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Abstract

In this paper, a method for robust image registration based on M-estimator Correlation Coefficient (MCC) is presented. A real valued
correlation mask function is computed using Huber and Tukey’s robust statistics and is used as a similarity measure for registering image
windows. The mask function suppresses the influence of outlier points and makes the registration algorithm robust to noisy pixels,
brightness fluctuations and presence of occluding objects. The superiority of the proposed algorithm, in terms of registration perfor-
mance and computation time is demonstrated through experimental studies on different types of real world images.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Many image processing applications often need to com-
pare or combine information given by multiple images. To
perform this task, image registration is one of the funda-
mental steps. Image registration is the process of determin-
ing correspondence between all the points in two images of
the same scene. One of the images used for registration is
kept unchanged and is referred as reference or template
image while the other one can be warped, and is called
the sensed or target image.

Template matching is a popular method for registering
objects, symbols, characters and faces due to the simplicity
of implementation. Template matching is the process of
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finding location of a sub-image, called template image,
inside a given image. It involves determining the similarities
between a given template and windows of the same size in
the target image, and then identifying the window that pro-
duces the highest similarity measure. Registration in real
world images involves problems of noisy environment
and shadow or occlusion in the image scene. Robustness
is an important property required for successful registra-
tion in above environments.

Many feature-based robust registration methods have
been proposed in literature (Brown, 1992; Dai and Khor-
ram, 1999; Ghaffary and Sawechuk, 1983; Zitova and Flus-
ser, 2003). These methods try to match image features, e.g.,
lines, corners, contours, between the target and the refer-
ence image. Clustering technique presented by Goshtasby
et al. (1986) and Stockman et al. (1982) attempt to match
points connected by line segments. Barrow et al. (1977)
introduces the chamfer matching for image registration,
where line features detected in the two image are matched
by minimizing the distance between them. Borgefors (1988)
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presented a modified version of Barrow’s work by applying
the sequential distance transform together with the root
mean square error. The angles between the relevant inter-
secting lines have been used by Zana and Klein (1999). Dif-
ferential descriptors of the image function in the
neighborhood of the detected control points has been pre-
sented by Montesinos et al. (2000). In (Freeman, 1974; Li
et al., 1995; Saghri and Freeman, 1981) chain code repre-
sentation of contour was described as an invariant descrip-
tor for registration.

Other methods use the invariant shape descriptors of the
image regions. Sester et al. (1998) proposed the use of elon-
gation parameter, compactness, number of holes etc. Flus-
ser and Suk (1994) have described moment based invariant
approach for image registration. Registration of images
with geometric distortion is presented in (Flusser and
Suk, 1994; Goshtasby, 1988). Shekhar et al. (1999) has
combined different types of features and their descriptors
for image registration. A cross-entropy based similarity
measure called mutual information is described in (Wells
et al., 1996; Maes et al., 1996; Viola and Wells, 1997; Pluim
et al., 2000; Roche et al., 2000; Zhu, 2002).

Feature computation in the above feature-based meth-
ods is often computationally demanding. In (Brown,
1992) a family of methods, based on correlation of intensity
values in two images, has been proposed for fast image reg-
istration. The sum of absolute or squared differences (SSD)
(Barnea and Silverman, 1972) based methods compute the
sum of absolute or squared differences in pixel brightness
between reference image and target image. This technique
is very sensitive to occlusion. Normalized cross-correlation
(NCC) between pixel intensities can also be used for image
registration. NCC computes the degree of similarity
between reference image and target image for window size
equal to that of template image and then pickup the posi-
tion of best match. The NCC (Barnea and Silverman, 1972;
Aggarwal et al., 1981) is effectively used for registration of
the images having uniform brightness, but this technique
does fail to pickup the correct position in case of partial
occlusion in the given scene.

