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In this paper, we propose a graph based algorithm that efficiently segments common objects from
multiple images. We first generate a number of object proposals from each image. Then, an undirected
graph is constructed based on proposal similarities and co-saliency maps. Two different methods are
followed to extract the proposals containing common objects. They are: (1) degree centrality of nodes
obtained after graph thresholding and (2) site entropy rate of nodes calculated on the stationary distri-
bution of Markov chain constructed on the graph. Finally, we obtain the co-segmented image region
by selecting the more salient of the object proposals obtained by the two methods, for each image.
Multiple instances of the common object are also segmented efficiently. The proposed method has been
compared with many existing co-segmentation methods on three standard co-segmentation datasets.
Experimental results show its effectiveness in co-segmentation, with larger IoU values as compared to
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1. Introduction

Co-segmentation has been an active research topic in the area
of image processing. Many practical object segmentation methods
are based on generating object priors through human interaction
[1,2]. Users are here asked to provide segmentation cues manually
[3,4]. When the number of target images is high, users face a huge
workload of providing manual segmentation cues. The principle of
co-segmentation is to exploit the availability of multiple images
that contain instances of the same “object” classes to supplement
detailed supervisory information. This reduces the user workload
significantly. As opposed to single image segmentation,
co-segmentation aggregates information from multiple images
(which contain objects with similar features) to improve the seg-
mentation of individual images. Co-segmentation methods which
can handle large numbers of images and object classes find poten-
tial applications in many fields such as automated image retrieval,
object tracking, and object recognition.

Many of the existing methods for co-segmentation are modeled
on the Markov random field (MRF)-based optimization procedures
[7,9-13] and other graph theoretic methods [19,36]. The MRF
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based methods mostly formulate energy functions based on fore-
ground or background consistency constraints and optimize such
functions to obtain the segmentations. The graph based methods
model image regions as nodes of a graph (which represent object
proposals) and then perform graph processing operations such as
node clustering and shortest path finding, to extract the strongly
connected nodes representing co-segmented image regions. How-
ever, these methods do not utilize the essential entropy informa-
tion furnished from the graphs, such as the rate entropy of the
stationary distribution on a Markov chain constructed on the
graph, or the edge-weight threshold entropy information. Further-
more, if there are a large number of original images in an image
group, the problem becomes more expensive to compute. Develop-
ment of fast algorithms which avoid time complex optimization
procedures as in MRF-based methods, as well as utilize entropy
information in constructed graphs, still remains a challenge.

In this paper, we present a simple and effective co-segmentation
model, which integrates the notion of degree centrality of nodes,
and their site entropy rate information (obtained from the station-
ary distribution of the constructed Markov chain), to co-segment
multiple similar images. The proposed model consists of four main
steps. The first step is to segment the original images into a number
of local semantic regions, which is achieved by applying object pro-
posal generation algorithm as described in [5]. Out of the several
object proposals suggested by the algorithm, we select only those
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proposals whose mean saliency value is greater than the Otsu
threshold calculated on the respective images [6]. In the second
step, we construct a graph to represent the local region similarities
according to the feature distance and the co-saliency maps gener-
ated by using the method in [7]. As the third step, we apply two
graph based algorithms on the constructed graph to extract the
object proposal (which contains the common object) from each
image in the image group. They are: (i) Degree centrality based
node selection and (ii) Site entropy rate based node selection.
Finally, we select the object proposal with maximum mean saliency
value among the two object proposals computed by the two graph
based methods, as the co-segmented image region for an image. We
evaluate our method on many groups of images. The experimental
results demonstrate the effectiveness of our method.

The remainder of this paper is organized as follows. A brief
review of the related works in the field of co-segmentation is given
in Section 2. We explain the proposed method in Section 3,
describing the two sub-methods: site entropy rate based and
degree centrality based, in details. Experimental results are
provided in Section 4 to support the efficiency of the proposed
algorithm. Finally, in Section 5, we draw conclusions with future
research issues.

2. Related work

The task of co-segmentation was first introduced by Rother
et al. [8], where co-segmentation was modeled as an optimization
problem in which a Markov random field (MRF)-based method was
proposed to extract the objects from image pairs by adding the
constraint of foreground similarity (measured by L1-norm) to tra-
ditional MRF-based procedures. Trust region graph cuts (TRGC)
method was employed for energy function optimization. Many
other methods were proposed [9-12] following this MRF-based
optimization framework. Mukherjee et al. replaced the L1-norm
by L2-norm in [9]. Pseudo-Boolean optimization method was used
for the energy function optimization. Hochbaum and Singh [10]
rewarded foreground similarity instead of penalizing foreground
difference and that simplified the energy function optimization.
In [13], Vicente et al. extended the foreground similarity measure-
ment by employing dual decomposition for the energy function
optimization. Chang et al. [12] used the graph-cut algorithm to
optimize a global energy term which considered both foreground
similarity and background consistency.

