Pattern Recognition Letters xxx (2010) XXX—XXX

journal homepage: www.elsevier.com/locate/patrec = %

Pattern Recognition Letters

Pattern Recognition
Letters

Contents lists available at ScienceDirect

A composite kernel for named entity recognition

Sujan Kumar Saha *, Shashi Narayan, Sudeshna Sarkar, Pabitra Mitra

Computer Science and Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, India

ARTICLE INFO ABSTRACT

Article history:

Received 21 August 2009
Available online xxxx
Communicated by T. Vasilakos

Keywords:

Named entity recognition
Support vector machine
Kernel methods

String kernel

Machine learning

In this paper, we propose a novel kernel function for support vector machines (SVM) that can be used for
sequential labeling tasks like named entity recognition (NER). Machine learning methods like support
vector machines, maximum entropy, hidden Markov model and conditional random fields are the most
widely used methods for implementing NER systems. The features used in machine learning algorithms
for NER are mostly string based features. The proposed kernel is based on calculating a novel distance
function between the string based features. In tasks like NER, the similarity between the contexts as well
as the semantic similarity between the words play an important role. The goal is to capture the context
and semantic information in NER like tasks. The proposed distance function makes use of certain statis-
tics primarily derived from the training data and hierarchical clustering information. The kernel function
is applied to the Hindi and biomedical NER tasks and the results are quite promising.

© 2010 Published by Elsevier B.V.

1. Introduction

A named entity (NE) denotes a noun or noun phrase referring to
a name belonging to a predefined category like person, location
and organization. Named entity recognition (NER) is the task of
identifying and categorizing the named entities from text. Named
entities are often the pivotal as well as the most information-
bearing elements of a text, and NER systems find application in a
number of tasks like information extraction, text mining and
machine translation. Due to its immense importance, a substantial
amount of work has been carried out for NER system development
in various languages and domains.

The use of support vector machines (SVM) is quite common in
NER and other natural language processing (NLP) tasks. SVM
(Vapnik, 1995) is a margin based approach where the similarity be-
tween the instances, which are composed of the data along with
the corresponding feature values, is used to define the classifier.
The computation of the similarity (or distance) between the in-
stances plays a very important role in the performance of a SVM
classifier.

In NER task the most commonly used features are the surround-
ing words, suffix and prefix information. One approach of using
such string features in SVM classifier is to use binary feature vec-
tors (Kudo and Matsumoto, 2001; Isozaki and Kazawa, 2002;
Takeuchi and Collier, 2002), where a particular feature is converted

* Corresponding author. Tel.: +91 9732655684; fax: +91 3222 278985.
E-mail addresses: sujan.kr.saha@gmail.com (S.K. Saha), shashi.narayan@gmail.
com (S. Narayan), shudeshna@gmail.com (S. Sarkar), pabitra@gmail.com (P. Mitra).

0167-8655/$ - see front matter © 2010 Published by Elsevier B.V.
doi:10.1016/j.patrec.2010.05.004

into several binary values. For example, the feature ‘previous word’
is converted into N binary features where N is the total number of
unique words in the lexicon. Another approach has been to define a
kernel function that is directly applicable to the string features.
Several types of ‘string kernels’ (Leslie et al., 2002; Lodhi et al.,
2002; Tian et al., 2007) have been defined based on the fact that
the similarity between two particular strings depends on the num-
ber of common sub-strings they have. String kernels have been
used successfully in various tasks like text classification, protein
classification, and entity and relation extraction.

But we feel that the binary representation and sub-string sim-
ilarity based string kernels are not able to capture well the seman-
tic similarity between the instances in context sensitive tagging
tasks like NER. For example, the two words ‘Prof.’ and ‘Chairman’
have some similarity in the context of the NER task as both of
these occur at the preceding position of the person named entities.
Such similarity between the words cannot be captured by binary
or sub-string kernel based approaches. In order to characterize
these NER task specific similarity between the features we propose
a class association kernel and a hierarchical word clustering based
kernel. We then form a composite kernel by combining these two
kernels.

For the class association kernel, the feature space is divided into
a number of sub-groups where each feature group consists of a set
of similar features. The individual features are then transformed
into a c+1 dimensional vector where c is the number of named
entity classes. These vectors are based on class association based
statistics derived from the training data. The similarity between
the vectors in a feature group is computed by making use of an
appropriate distance function. This similarity is the sub-kernel
value corresponding to the feature group. Finally, the sub-kernels

j.patrec.2010.05.004

Please cite this article in press as: Saha, S.K, et al. A composite kernel for named entity recognition. Pattern Recognition Lett. (2010), do0i:10.1016/

http://dx.doi.org/10.1016/j.patrec.2010.05.004
mailto:sujan.kr.saha@gmail.com
mailto:shashi.narayan@gmail.
mailto:shudeshna@gmail.com
mailto:pabitra@gmail.com
http://www.sciencedirect.com/science/journal/01678655
http://www.elsevier.com/locate/patrec
http://dx.doi.org/10.1016/j.patrec.2010.05.004
http://dx.doi.org/10.1016/j.patrec.2010.05.004

2 S.K. Saha et al./Pattern Recognition Letters xxx (2010) xXx-xXX

are combined in a weighted fashion to obtain the final class asso-
ciation kernel.

In the second approach of computing the distance between the
strings we use hierarchical clustering information. We have used
the Brown clustering algorithm (Brown et al.,, 1992) to cluster
the string feature values (e.g., words) based on their contextual
similarity in a corpus.

The proposed kernel has been tested in NER task on two differ-
ent domains. The first task we attempt is the Hindi NER task. The
proposed kernel is compared with a binary feature based linear
SVM classifier, substring similarity based string kernel and also
with other statistical classifiers like maximum entropy (MaxEnt)
and conditional random fields (CRF). We also test the proposed
kernel in another domain, namely, the biomedical NER. In both
the task the proposed kernel performs quite well.