Venot et al. (1984) used the sum of number of sign
changes between corresponding pixels in a pair of the
images as a matching score. This method also cannot han-
dle occlusion. Lai (2000) has given an efficient image
matching algorithm for partial occlusion. Kaneko et al.
(2002) has presented a similarity measure termed as incre-
ment sign correlation (ISC), which was shown to be robust
for fluctuation in illumination and a class of occlusion. But
this method fails if the occluding object is not of uniform
brightness. A modified version of ISC called selective cor-
relation coefficient (SCC) was proposed by Kaneko et al.
(2003), where they define a mask function using increment
information of brightness to filter out irrelevant pixel infor-
mation. The limitation of this method is that in case of
occlusion the 50 percent of the pixels in the occluded region
still participate in the computation of correlation coeffi-
cient, and may lead to registration failure. The masking
function used in calculation of SCC is binary in nature
and hence does not represent the level of consistency
between corresponding pixels in the two images. The effi-
ciency of the method could be improved by defining the
real valued mask coefficients.

In this paper an M-estimator correlation-coefficient
based image registration algorithm has been proposed. It
uses the principles of robust statistics (Black and Rangara-
jan, 1996; Huber, 1981; Rey, 1983; Hampel et al., 1986). It
falls in the category of brightness based registration meth-
ods and is fast compared to known feature based methods
(Aggarwal et al., 1981; Kaneko et al., 2003). The goal of
this work is to circumvent the problem of sensitivity of
brightness based methods to fluctuations in image bright-
ness, noise and presence of occlusion. Real valued mask
coefficients has been defined for this purpose using two
M-estimators, namely, Huber’s estimator (Huber, 1981)
and Tukey’s Bisquare estimator (Tukey, 1977).

M-estimators have been widely used in statistics litera-
ture (Huber, 1981; Rey, 1983; Hampel et al., 1986; Tukey,
1977), to separate the outlying noise in the data. M-estima-
tor-based mask coefficient reduces the influence of noisy
pixels and those in occluded regions. This leads to improved
registration performance in real world images which is dem-
onstrated through experiments on object, face and aerial
images under different environmental conditions.

The rest of the paper is organized as follows. Section 2
presents the correlation based methods for image registra-
tion. The M-estimator based image registration method
developed in this work is discussed in Section 3. The exper-
imental results are analyzed in Section 4. Section 5 con-
cludes the paper.
2. Correlation-based algorithms for image registration

In correlation-based methods, correspondence for a
pixel in the template image is achieved by searching over
windows of same sizes in the target image. This section dis-
cusses some of the existing correlation-based methods.
2.1. Sum of squared differences (SSD)

Let F = {F1,F2, . . . ,Fn} and f = {f1, f2, . . . , fn} be the
one-dimensional lists of brightness values for same sized
windows in the target and template image respectively. In
(Barnea and Silverman, 1972) the sum of square of Euclid-
ean distance between the corresponding pixels in the two
images F and f is defined by SSD, where the size of tem-
plate image window is n,

SSD ¼
Xn

i¼1

ðF i � fiÞ2:

Note that the value of SSD close to zero indicates the best
match. The computation of SSD is efficient but is very sen-
sitive to changes in image brightness due to occlusion and
shading.
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2.2. Normalized cross-correlation coefficient (NCC)

Normalized cross-correlation coefficient (NCC) (Barnea
and Silverman, 1972; Aggarwal et al., 1981) is defined as

NCC ¼
Pn

i¼1ðF i � �F Þðfi � �f ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðF i � �F Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðfi � �f Þ2

q ;

where �F and �f are the mean brightness values in the target
image and template image, respectively.

The SSD and NCC both estimate the degree of linear
dependence between the corresponding pixel brightness
values being compared. The absolute value of NCC lies
between 0 and 1 where value closer to 1 indicates the better
match. The NCC is preferred over SSD because it is invari-
ant to linear brightness and contrast variations between
matching windows. The SSD and NCC are equivalent for
Normalized images. It is observed that the SSD and
NCC both perform badly in the presence of non-linear
pixel brightness variation due to illumination variation,
occlusion and shadow.

