey value
of the ith band for pixel x. Let A ¼ fx1; x2; . . . ; xl1g
denote the set of pixels for which class labels are

known, and B ¼ fx1; x2; . . . ; xl2g the set of pixels

for which class labels are unknown. Usually,
Labeled Set A
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t
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Fig. 1. Block diagram of the active SVM lea
l2 � l1. SV ðCÞ denotes the set of support vectors

of the set C obtained using the methodology de-

scribed in Section 2. St ¼ fs1; s2; . . . ; smg is the

support vector set obtained after tth iteration, and

hwt; bti is the corresponding separating hypersur-

face. Qt is the point actively queried for at step t.
The learning steps involved are given below:

Initial step: set t ¼ 0 and S0 ¼ SVðAÞ. Let the

parameters of the corresponding RBF be hw0; b0i.

While Stopping criterion is not satisfied:

Qt ¼ fxjminx2B jðwt; xÞg þ b.
Request label of Qt.

St ¼ SVðSt [ QtÞ.
B ¼ B� Qt.

t ¼ t þ 1.

End while

The set ST , where T is the iteration at which the

algorithm terminates, contains the final SV set

representing the classifier.

Stopping criterion: minx2B jðwt 	 xÞ þ b > 1. In
other words, training is stopped when none of the

unlabeled points lie within the margin of the sep-

arating hypersurface.
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Table 1

Comparative results for the IRS-1A image

Method nlabeled ttraining (s) b

active

SVM

259 72.02+ (time for

labeling 54 pixels)

6.35

SVM 1 198 28.15 3.45

k-means 0 1054.10 2.54

SVM 2 26,214 2.44· 105 4.72
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4. Experimental results and comparison

The multispectral image data, used in our

experiment, contains observations of the Indian

Remote Sensing (IRS) satellite for the city of
Mumbai, India. The data contains images of four

spectral bands, namely blue, green, red and infra-

red. The images contain 512 · 512 pixels and each

pixel represents a 36.25 m · 36.25 m region.

Here the task is to segment the image into dif-

ferent landcover regions, using four features

(spectral bands). The image mainly consists of six

classes e.g., clear water (ponds), turbid water (sea),
concrete (buildings, roads, airport tarmacs), habi-

tation (concrete structures but less in density),

vegetation (crop, forest areas) and open spaces

(barren land, playgrounds). A labeled set (A)

containing 198 points is initially used.

4.1. Algorithms compared

The performance of the active support vector

learning algorithm (active SVM) is compared with

the following multispectral image segmentation

algorithms. Among them, methods SVM 1 and

SVM 2 represent extreme conditions on the use

of labeled samples. In SVM 1 the labeled set is

very small in size but the labels are accurate,

while in SVM 2 a large fraction of the entire
data constitutes the labeled set, but the labels may

be inaccurate. The k-means algorithm is a com-

pletely unsupervised scheme requiring no class

labels.

(i) SVM 1: the conventional support vector ma-

chine, using only the initial labeled set as the

entire design set.
(ii) k-means: the unsupervised k-means clustering

algorithm.

(iii) SVM 2: the conventional support vector ma-

chine, using 10% of the entire set of pixels as

the design set. The labels are supplied by the

output of the k-means algorithm.

4.2. Evaluation criterion

The image segmentation algorithms are com-

pared on the basis of the following quantities:
(i) Total number of labeled data points used in

training (nlabeled).
(ii) Training time (ttraining) on a Sun UltraSparc

350 MHz workstation.

(iii) Quantitative cluster quality index (b), b is de-
fined as (Pal et al., 2000)

b ¼
Pk

i¼1

Pni
j¼1 ðXij � �X ÞTðXij � �X ÞPk

i¼1

Pni
j¼1 ðXij � �XiÞTðXij � �XiÞ

; ð6Þ

where ni is the number of points in the ith
(i ¼ 1; . . . ; k) cluster, Xij is the feature vector

of the jth pattern (j ¼ 1; . . . ; ni) in cluster i, �Xi

the mean of ni patterns of the ith cluster, n is

the total number of patterns, and �X is the

mean value of the entire set of patterns.

Note that the above measure is nothing but the

ratio of the total variation and within-class varia-
tion. This type of measure is widely used for fea-

ture selection and cluster analysis (Richards, 1993;

Pal et al., 2000). For a given image and k (number

of clusters) value, the higher the homogeneity

within the segmented regions higher would be the

b-value.

4.3. Comparative results

The performances of different multispectral

image segmentation methods are presented in

Table 1. Among them, the proposed active SVM

learning algorithm provides the best segmentation

quality as measured by the b index. The SVM 1

algorithm provides the lowest b-value, which is

expected since it uses a very small number of
training samples. The unsupervised k-means algo-

rithm also provides much lower b-value compared

to the active SVM algorithm. The SVM 2 algo-

rithm uses the labels generated by the k-means
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algorithm, but provides a relatively small

improvement in performance compared to k-
means. The visual quality of the classified images

(Fig. 2) also reinforce these conclusion.

Among the supervised classification algorithms,

namely, active SVM, SVM 1 and SVM 2, SVM 1
uses the least number of labeled samples and has
Fig. 2. IRS-1A: (a) original band four image; classified image usin
minimum training time. However, the active SVM

algorithm uses only 54 additional labeled points

compared to SVM 1 with a substantial improve-

ment in segmentation quality. This is due to the

fact that the additional points queried by active

SVM were the most informative ones and con-
tributed to the increase in segmentation quality.
g (b) active SVM, (c) SVM 1, (d) k-means, and (e) SVM 2.
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On the other hand, SVM 2 uses a large sized la-

beled set, consisting of randomly chosen points,
for training. Since, accurate labels for the large

training set used were not available, slightly inac-

curate labels were used. The overall effect being:

the performance of the SVM 2 algorithm is poorer

compared to active SVM inspite of it requiring a

much higher computation time.

The variation in segmentation quality (as mea-

sured by b index) with the number of labeled
samples queried by the active SVM algorithm is

shown in Fig. 3. It is seen that the initial SVM

designed using the training set of SVM 1 provides

a b-value of 3.45 which subsequently increases as

more point are queried to a final value of 6.35.
5. Conclusions and discussion

We have presented an active support vector

learning algorithm for supervised pixel classifica-

tion in remote sensing images. The goal is to

minimize the number of labeled points required to

design the classifier. The algorithm uses an initial

set of small number of labeled pixels to design a

crude classifier, which is subsequently refined by
using more number of points obtained by querying

from a pool of unlabeled pixels. The class labels of

the queried points are supplied by a human expert.
It is seen that the number of labeled points re-

quired by the active learning algorithm is far less

compared to the conventional support vector

machine. It also provides better accuracy com-

pared to completely unsupervised segmentation

algorithms or a supervised algorithm having access
to only inaccurate class labels of a large number of

pixels.

The active learning strategy adopted in this

article queries for the most interesting/ambiguous

unlabeled point as measured by its distance from

the current separating hypersurface. Other query

strategies based on version space splitting, logistic

regression may be used. Also, besides active
learning, other semi-supervised learning tech-

niques like transductive learning, co-training may

also help in circumventing the problem arising

from scarcity of labeled data in remote sensing

image analysis.

The main goal of the active learning algorithm

is to reduce the requirement of labeled pixels.

Hence, an aggressive query strategy is adopted.
However, the aggressive strategy is sensitive to

wrong labeling by a human expert, resulting in

performance degradation. If in some application, a

higher number labeled pixels, with possibly few

wrong labels, are available, a more conservative

query strategy will provide better performance.
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