2. Previous work

In this section, we present an overview of the research that have
been carried out for developing NER systems in Hindi and biomed-
ical domain. We also present a brief overview of the kernel based
approaches in NER and other text processing tasks.

2.1. Hindi NER task

In the last few years a substantial amount of work has been car-
ried out for developing NER systems in different languages and do-
mains. For developing NER systems, machine learning (ML) based
approaches have been mostly used. Several machine learning algo-
rithms have been used for NER system development in various lan-
guages and domains. Hidden Markov model (HMM) (Collier et al.,
2000; Shen et al., 2003; Zhou and Su, 2004; Ponomareva et al.,
2007), MaxEnt (Borthwick, 1999; Lin et al., 2004; Kim and Yoon,
2007; Saha et al., 2008), CRF (Li and McCallum, 2004; Settles,
2004; Tsai et al., 2006; Leaman and Gonzalez, 2008), SVM (Kazama
et al., 2002; Takeuchi and Collier, 2002; Lee et al., 2004), etc. are
the most commonly used techniques.

Machine learning based methods are mostly used for Hindi NER
system development too. Due to several language specific issues
like, absence of capitalization, free word order, high ambiguity in
Indian names and unavailability of sufficient resources, the Hindi
NER task is quite difficult.

A pioneering work on Hindi NER is by Li and McCallum (2004)
where they used CRF and feature induction. In their study the
training corpus size was 340K words with 15,063 NEs belonging
to three types, namely person, location and organization. They
achieved a f-value of 71.5. Saha et al. (2008) used a training cor-
pus containing 243K words to develop a Hindi NER system using
MaxEnt classifier. They explored different NER features in Hindi
language and studied their effectiveness. Gazetteer lists as well
as identified context patterns were integrated in the system. Inte-
grating all these approaches a f-value of 81.52 was achieved con-
sidering four NE classes (person, location, organization and date).
In IJCNLP 2008 (International Joint Conference on Natural Lan-
guage Processing, Hyderabad, India) a shared task' was organized
on identification of NEs from texts in south and south-east Asian
languages. Five languages were considered in the task which are
Bengali, Hindi, Oriya, Telugu and Urdu. The task also included
the identification of the nested NEs. The best result in the shared
task was a f-value of 65.13 for Hindi where MaxEnt classifier
and context rules were combined to prepare a hybrid system
(Singh, 2008).

! More information on the shared task is available at: http://Itrc.iiit.net/ner-ssea-08/
index.cgi.

2.2. Biomedical NER task

Biomedical NER task refers to the identification of biomedical
named entities (like, protein, DNA, RNA) from (biomedical) text.
Due to the presence of several difficulties (Shen et al., 2003), the
performance of the biomedical NER systems is quite low compared
to the general domain English NER systems. As in general domain,
machine learning techniques are mostly used in biomedical NER.
Several of the systems use a rule based postprocessing step, even
though the core system is primarily built using machine learning
algorithms.

In our experiments we have used the JNLPBA 2004 corpus (Kim
et al., 2004). Here we mention a few systems developed using this
corpus. A number of systems participated in JNLPBA 2004 shared
task. Among these the highest accuracy was achieved by the sys-
tem developed by Zhou and Su (2004) which achieved a f-value
of 72.55. This system used HMM and SVM with some deep domain
knowledge like in domain POS, name alias resolution, cascaded NE
resolution, abbreviation detection, external name dictionaries.
Without these domain knowledge the reported accuracy of the sys-
tem was a f-value of 60.3. The second highest accuracy in the task
was achieved by the maximum entropy Markov model (MEMM)
based system developed by Finkel et al. (2004). This system used
external resources (e.g., British National Corpus, large gazetteer
lists, web), deeper syntactic features etc. to achieve a f-value of
70.06. Some other systems (Settles, 2004; Song et al., 2004) in
the shared task that achieved good accuracy also used some
amount of domain knowledge or external resources.

2.3. SVM and kernel in text processing tasks

SVM based classifiers have been used in various text processing
tasks in the last few years. As most of the text processing tasks are
required to use string features, several techniques have been
adapted for handling the strings. Binary representation of the fea-
tures is a common approach. Kudo and Matsumoto (2000, 2001)
used SVM with binary feature representation in the English base
phrase identification task. Takeuchi and Collier (2002) used SVM
in the NER task with binary feature representation. They used
the SVM classifier in the general domain NER task using MUC6 data
and also in the molecular biology domain. For the NER task SVM
was also used by Isozaki and Kazawa (2002). They proposed a
few techniques like removal of unnecessary features to make the
classifier efficient in terms of training time and performance.

The use of kernel functions applicable on string features is an-
other popular approach for handling string features in SVM. A
function that calculates the inner product between mapped in-
stances in a feature space is a kernel function. A set of such func-
tions have been proposed for handling string features, which are
commonly named as ‘string kernel’. String kernels calculate the
similarity between the strings. One idea for getting the similarity
between two strings is to find the amount of common substrings
they contain — more substrings in common might refer to more
similarity. A few kernels have been proposed based on this idea.
Leslie et al. (2002) proposed the spectrum kernel and used it in
the protein classification task. Leslie et al. (2004) proposed another
string kernel for the protein classification task and named this as
mismatch string kernel. Lodhi et al. (2002) proposed the string
subsequence kernel which has been successfully used in the text
classification task. Tian et al. (2007) proposed a light-weight string
kernel based on matching subsequences with all possible lengths
shared by two strings and used the kernel in the sequence data
classification problem. The computation of such substring based
kernels is complex, and some work has been done (e.g., Leslie
and Kuang, 2004; Teo and Vishwanathan, 2006) in order to reduce
the computation cost of the string kernels.

j.patrec.2010.05.004

Please cite this article in press as: Saha, S.K, et al. A composite kernel for named entity recognition. Pattern Recognition Lett. (2010), doi:10.1016/

http://dx.doi.org/10.1016/j.patrec.2010.05.004
http://dx.doi.org/10.1016/j.patrec.2010.05.004

S.K. Saha et al./Pattern Recognition Letters xxx (2010) XXx—xXX 3

The kernel functions discussed above have been used success-
fully in several text processing tasks. In some text processing tasks
like parts-of-speech tagging and NER, the context information
plays a very important role in addition to the target word. The con-
text information needs to be captured for yielding highly accurate
classifiers. Vanschoenwinkel et al. (2005) defined a context sensi-
tive kernel function for the NER task where the contexts are con-
sidered in terms of a sliding window and position specific
weights are given for the individual terms in the window during
the kernel computation.