2.3. Increment sign correlation coefficient (ISC)

Increment sign correlation algorithm (Kaneko et al.,
2002) first converts the list of pixel brightness values to a
list of corresponding binary codes B = {b1,b2, . . . ,bn�1}
based on the brightness increment information. For the
target image the binary codes (bF

i ) is defined as

bF
i ¼

1 if F iþ1 P F i;

0 otherwise:

�
ð1Þ

Similarly, the binary codes (bf
i ) for template image is de-

fined as

bf
i ¼

1 if f iþ1 P fi;

0 otherwise:

�
ð2Þ

The Increment Sign Correlation Coefficient (ISC), between
bF

i and bf
i is defined as follows:

ISC ¼ 1

n

Xn

i¼1

bF
i bf

i þ ð1� bF
i Þð1� bf

i Þ
� �

:

2.4. Selective correlation coefficient (SCC)

Selective correlation coefficient SCC method (Kaneko
et al., 2003) is an extension of NCC method with a masking
function for corresponding pixels in both the images. Thus
only some selected pixels contribute to similarity computa-
tion. Irrelevant pixels (e.g., in occluded region) are masked.
SCC is defined as

SCC ¼
Pn

i¼1ciðF i � �F Þðfi � �f ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ciðF i � �F Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ciðfi � �f Þ2

q ;

where �F and �f have the same meaning as in Section 2.2,
and the mask coefficient ci represents the similarity of sign
increment in the adjacent pixels in both the images. The
mask coefficient is defined as the bitwise exclusive NOR
of corresponding binary codes of the template and target
image. Mask coefficient is represented as follows:

ci ¼
1� jbF

i � bf
i j if i ¼ 0 or even;

ci�1 if i ¼ odd;

(

where bF
i and bf

i are defined in (1) and (2) respectively.

3. Image registration using M-estimators

This section presents the definition of M-estimators fol-
lowed by the robust image registration algorithms devel-
oped in this work. In Section 3.1, general definition of
M-estimators has been given. The two M-estimators, viz
Huber and Tukey, used in this study have also been
described in Section 3.1. The two robust image registration
algorithms using Huber’s and Tukey’s M-estimators have
been given in Section 3.2.

3.1. M-estimators

M-estimators are generalizations of the usual maximum
likelihood estimates (Huber, 1981; Rey, 1983; Hampel
et al., 1986; Black and Rangarajan, 1996). Classically a
parameter V is obtained by maximizing the likelihood
function L, i.e. if xi is the residual of ith data point, optimal
parameter V* is given by

V � ¼ argmax L ¼
Y

i

f ðxijV Þ
 !

or equivalently

V � ¼ argmax � ln L ¼ �
X

i

ln f ðxijV Þ
 !

:

The estimators of type M are solutions of the more general
structure

V � ¼ argmin M ¼
X

qðxi; V Þ
� �

;

where the function q(Æ) is a symmetric positive definite
function with a unique minimum at zero and is chosen to
be increasing slower than quadratically.

Instead of solving this problem directly, we can reformu-
late it as an iterated weighted least-square problem. That is,
for estimating a parameter vector V = [v1,v2, . . . ,vn]T, the
M-estimator of V based on the function q(xi), is the solu-
tion of following n equations:X

wðxi; V Þ
oxi

oj
¼ 0 for j ¼ 1; 2; . . . ; n:

The derivative w(x) = dq(x)/dx is called the influence func-

tion, which measures the influence of data point on the va-
lue of parameter estimate. For a robust estimator the
influence of any single data point does not introduce any
significant error (Rey, 1983). This makes it less sensitive



Fig. 1. Huber’s M-estimator: (a) q-function, (b) influence function w.
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to outliers. The M-estimator should fulfill the following
constraints:

(1) Influence function should be bounded.
(2) Robust estimator should be unique i.e. the objective

function of parameter vector V should have unique
minimum. This requires that the individual q-func-
tion is convex in variable V.

(3) The gradient oqð:Þ
oV 6¼ 0, whenever oq2ð:Þ

oV 2 is zero.

Several M-estimators have been discussed in literature
(Huber, 1981; Rey, 1983; Hampel et al., 1986; Tukey,
1977) using different types of influence functions. It is
observed from the simulation results that Huber’s and
Tukey’s M-estimators give the best performance and hence,
these two M-estimators are considered for this work.

3.1.1. Huber’s M-estimator

Huber’s function is a parabola in the vicinity of zero,
and increases linearly at a given level jxj > k. This helps
in restricting influence of outliers. Using this estimator an
asymptotic efficiency of 95% on the standard normal distri-
bution is obtained with the tuning constant k = 1.345r,
where r is estimated standard deviation of errors. From
the simulation results, we observe that for the same value
of tuning parameter k it is equally efficient on many non-
normal distributions also. This estimator is found to be
superior to most of the other estimators for a wide range
of data. The q(Æ) function and the influence function w(Æ)
for this M-estimator are given below

qðxÞ ¼ x2=2 if jxj < k;

kðjxj � k=2Þ if jxjP k;

�

wðxÞ ¼
x if jxj < k;

k sgnðxÞ if jxjP k:

� ð3Þ

The nature of the q and the influence function w defined in
the above equations are shown in Fig. 1.

3.1.2. Tukey’s Bisquare M-estimator

The Tukey’s Bisquare function (Tukey, 1977) can sup-
press the outliers even further. Using Tukey’s Bisquare
function, 95% asymptotic efficiency on the standard nor-
mal and non-normal distributions is obtained with the tun-
ing constant c = 4.6851r. The q(Æ) function and the
influence function w(Æ) for this M-estimator are given below

qðxÞ ¼
c2

6
ð1� ½1� ðx=cÞ2�3Þ if jxj 6 c;

c2

6
if jxj > c;

(

wðxÞ ¼ x½1� ðx=cÞ2�2 if jxj 6 c;

0 if jxj > c:

( ð4Þ

The nature of the q and the influence function w for Tu-
key’s Bisquare estimator are shown in Fig. 2.

It can be seen from Figs. 1 and 2 that the q function for
Tukey saturates for large values of x, whereas for Huber it
increases linearly for all x. Through simulation it has been
found that the best choice for the tuning constants k for
Huber’s M-estimator and c of Tukey’s Bisquare M-estima-
tor are k = 1.345r and c = 4.685r respectively for the esti-
mated standard deviation r. These choices of tuning
constants matched with that given in (Rey, 1983).

3.2. Registration algorithms using M-estimators

Based on the two M-estimators, viz. Huber and Tukey,
two registration algorithms, ‘‘ROBUST_IMAGE_MATCH_HUB’’
and ‘‘ROBUST_IMAGE_MATCH_TUK’’ have been designed.
The algorithms choose windows of certain size in both
the template and target images. Let f = {fi}i=1,2,. . .,n repre-
sents a one-dimensional list of intensity values of n pixel
in the template image and F = {Fi}i=1, 2,. . .,n be the similar
list in the target image of the same size n, which is drawn
from the scene. These images are represented in one-dimen-
sional list for simplicity without loss of generality. In this
paper the pixels intensity values are read row wise and then
stacked in the natural order of the rows.

An M-estimator correlation coefficient (MCC) is com-
puted between the pixel intensity values of these two win-
dows using Huber’s and Tukey’s statistics. The masking
function thus obtained is real valued and suppresses the
influence of outliers i.e., noise pixels and pixel in occluded



Fig. 2. Tukey’s Bisquare M-estimator: (a) q-function, (b) influence
function w.
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regions to achieve robustness. The standard deviation r in
the proposed algorithms for computation of MCC is a crit-
ical parameter. In our experiments it is computed on-line
during the search process adaptively for the pair of tem-
plate image and equal portion of target image by consider-
ing the residual image. In residual image each pixel
brightness value is replaced by the corresponding difference
of original brightness value and mean brightness value. The
M-estimator correlation coefficients give a measure of the
degree of similarity between the two windows and the best
matching window in the target image is returned and con-
sidered to be registered with the corresponding window in
the template image. The occlusion has been taken care by
using the concept of M-estimator on the residual image
where the residual information is computed on-line during
correlation computation. This process is detailed in Algo-
rithms 3.1 and 3.2.
3.3. Search method