3. Proposed kernel for NER task

The linear SVM computes the dot product between instances.
K(X,Y) = ¢(X) - ¢(Y) (1)

If X1, X, ..., X, are features of X and y1, y», ..

(Xi-y;) = {

., ¥n are features of Y,
1, if x; and y; are same;
0, otherwise.

(2)

However when we are dealing with word features and other string
based features, such dot product based similarity computation is
not able to capture the NER task specific similarity between the
strings. For example, the words ‘Prof.’ and ‘Chairman’ have some
similarity in the context of the NER task as both occurs frequently
at the preceding position of the person names; ‘small’ and ‘large’
are related words, both being adjectives used in similar contexts;
‘town’ and ‘district’ have similarity as both of these are common
location terms and occur frequently at the surrounding positions
of the location names. Such task specific similarity is important
not only in word features but also in other string features like suffix,
prefix and n-grams. For example, ‘pur’ and ‘ganj’ are two common
suffixes of Indian place names. Although these are two different suf-
fixes but these have some similarity. Such task specific similarity
cannot be captured properly by the substring similarity based string
kernels.

We have attempted to capture this task specific semantic simi-
larity and leveraged this for computing the distance between the
instances. We have computed the similarity in two different ways:
one is a class association similarity based on a vector representa-
tion of the string features, and the other one is based on hierarchi-
cal clustering information. We have used these similarity functions
as kernel in SVM. These individual functions are combined with a
suitable weight and the combined function is also used as a com-
posite kernel. These kernels are discussed below.

3.1. A class association kernel for NER

In shallow NLP tasks like NER, different string based features
play an important role. We use these string based features in
SVM by defining a class association (CA) kernel.

3.1.1. Feature group

We first divide the overall feature space (F) into a few (say, m)
feature groups. For example, in the case of word features, if a word
window of length five is used then five different features are con-
sidered which are wyp (current word), w_; (previous word), w.q
(next word), w_, and w.,. These five features form a feature group
(Fwora)- Similarly suffix features up to length [refers to I different
features, which form another feature group (Fs,s). For each feature
group a sub-kernel is defined. The final kernel is obtained by com-
bining these sub-kernels:

m

Kaa(X,Y) = 4Ki(Xsung) Ysub(y) 3)

j=1

In this equation K; denotes the jth sub-kernel corresponding to the
jth feature group and J; refers to its corresponding weight which
represents the relative importance of the feature group in the fea-
ture space. As the linear combination of two kernels also give rise
to a proper kernel, the combined function is also a kernel.

3.1.2. Feature vector representation

The sub-kernels use a numerical vector representation of the
features. The vectors are of dimension c+ 1 corresponding to ¢
NE classes and one for the not-name class. These vectors use class
association based statistics derived from the training corpus. The
vector representation is discussed here in detail in the context of
word features.

Word features are used in form of a context window of length
p+q+1, containing p previous words and g next words. Different
position specific vectors are defined corresponding to the
p+q+ 1 different positions. Now for each word (w) in the corpus
we define a class specific weight, Wt{w), which is assigned as
the corresponding component of the (c + 1)-dimensional vector.
For a particular position, Wt{w) is defined as

_No. of occurrence of w in position pos of a NE of class C

Wtc(w -
c(w) Total no. of occurrence of w in corpus

(4)

where pos denotes a particular position of the p+¢g+1 window.
Feature vectors are defined for other feature groups similarly.

3.1.3. Computing the sub-kernels

We now discuss how the sub-kernels for the feature groups are
computed. First, for each feature in a feature group we assign a rel-
ative importance. For example, for word feature group we assume
that the current word is the most important feature and this is gi-
ven a weight of 1. The weights of the other positions are taken to
vary inversely with the square of the distance to the current word.
Thus +1 and —1 positions combinedly receive a weight of 1/2; +2
and —2 positions get a total weight of 1/4. For affix features, we
have currently considered only the affixes of the current word.
Here we assign length specific weight distribution; higher length
(e.g., | =5,6) affixes have more weight than the shorter affixes
(e.g., [=1,2). For the other feature groups, weight distributions
are assigned similarly.

Now the sub-kernels between the instances are computed. For
two particular feature values, x, and y, corresponding to the kth
feature, we compute the inner product (or, cosine similarity) be-
tween the corresponding vectors (V1 and V2,). This similarity be-
tween two particular feature values is denoted by Kyqk). Once all
the Kyqk) values for a particular feature group are obtained, these
are combined using the corresponding weight distribution dis-
cussed above to get the final sub-kernel for the feature group.

3.1.4. Class association kernel — an example

In Table 1, we have explained the computation of the class asso-
ciation kernel with an example. Here we consider two Hindi in-
stances where the target words are, ‘bilAsapura® (Bilaspur) and
‘kvAlAlumpura’ (Kualalumpur) occurring in two different contexts.
We show how to evaluate the class association kernel for these. In
the example, we have considered only word features (window 3)
and suffix features (of length 5, 4 and 3).