Exhaustive search with branch-and-bound approach is
used for reducing the redundant MCC values. The basic pro-
cedure is based on an estimation and comparison of correla-
tion value. The maximal value of MCC reports of the
candidate position registered through scanning. At any
new potential position value of MCC is ruled out or
branched on the way if it is less than the maximal MCC value
achieved in the previous iterations. This helps in reducing the
number of correlation values to be compared finally to get
the maximum value which indicates the best match position.

The method MCC presented in this paper exhibits better
time complexity as compared to SCC. In MCC the pixels in
the occluded, saturated or noisy region of the image con-
tribute negligibly toward the computation cost because
their influence on the correlation computation is reduced
by the M-estimators. Therefore, compared to NCC less
number of pixels participate in correlation computation.
Hence, it has a lower time complexity. In SCC also half
of the pixels in the occluded region do not participate in
the correlation computation. But it involves an additional
preprocessing step of converting the gray-scale image into
a binary one. Preprocessing has to be done for both the
template and target images and this preprocessing step
takes a significant amount of time. As MCC does not
undergo any such preprocessing, a lower computation time
as compared to that of SCC is obvious.

Algorithm 3.1 ROBUST_IMAGE_MATCH_HUB

Let mH
1 and mH

2 represent the masks for template and
target images respectively and fi, Fi are defined as the pixel
brightness values in template and target images respectively.

Step 1: Using the influence function of Huber’s M-estima-
tor defined in (3), compute the mask mH

1 ðiÞ 8 resi-
dues xi ¼ fi � �f for each pixel i = 1,2, . . . ,n and
mean brightness value �f of the template image as
follows:
mH
1 ðiÞ ¼

xi if xi < k1;

k1 sgnðxiÞ if xi P k1;

�

where k1 = 1.345rx and rx is the standard devia-
tion of template image brightness residues.
Step 2: Using the influence function in (3) compute the
mask mH

2 ðiÞ 8 residues yi ¼ F i � �F for each pixel
i = 1,2, . . . ,n and mean brightness value �F in the
target image windows (of same size as template
image) as follows:
mH
2 ðiÞ ¼

yi if yi < k2;

k2 sgnðyiÞ if yi P k2;

�

where k2 = 1.345ry and ry is the standard devia-
tion of target image brightness residues.
Step 3: Compute the M-estimator correlation coefficient

MCCH between the masked template and target
image as follows:
MCCH ¼
Pn

i¼1mH ðiÞðF i� �F Þðfi� �f ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1mH

2 ðiÞðF i� �F Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1mH
1 ðiÞðfi� �f Þ2

q ;

where mH ðiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mH

1 ðiÞ � mH
2 ðiÞ

p
.
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Step 4: Return the window position having the maximum
value of MCCH, indicating the best match.
Algorithm 3.2 ROBUST_IMAGE_MATCH_TUK

Let mT
1 and mT

2 represent the masks for template and
target images respectively and fi, Fi are defined as the pixel
Fig. 3. Object image: (a) template, (b) target image registered using SCC, (c) t
registered using MCC with Tukey’s estimator. The occlusion (40%) has been

Fig. 4. Face image: (a) template, (b) target image registered using SCC, (c) ta
registered using MCC with Tukey’s estimator. The occlusion (40%) is natural
brightness values in template and target images
respectively.