The instances (X, Y) and the vectors (V1, V2) corresponding to
each feature values are shown in the table. The K,qqx) values are
computed for each feature. During similarity computation, if two
feature values are the same then the similarity is taken as 1 other-
wise the similarity is the dot product between the vectors. The val-

2 All the Hindi words are written using Itrans transliteration.

j.patrec.2010.05.004

Please cite this article in press as: Saha, S.K, et al. A composite kernel for named entity recognition. Pattern Recognition Lett. (2010), do0i:10.1016/

http://dx.doi.org/10.1016/j.patrec.2010.05.004
http://dx.doi.org/10.1016/j.patrec.2010.05.004

4 S.K. Saha et al./Pattern Recognition Letters xxx (2010) xXx—-xXx

Table 1
Class association kernel computation example.

Word features {-1 0 + 1} Suffix features {5 4 3}

X me bilAsapura jile apura pura ura

V1 [.03.04.04.89] [0.8.2 0] [0.62 [0.91.09 0] [0.9.09.01] [.02.09
0.38] 0.89]

Y me kvAlAlumpura shahara mpura pura ura

V2 [.03.04.04.89] [0 1 0 0] [0.43 [0 1 00][0.9.09.01] [.02.09 0.89]
0.57]

Kyairy 1 0.80 0.49 09111

Kgroup 117 1.16

Kea 1.75

ues of [1 0.80 0.49] denotes the similarity between the word fea-
ture values for previous (—1), current (0) and next (+1) positions
respectively. Now we combine these K,q k) values of a feature
group using corresponding weight distribution to obtain the Kgoup
values for a feature group. Here the Kg,,p value for the word fea-
ture group is 1.17 (1 x 0.80 + 0.25 x1 + 0.25 x 0.49) and for
the suffix feature group is 1.16. These are combined using Eq. (3)
to get the final kernel Kc4, which is 1.75. The value of Ay, is taken
as 1 and Ag,py is taken as 0.5.

3.2. Hierarchical clustering based kernel for NER

In the clustering based kernel we use cluster information of the
feature values (e.g., words) as a measure of similarity between
them. Cluster information has been used in different NLP tasks in
the past. Several types of clustering techniques (e.g., Brown et al.,
1992; Pereira et al., 1993; Ushioda, 1996; Biemann, 2006) have
been proposed and used in various NLP tasks. Miller et al. (2004)
used the hierarchical word clustering algorithm proposed by
Brown et al. to extract binary string representation of the words
which were encoded in features that are incorporated in a discrim-
inatively trained name tagging model.

3.2.1. Clustering of words

Here we have used the bottom-up agglomerative clustering
algorithm proposed by Brown et al. (1992). The input to the algo-
rithm is a list of words to be clustered and a large raw corpus (we
have used a raw corpus containing 2000K words). The output from
the clustering algorithm is a binary tree, called dendrogram, in
which the leaves are the words. Within this tree, each word is un-
iquely identified (hard clustering) by its path from the root which
can be compactly represented by a bit sequence.

In Fig. 1 we have presented an example cluster. Here nine Hindi
words are clustered (English meaning of the words are given in

ma.ntrl (minister)

| 0000
pradhAnama.ntr] 000
(prime-minister)
netA (leader) 0001 00
shrl Mr) ———1 0010
putra (son) J 001
nivAsl (resident) . S
shahara (city) ——— g1p
gAon (village) | 01
011

steshana (station)

Fig. 1. An example hierarchical cluster of Hindi words.

parenthesis in the figure). To group the words into a few clusters,
the dendrogram can be cut at a particular level. For example, if
we cut it at depth 2, we obtain three clusters, which are, [ma.ntrl,
pradhAnama.ntrl, netA), [shrl, putra, nivAsl] and [shahara, gAon,
steshanal.

During kernel computation to obtain the similarity between the
words, we have used binary sequences. The binary sequence for
each word is obtained from the dendrogram as shown in the figure.
In the example, the binary sequence corresponding to ma.ntrl is
00000, the sequence for putra is 00101 and for steshana the se-
quence is 011. From the binary code sequence the similarity be-
tween two words can be obtained using the fact that, more
similar words have longer prefix matching in their binary se-
quences. This distance is basically the dendrogram distance, the
minimum number of edges required to travel from one word to
the another.

3.2.2. Kernel computation

Similar to the class association kernel, we have also considered
feature group and relative importance of the individual features in
a feature group. The distance between two string values (e.g.,
words) is computed from the dendrogram using the corresponding
bit sequences as explained above. Finally the individual distances
are combined in a weighted fashion to obtain the kernel value of
a feature group. The intra group weight we have considered here
is similar to the weight distribution used in the class association
kernel.

4. Experimental results: Hindi NER

This section presents the details of the experiments conducted
on the Hindi NER task in order to test the effectiveness of the pro-
posed kernel. The performance of the proposed kernel is compared
with linear SVM and a substring similarity based string kernel. A
comparison of performance of the proposed kernel with other ma-
chine learning classifiers like MaxEnt, CRF is also presented.

4.1. NER evaluation measures

In NER task the accuracies are measured in terms of the f-mea-
sure, which is the weighted harmonic mean of precision (pre) and
recall (rec). Precision is the percentage of the correct annotations
and recall is the percentage of the total NEs that are successfully
annotated. The general expression for measuring the f-measure or
f-value is,

(1+ B?) (precision x recall)
Fy="—s — (3)
(B° x precision + recall)

Here the value of g is taken as 1.

During the evaluation we have followed the exact match strat-
egy; which means a detected NE is assumed as correct if it matches
exactly with the corresponding test data entity in terms of both the
NE category and boundary.

4.2. Training and test data

The training data for the Hindi NER task is composed of about
200K words which is collected from the popular daily Hindi news-
paper “Dainik Jagaran”. Three types of names are considered,
namely, Person, Location and Organization. The corpus has been
manually annotated and contains about 5500 person, 4400 loca-
tion and 2700 organization entities. The Hindi test corpus contains
25K words, which is distinct from the training corpus. The test cor-
pus contains 678 person, 480 location and 322 organization names.
To preserve the boundary information of the NEs, the corpus is

j.patrec.2010.05.004

Please cite this article in press as: Saha, S.K, et al. A composite kernel for named entity recognition. Pattern Recognition Lett. (2010), doi:10.1016/

http://dx.doi.org/10.1016/j.patrec.2010.05.004
http://dx.doi.org/10.1016/j.patrec.2010.05.004

S.K. Saha et al./Pattern Recognition Letters xxx (2010) XXx—xXX 5

annotated using BIO format where B-ne denotes the beginning
word of a NE, I-ne refers to the other words if the NE contains more
than one word and O refers to the not-name words.

4.3. NER features used

NER tasks in different languages and domains require different
types of features to be used. Some of the features are string fea-
tures like surrounding words, suffixes up to a particular length,
prefixes up to a particular length, parts-of-speech information of
the current and surrounding words and some are binary features
like whether the word is capitalized, whether the word contains
any special character. For the Hindi NER task, a list of useful fea-
tures have been explored previously by Saha et al. (2008).

In this paper, our main objective is to evaluate the performance
of the proposed kernel for handling the word features and other
string based features in SVM; so we focus on using a few such fea-
tures. The features we use are: current word, previous three words,
next three words, NE tags of the previous words, suffixes up to a
length of five characters and prefixes up to a length of five
characters.

4.4. Baseline hindi NER using SVM

First we build the baseline classifier using SVM where binary
representation of the features is used. In binary representation a
particular feature (like, word feature) is converted into several
(the total number of distinct feature values) binary features. For
example, our Hindi corpus contains a total of 17K distinct words,
so the word feature for a particular position is transformed into
17K binary features. If a word window of length three is considered
in the feature set, a total of 51K binary features are used. A linear
kernel is used for preparing the baseline classifier.

For the development of the baseline system we need to select a
suitable feature set. To select a suitable feature set we perform a
set of experiments considering the candidate features (mentioned
in Section 4.3) individually or in combination. Table 2 summarizes
the results of these experiments. First we run experiments by vary-
ing the length of word window. In these experiments we have ob-
served that when only the word features are used then a word
window of length five (containing two previous and two next
words) performs better. This achieves a f-value (Fval) of 64.88.
Use of a smaller (length three) or larger (length seven) word win-
dow reduces the accuracy. When other features like suffix, prefix
and previous tag information are added then the f-value is in-
creased to 80.57. Interestingly this f-value is obtained when a word
window of length three is used. When a word window of length
five is used, the f-value becomes 80.31. This is due to overfitting,
which occurs when a large number of features are applied on an
insufficient training data. When the word window length is in-
creased from three to five then a large number of (2 x total number
of unique words in the corpus) binary features are added to the
existing feature space (that already contains a large number of bin-
ary features) which causes overfitting. Similar overfitting was ob-

Table 2

The baseline accuracy of different features (linear SVM with binary features).
Feature Pre Rec Fval
Words - window 3 80.35 53.07 63.92
Words - window 5 81.17 54.04 64.88
Words - window 7 80.03 52.84 63.65
Words - window 5, suffix information 83.36 66.45 73.95
Words - window 5, suffix, prefix 83.62 71.2 76.91

Words - window 5, suffix, prefix, prev NE tag 86.56 75.36 80.57
Words - window 3, suffix, prefix, prev NE tag 86.22 75.16 80.31

served by Saha et al. (2008) in their MaxEnt based Hindi NER
system and in Saha et al. (2009) they proposed a few feature reduc-
tion techniques to reduce overfitting. In this paper as we focus on
the effectiveness of kernel functions for handling the string fea-
tures directly (not converting a particular string feature into multi-
ple binary features), we have not considered the overfitting
reduction techniques.

4.5. Proposed kernel based Hindi NER

Now we use the proposed kernel to build the NER classifier. We
have evaluated the performance of both the kernels separately and
the performance of the composite kernel. We have used the kernels
in two different ways to evaluate their performance; (i) replace-
ment: replacing the baseline binary features and the linear kernel
by direct string feature values and the proposed kernel and (ii)
merge: adding the proposed kernel with the baseline classifier with
suitable weight factor.

In Table 3 we have summarized the performance of the individ-
ual kernels and the composite kernel.

4.5.1. Performance of the class association kernel

Using the class association kernel (Section 3.1) in replacement
strategy, we have achieved a f-value of 75.77 when only the word
features are used. When these are the only features used, a SVM
with the class association kernel function significantly outperforms
the baseline classifier. Addition of baseline features with the class
association kernel (i.e., merge strategy) increases the f-value to
77.2 when only word features are used.

With the addition of suffix and prefix features we become able
to increase the f-value to 78.06 using the replacement strategy.
This accuracy is obtained when the ratio among the weight of
the word, suffix and prefix features is chosen as 4:1:1. When the
ratio is taken as 2:1:1 the accuracy reduces to 77.59 (not shown
in the table), which proves that the selection of suitable weight
of the feature groups (i.e., the A values in Eq. (3)) is important.
The performance of the system is further improved when the pre-
vious tag information is added. The previous tag information is
added in a binary feature representation, no vector representation
is used for the previous tags.

Here we like to mention that when the kernel function is used,
then a word window of length five performs better even with more
features. With word window of length three the highest f-value is
81.52 in the class association kernel (replacement strategy) but
with a window of length five the accuracy becomes 81.86. Unlike

Table 3
Performance of the proposed kernels in Hindi NER [suf: suffix, pref: prefix, ptag:
previous NE tags].