Step 1: Using the influence function of Tukey’s M-estima-
tor defined by (4), compute the mask mT

1 ðiÞ 8 resi-
dues xi ¼ fi � �f for each pixel i = 1,2, . . . ,n and
arget image registered using MCC with Huber estimator, (d) target image
artificially generated.

rget image registered using MCC with Huber estimator, (d) target image
.
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mean brightness value �f of the template image as
follows:
Fig. 5. Fac
registered u

Fig. 6. Sat
registered u
mT
1 ðiÞ ¼

xi½1� ðxi=c1Þ2�2 if xi 6 c1;

0 if xi > c1;

(

where c1 = 4.685rx and rx is the standard devia-
tion of template image brightness residues.
e image: (a) template, (b) target image registered using SCC, (c) tar
sing MCC with Tukey’s estimator. The occlusion (30%) has been

ellite image: (a) template, (b) target image registered using SCC, (c) t
sing MCC with Tukey’s estimator. The target image contains nois
Step 2: Using the influence function in (4), compute the
mask mT

2 ðiÞ 8 residues yi ¼ F i � �F for each pixel
i = 1,2, . . . ,n and mean brightness value �F in the
target image windows (of same size as template
image) using following expression:
get image r
artificially g

arget image
e patches.
mT
2 ðiÞ ¼

yi½1� ðyi=c2Þ2�2 if yi 6 c2;

0 if yi > c2;

(

egistered using MCC with Huber’s estimator, (d) target image
enerated.

registered using MCC with Huber’s estimator, (d) target image
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where c2 = 4.685ry and ry is the standard devia-
tion of target image brightness residues.
Step 3: Compute the M-estimator correlation coefficient

MCCT between the masked template and target
images as follows:
MCCT ¼
Pn

i¼1mTðiÞðF i� �F Þðfi� �f ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1mT

2 ðiÞðF i� �F Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1mT
1 ðiÞðfi� �f Þ2

q ;

where mTðiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mT

1 ðiÞ � mT
2 ðiÞ

p
.

Step 4: Return the window position having the maximum
value of MCCT, indicating the best match.
Fig. 8. Profiles of correlation values: (a) MCC, (b) SCC.
4. Experimental results

Experimental results conducted in several real life
images and some of them are presented in this section.
Three important categories of images where registration
is usually required are considered. Theses are face, object
and satellite images. To study the robustness property of
the proposed image registration method the experiments
have been run on noisy images, color images, multimodal
images and images containing objects with varying degrees
of occlusion.

Both artificial and natural occlusion are considered. The
performance of proposed method is compared with the
best correlation based image registration method reported
in literature, namely selective correlation coefficient
(SCC) based method (Kaneko et al., 2003). The few repre-
sentative template images and target images with the regis-
tered region using the proposed (MCC) and SCC methods
are shown in Figs. 3–11. The Canon A70, 3.2Megapixel,
ce image: (a) template, (b) target image registered u sing SCC, (c) target image registered using MCC with Huber’s estimator, (d) target image
using MCC with Tukey’s estimator. The target image contains high degree (60%) of occlusion.
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ccd camera was used for taking the images of faces and
objects. The satellite images obtained from Indian
Remote-sensing Satellite IRS � P6(RESOURCE SAT � 1)
with AWiFS camera of spatial resolution 56 m. Table 1
shows the experimental specifications.

Target images in Figs. 3 and 4 contain moderate amount
of artificial and natural occlusion (about 40%). Both SCC
and MCC successfully register the template image in this
case, although the time required by MCC is much less as
compared to SCC (Table 2). The image in Fig. 5 contains
relatively high amount of artificial occlusion, but still both
MCC and SCC are successful. Here also MCC take less
time compared to SCC. Note that in all the above images
Fig. 9. Profiles of brightness and corre
the pose of the object in target image is different from that
in template image. In the satellite image (Fig. 6) patches of
noise are present in significant portion of target image. In
this case also both MCC and SCC performed satisfactorily
but MCC takes less time compared to SCC. It is seen from
Fig. 7, that SCC registered incorrectly whereas MCC is still
successful. In this image the amount of occlusion is very
high (about 60%), and is of complex intensity variation.

Fig. 8 shows the profiles of correlation values of MCC
and SCC for Fig. 7. In Fig. 8a the highest peak indicates
the correct match position. It is evident from Fig. 8b that
SCC also has a peak at the same location but it is not
the highest over the entire scene and hence, SCC has failed
lation values: (a) MCC, (b) SCC.
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to locate the correct match position. Fig. 9a and 9b show
the profile of brightness values and variation of MCC
and SCC respectively.