Kernel Feature Replacement Merge
Pre Rec Fval Pre Rec Fval

CA Words 80.16 71.84 75.77 80.81 7372 772
Word, suf, 8298 73.68 78.06 8226 7632 79.18
pref
Word, suf, 83.39 8038 81.86 83.56 82.76 83.21
pref, ptag

Cluster Words 9224 61.02 7345 925 65.04 76.38
Word, suf, 91.88 67.39 77.75 9051 69.74 78.78
pref
Word, suf, 91.17 7292 81.03 9194 77.63 84.18
pref, ptag

Composite Words 83.11 7526 7899 8144 77.8 79.58
Word, suf, 83.87 764 7996 84.63 7792 81.14
pref
Word, suf, 8841 79.21 83.56 89.02 8063 84.62
pref, ptag

j.patrec.2010.05.004

Please cite this article in press as: Saha, S.K, et al. A composite kernel for named entity recognition. Pattern Recognition Lett. (2010), do0i:10.1016/

http://dx.doi.org/10.1016/j.patrec.2010.05.004
http://dx.doi.org/10.1016/j.patrec.2010.05.004

6 S.K. Saha et al./Pattern Recognition Letters xxx (2010) xXx—-xXX

the baseline, during the kernel computation all the features are not
given same weight, individual feature importance is considered
here; as the long distance words (-2 and + 2) are assigned lower
weight (as discussed in Section 3.1) a larger word window works
better.

4.5.2. Performance of the cluster kernel

Now we present the performance of the clustering based kernel
(Section 3.2). By only using word cluster information through the
cluster kernel, we have achieved a f-value of 73.45 with 92.24%
precision and 61.02% recall (see Table 3). The precision of the clus-
ter kernel based classifier is much higher compared to the baseline
and the class association kernel.

When the suffixes and prefixes and previous tag information
are added in the cluster based kernel, the accuracy improves fur-
ther. Like in class association kernel, here also a word window of
length five performs better.

4.5.3. Performance of the composite kernel

As we have seen that the cluster kernel has high precision and
the class association kernel has higher recall, we hypothesize that
combining these two kernels we can get the advantage of both.
The composite kernel is the combination of the class association
kernel and the cluster based kernel. These kernels are combined
in a weighted fashion using two weight factors: (Kcomposiee =
0K ciass_association T BKeiuster)- Selection of the appropriate values of «
and g plays an important role in the performance of the composite
kernel. During the composite kernel evaluation we have experi-
mented with several values of « and 8 and selected the best values.

The composite kernel based classifier achieves a f-value of 78.99
using only word features (see Table 3). When the affixes and pre-
vious tag features are added, the composite kernel achieves a f-
value of 83.56. When the baseline features are merged (merge
strategy), the system yields a f-value of 84.62. This is the highest
accuracy we have achieved in the SVM based Hindi NER system.

4.6. Comparison of performance

Now we compare the performance of the proposed kernel based
SVM classifier with other well-known approaches like MaxEnt, CRF
and substring similarity based string kernel. For comparison all
these classifiers are trained using same training data and feature
set. Table 4 summarizes the results of comparison. In this table
we have shown the accuracies obtained using two different feature
sets: (a) current and surrounding words and (b) words, suffix, pre-
fix and NE tag of the previous word. During the comparison we
have considered the kernel accuracy obtained using only the
replacement strategy, when the binary features are not merged
with the kernel.

For the comparison we have considered the string sub-sequence
kernel proposed by Lodhi et al. (2002). We have used our own
implementation of the string sub-sequence kernel where after
obtaining the distances between the individual feature values of

Table 4
Performance comparison for Hindi NER.
Classifier Feature
Words Words, suf, pref, ptag
Pre Rec Fval Pre Rec Fval
MaxEnt classifier 66.24 52,57 5862 8578 6814 7595
CRF classifier 84.02 62.84 719 89.47 7541 81.84
SVM binary feature 81.17 54.04 64.88 86.56 75.36 80.57
SVM string kernel 7387 6119 6693 839 7446 78.89

SVM composite kernel ~ 83.11 75.26 7899 8841 79.21 83.56

two particular instances, we merge the distances in a weighted
fashion to get the final kernel value between the instances. During
the computation of the string kernel also we have considered rel-
ative feature importance and relative feature weight factors similar
to the proposed kernel. When only word features are used in the
string kernel, we achieve a f-value of 66.93. We observe that in
our Hindi NER task the string kernel suffers from poor precision.
We have also prepared the classifiers using the MaxEnt and CRF
using similar feature sets. From Table 4 we can observe that when
only the word features are used, the proposed composite kernel
performs much better than the binary feature based linear SVM,
string kernel, MaxEnt and CRF classifiers. When more features
are used, then also the kernel outperforms the other classifiers con-
sidered in the comparison.

5. Experimental results: Biomedical NER

The proposed kernel is also tested in the biomedical NER task.
This section presents our experiments on the biomedical NER task.
We like to mention here that we have chosen the biomedical NER
task in our study only to show that the methodology is very gen-
eral and is expected to work well in all domains.

For the task we have used the JNLPBA 2004 data (Kim et al,,
2004). This corpus is extracted from the GENIA corpus Version
3.02. The training set consists of 2000 abstracts (about 500K
words) and the test set contains 404 abstracts (about 100K words).
In this data five NE classes are considered: DNA, RNA, protein (Pro),
cell-type (CT) and cell-line (CL). The corpus is annotated using BIO
format.

For the biomedical NER task we have chosen a set of features
that are easy to derive and require no deep knowledge. Most of
the features are general features and not specific to the biomedical
domain. For the task we have selected a feature set similar to the
feature set used by Saha et al. (2009). The features we have used
are, word features (current and surrounding words), NE tags of
the previous words, a few features that use capitalization and digit
information, special characters, word normalization, prefix and
suffix information, and parts-of-speech information.

We first used the binary feature based approach to develop the
baseline classifier. Then we have used the class association, cluster
based and composite kernels and compared the results with the
baseline classifier. We have also compared the proposed kernel
with the aforementioned string sub-sequence kernel and a feature
reduction based MaxEnt classifier (Saha et al., 2009).

Table 5 presents the results when only the word features are
used. From the table it is observed that in the biomedical NER task
too, the proposed kernel (f-value of 61.49) outperforms the binary
feature based linear SVM classifier (f-value of 57.86). When the
string sub-sequence kernel is used in the task (using the imple-
mentation used during the Hindi NER experiments), with only
word features we achieve a f-value of 61.04. Now we have trained
a MaxEnt classifier along with the word selection and word clus-

Table 5
The performance of biomedical NER system using only word features.
System Pro DNA RNA CT CL Total
SVM binary features 60.45 50.52 53.28 59.41 3833 57.86
SVM CA kernel 62.7 53.68 57.94 59.08 37.24 59.54
SVM cluster kernel 62.02 56.17 5536 6521 41.66 60.89
SVM composite kernel 62.73 56.66 57.14 6549 42.11 61.49
SVM string kernel 63.63 53.8 57.53 6253 39.86 61.04
MaxEnt with feature 61.07 51.86 51.78 60.83 42.16 58.63
reduction (Saha et al.,
2009)

j.patrec.2010.05.004

Please cite this article in press as: Saha, S.K, et al. A composite kernel for named entity recognition. Pattern Recognition Lett. (2010), doi:10.1016/

http://dx.doi.org/10.1016/j.patrec.2010.05.004
http://dx.doi.org/10.1016/j.patrec.2010.05.004

S.K. Saha et al./Pattern Recognition Letters xxx (2010) XXx—xXX 7

Table 6

The performance of biomedical NER system with complete feature set.
System Pre Rec Fval
Linear SVM with binary features 66.52 66.02 66.27
SVM with the proposed kernel 68.12 67.66 67.89
SVM with the string subsequence kernel 67.39 67.65 67.52
MaxEnt based system (Saha et al., 2009) 67.86 66.94 67.41

tering based feature reduction approaches proposed by Saha et al.
(2009). Using only the word features, it achieves a f-value of 58.63.
Hence in our experiments the proposed kernel based SVM classifier
performs significantly better than both the MaxEnt classifier and
the sub-string similarity based string kernel.

In the biomedical NER task, the string kernel performs better
than both the class association and cluster kernels, whereas in
the Hindi NER task the individual kernels worked better than the
string kernel. This may mean that the substring similarity based
string kernel is more appropriate in the biomedical NER task than
the Hindi NER task. Another observation is that the class associa-
tion kernel is not as good in biomedical NER as in Hindi NER. In
the biomedical domain, many embedded entities are there where
presence of a clue word at the surrounding position of a NE of a
particular class modifies it to another class. So the entities are more
ambiguous and the vectors are not good enough to represent a
class.

Now we have studied the performance of the proposed kernel
when a larger feature set, containing all the features considered
in this study, is used. Table 6 presents the performance of the sys-
tem with the complete feature set and related comparisons. Using
all the features in binary feature representation, a linear SVM clas-
sifier achieves a f-value of 66.27. When the proposed composite
kernel is used the f-value is increased to 67.89. A SVM classifier
with the string subsequence kernel achieves a f-value of 67.52 in
our experiments. As we have used a similar feature set, we have
also compared the performance of the system with the MaxEnt
based system developed by Saha et al. (2009). Their system
achieved the highest f-value of 67.41 when the feature dimension-
ality reduction techniques were applied on the feature set. Hence,
although the linear SVM classifier performs poorer than their sys-
tem, the SVM classifier with the proposed kernel outperforms the
system developed by Saha et al. (2009).

6. Conclusion

A novel family of kernel functions is proposed here. The kernel
functions compute the weighted distance between a pair of in-
stances. The distance between the string features is computed by
making use of certain distance functions, which are obtained from
the statistics computed from the entire corpus.

We have experimented with two different types of distance
functions. The first one defines a feature vector corresponding to
each feature value based on its occurrence in the proximity of
named entities. The second distance function makes use of a clus-
tering algorithm. The results look quite promising in both the Hindi
and biomedical NER tasks. It is expected that such methods would
also work well with other related tasks like parts-of-speech tag-
ging. We will also like to compare this approach to other string
based kernels used in literature in the future.

References

Biemann, C., 2006. Chinese whispers - an efficient graph clustering algorithm and
its application to natural language processing problems. In: Proc. HLT-NAACL-
06 Workshop on Textgraphs.

Borthwick, A., 1999. A maximum entropy approach to named entity recognition.
Ph.D. thesis, Computer Science Department, New York University.

Brown, P.F., Pietra, V.].D., deSouza, P.V,, Lai,].C., Mercer, R.L.,, 1992. Class-based n-
gram models of natural language. Computational Linguistics 18 (4), 467-
479.

Collier, N., Nobata, C., Tsujii J., 2000. Extracting the names of genes and gene
products with a hidden markov model. In: Proc. COLING 2000, pp. 201-207.

Finkel,]., Dingare, S., Nguyen, H., Nissim, M., Manning C., 2004. Exploiting context
for biomedical entity recognition: from syntax to the web. In: Proc. JNLPBA
2004.

Isozaki, H., Kazawa, H., 2002. Efficient support vector classifiers for named entity
recognition. In: Proc. COLING-2002, pp. 390-396.

Kazama, J., Makino, T., Ohta, Y., Tsujii, J., 2002. Tuning support vector machines for
biomedical named entity recognition. In: Proc. Workshop on NLP in the
Biomedical Domain at ACL 2002, pp. 1-8.

Kim, J., Ohta, T., Tsuruoka, Y., Tateisi, Y., Collier, N., 2004. Introduction to the bio-
entity recognition task at JNLPBA. In: Proc. JNLPBA 2004, pp. 70-75.

Kim, S., Yoon, J., 2007. Experimental study on a two phase method for biomedical
named entity recognition. ICICE Tran. on Information and System E90-D (7),
1103-1110.

Kudo, T. Matsumoto, Y., 2000. Use of support vector learning for chunk
identification. In: Proc. CONLL-2000 and LLL-2000, pp. 142-144.