The registration of multimodal satellite images is dem-
onstrated in Fig. 10. In this case the template is taken from
Fig. 10. Multimodal Satellite images: (a) template, (b) target image registered
(d) target image registered using MCC with Tukey’s estimator. The target ima

Fig. 11. Colored image: (a) template, (b) target image registered using SCC,
image registered using MCC with Tukey’s estimator. The target image contai
legend, the reader is referred to the web version of this article.)
Band2 and target image is a Band3 image which contains
noise patches. It is clearly evident from Fig. 10 and Table
2 that MCC performed satisfactorily but the registration
performance of SCC for multimodal images is unsatisfac-
tory. The experiments are also carried out on several color
using SCC, (c) target image registered using MCC with Huber’s estimator,
ge contains noise patches.

(c) target image registered using MCC with Huber’s estimator, (d) target
ns occlusion. (For interpretation of the references in colour in this figure



Table 1
Experimental specifications

Object image (computer)

Target 265 · 146
Template 90 · 71

Face image (3 boys)

Target 396 · 251
Template 72 · 78

Face image (3 girls)

Target 300 · 125
Template 48 · 58

Satellite image

Target 512 · 512
Template 90 · 71

Face image (party picture)

Target 410 · 308
Template 50 · 57

Colored image

Target 200 · 150 · 3
Template 32 · 110 · 3

Satellite image (multimodal)

Target 512 · 512
Template 120 · 92

Table 2
Comparison of computational time (in seconds) required by registration
algorithms

Image MCC-Huber MCC- Tukey SCC

Object image
Computer

(Natural occlusion)
19.602 22.563 38.797

Face image
3 Girls

(Artificial occlusion)
20.779 41.000 55.250

Face image
3 Boys

(Natural occlusion)
58.457 81.079 136.156

Satellite image
(with Noise Patches) 397.567 440.981 872.050

Face image
Party picture

(�60% occlusion)
107.082 120.338 231.596

Incorrect match

Satellite image
Multimodal

(with Noise Patches)
477.667 759.955 1441.568

Incorrect match

Colored image
(Artificial occlusion)

171.332 208.889 144.177
Incorrect match
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images and an example for demonstration purpose is
shown in Fig. 11. The color picture used here is down-
loaded from internet and occlusion is created artificially.
Finally, it is clear from Fig. 11 that both Huber’s and
Tukey’s MCC performed the accurate registration whereas
the SCC gave incorrect match. However, it is to be noted
here that on the gray scale version of the same set of images
the SCC also gave the correct match. It is to be noted that
we have tried the normalized correlation coefficient (NCC)
method in all the cases and it has been found that it failed
to register the template image. The success of MCC in case
of gray scale, color and multimodal satellite images demon-
strates that the proposed method is highly robust.

The comparison of computational time required by the
MCC and SCC registration methods is given in Table 2.
The values are for a Pentium-IV PC with 256 MB RAM
in a MATLAB environment. It is evident from Table 2 that
MCC requires significantly less time as compared to SCC
for all the images. The reason for MCC to take less time
is that it does not convert the gray scale images in to binary
images whereas, in SCC the masking function used is bin-
ary and an additional time is required for preprocessing to
convert the gray scale/color or multimodal images in to the
corresponding binary codes.
5. Conclusions

This paper has proposed a method, namely MCC, to
robustly register images in the presence of noise and occlu-
sion up to 60%. This method is based on the concept of
M-estimators. The Huber’s and Tukey’s M-estimators are
used in this work. It has been shown that the proposed
algorithm performs efficiently in occluded and noisy images
whereas other correlation based methods produce the
incorrect registration. MCC method is faster and robust
as compared to the selective correlation coefficient (SCC)
based method. It has been shown through experimental
results that MCC can efficiently register face, object, satel-
lite images, multimodal images and color images; thereby
signifying its suitability in a wide range of applications.
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