Kudo, T., Matsumoto, Y., 2001. Chunking with support vector machines. In: Proc. of
NAACL-2001, pp. 192-199.

Leaman, R., Gonzalez, G., 2008. Banner: an executable survey of advances in
biomedical named entity recognition. In: Proc. Pacific Symposium on
Biocomputing, 652-663.

Lee, KJ., Hwang, Y.S., Kim, S., Rim, H.C., 2004. Biomedical named entity recognition
using two-phase model based on SVMs.]. Biomedical Infomatics 37 (6), 436-
447.

Leslie, C., Eskin, E., Noble W., 2002. The spectrum kernel: a string kernel for SVM
protein classification. In: Proc. of Pacific Symposium on Biocomputing.

Leslie, C., Eskin, E., Cohen, A., Weston,]., Noble, W., 2004. Mismatch string kernels
for discriminative protein classification.]. Bioinformatics 20 (4), 467-476.
Leslie, C., Kuang, R., 2004. Fast string kernels using inexact matching for protein

sequences. J. Machine Learning Research 5 (2004), 1435-1455.

Li, W., McCallum, A., 2004. Rapid development of Hindi named entity recognition
using conditional random fields and feature induction. ACM Tran. on Asian
Language Information Processing (TALIP) 2 (3), 290-294.

Lin, Y.F., Tsai, T.H., Chou, W.C,, Wu, K.P,, Sung, T.Y., Hsu, W.L,, 2004. A maximum
entropy approach to biomedical named entity recognition. In: Proc. 4th
Workshop on Data Mining in Bioinformatics, pp. 56-61.

Lodhi, H., Saunders, C., Shawe-Taylor,]., Cristianini, N., Watkins, C., 2002. Text
classification using string kernels. J. Machine Learning Research 2 (2002), 419-
444,

Miller, S., Guinness, J., Zamanian, A., 2004. Name tagging with word clusters and
discriminative training. In: Proc. of HLT-04.

Pereira, F., Tishby, N., Lee, L., 1993. Distributional clustering of English words. In:
Proc. ACL-1993, pp. 183-190.

Ponomareva, N., Pla, F., Molina, A., Rosso, P., 2007. Biomedical named entity
recognition: a poor knowledge HMM-based approach. LNCS 4592, pp. 382-387.

Saha, S.K,, Sarkar, S., Mitra, P., 2008. A hybrid feature set based maximum entropy
Hindi named entity recognition. In: Proc. JCNLP-08, pp. 343-349.

Saha, S.K, Sarkar, S., Mitra, P., 2009. Feature selection techniques for maximum
entropy based biomedical named entity recognition. J. Biomedical Informatics
42 (5),905-911.

Settles, B., 2004. Biomedical named entity recognition using conditional random
fields and rich feature sets. In: Proc. JNLPBA-2004.

Shen, D., Zhang,]., Zhou, G.D., Sy, J., Tan, C.L., 2003. Effective adaptation of a HMM-
based named entity recognizer for biomedical domain. In: Proc. ACL 2003
Workshop on NLP in Biomedicine, pp. 49-56.

Singh, A.K., 2008. Named entity recognition for south and south east Asian
languages: taking stock. In Proc. [JCNLP-08 Workshop on NER for South and
South East Asian Languages, pp. 5-16.

Song, Y., Kim, E., Lee, G.G., Yi, B.K,, 2004. POSBIOTM-NER in the Shared Task of
BioNLP/NLPBA 2004. In: Proc. JNLPBA-2004.

Takeuchi, K., Collier, N., 2002. Use of support vector machines in extended named
entity. In: Proc. CONLL-2002.

Teo, C.H., Vishwanathan, S., 2006. Fast and space efficient string kernels using suffix
arrays. In: Proc. 23rd Int. Conf. on Machine Learning.

Tian, S., Mu, S., Yin, C., 2007. Length-weighted string kernels for sequence data
classification. Pattern Recognition Letters 28 (13), 1651-1656.

Tsai, T., Chou, W.C,, Wu, S.H., Sung, T.Y., Hsiang, J., Hsu, W.L,, 2006. Integrating
linguistic knowledge into a CRF framework to identify biomedical named
entities. Expert Systems with Applications 30 (1), 117-128.

Ushioda, A., 1996. Hierarchical clustering of words. In: Proc. COLING 96, pp. 1159-
1162.

Vanschoenwinkel, B., Liu, F., Manderick, B., 2005. Weighted kernel functions for
SVM learning in string domains: a distance function viewpoint. In: Proc. Int.
Conf. on Machine Learning and Cybernetics.

Vapnik, V.N., 1995. The Nature of Statistical Learning Theory. Springer-Verlag, New
York.

Zhou, G.D., Su, J., 2004. Exploring deep knowledge resources in biomedical name
recognition. In: Proc. JNLPBA-2004, pp. 96-99.

j.patrec.2010.05.004

Please cite this article in press as: Saha, S.K, et al. A composite kernel for named entity recognition. Pattern Recognition Lett. (2010), do0i:10.1016/

http://dx.doi.org/10.1016/j.patrec.2010.05.004
http://dx.doi.org/10.1016/j.patrec.2010.05.004

	A composite kernel for named entity recognition
	Introduction
	Previous work
	Hindi NER task
	Biomedical NER task
	SVM and kernel in text processing tasks

	Proposed kernel for NER task
	A class association kernel for NER
	Feature group
	Feature vector representation
	Computing the sub-kernels
	Class association kernel – an example

	Hierarchical clustering based kernel for NER
	Clustering of words
	Kernel computation

	Experimental results: Hindi NER
	NER evaluation measures
	Training and test data
	NER features used
	Baseline hindi NER using SVM
	Proposed kernel based Hindi NER
	Performance of the class association kernel
	Performance of the cluster kernel
	Performance of the composite kernel

	Comparison of performance

	Experimental results: Biomedical NER
	Conclusion
	References