Several other co-segmentation models were proposed apart
from MRF-based methods. Joulin et al. [14] combined discrimina-
tive clustering and spectral clustering methods to perform co-
segmentation of multiple classes and for a significantly large num-
ber of images. To exploit priors about image more directly, an inter-
active co-segmentation method was proposed by Batra et al.in [15],
which segments common objects through human interaction
guided by an automatic recommendation system. Mukherjee et al.
[16] put forward a scale-invariant method of co-segmentation with
the requirement that the rank of the matrix corresponding to fore-
ground regions should equal one. Vicente et al. [17] proposed a
model which emphasizes interesting objects co-segmentation by
selecting useful features from a total of 33 features through
random forest regressor. In [18], Kimet al. followed a distributed
co-segmentation approach via sub-modular optimization on aniso-
tropic diffusion for a highly variable large-scale image collection.
Meng et al. [19] designed a digraph to represent the local region
similarities according to the feature distance and the saliency
map, and formulated the co-segmentation problem as a shortest
path problem. In this paper, we adopt a similar graph based
approach. Unlike the layered digraph as followed in [19], we con-
struct a k-partite graph and then implement two methods which
make use of entropy information: degree centrality based and site

entropy rate based, and then select the object proposal which most
accurately segments the common object in the group.

Rubio et al. [20] proposed a multiple-scale multiple-image gen-
erative model, which jointly estimated the foreground and back-
ground appearance distributions from many images. Meng et al.
[21] proposed a model which integrates active contours method
and rewarding strategy. They generate a new energy function with
two conflicting goals: foreground similarity among the images and
background consistency in each image, and then use a mutual evo-
lution approach to minimize the energy function value. In a more
recent method of Tao et al. [22], object co-segmentation method
based on shape conformability is put forward. It focuses on the
shape consistency of the foreground objects in image set. The com-
mon shape pattern is extracted if the foreground objects are varied
in appearance but share similar shape structures.

There have been many works which have utilized saliency infor-
mation in the process of segmentation as well as co-segmentation.
[23] used saliency to automate the selection of foreground object
and background seeds, needed for image segmentation. In a similar
work [24], a co-saliency prior has been used as a hint about possible
foreground locations for image co-segmentation task. Besides
image segmentation, saliency/co-saliency has also been utilized in
similar and related applications including image classification
[25], ranking [26] and de-blurring [27].

3. Proposed co-segmentation method

The flowchart of the main steps of the proposed method is shown
in Fig. 1. It consists of four major steps. In subsequent sections, we
describe the object proposal generation method, the approach of
graph construction, and the graph based co-segmentation methods
used to extract common object from each image.

3.1. Object proposal generation and salient proposal selection

We explain the steps followed to generate object proposals and
co-saliency maps for each image, followed by subsequent salient
object proposal selection.

Step 1: The object proposal generation procedure in [5] is imple-
mented to segment the original image into a number of local
regions by object proposal generation. In this approach, both local
and global search procedures are combined in the space of sets of
superpixels, to obtain accurate segmentations for all objects of an
image. Assume that I = {I,I5,...,I,} denotes the original image
set, of size m. We first segment each image I; into a set of overlap-

ping objects proposals P' = {Pil, . } where N; is the number of
the object proposals in image I;. The set of all initial objects propos-
als is denoted as Piyiia = {P.1 .., P }

initial> * * * 5 * initial

Step 2: To extract the salient object proposals from the set of
proposals obtained (as described in Step 1), we first generate co-
saliency maps of all the images in an image set by the self-
adaptively weighted co-saliency detection technique recently pro-
posed method by Cao et al. [7]. This method exploits the relation-
ship of multiple saliency cues and obtains the self-adaptive weight
to generate the co-saliency maps. In our experiment, we obtain sal-
iency maps from the methods in [28-30], and get co-saliency maps
using this self-adaptively weighted co-saliency detection method.

Step 3: After the co-saliency maps are obtained, we select only
those object proposals whose mean co-saliency value is greater
than a threshold. Following [19], for an object proposal P} from

an image I;, we measure its mean co-saliency value sj’i as:

sl = (Zm_”@; g D) ' <ﬁ> (1)
m]‘ M;
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Fig. 1. Flowchart of proposed method for image co-segmentation.

where S; = co-saliency map for image I; and mj‘i is the number of the
pixels in the proposal Pi, mj; is the number of the salient pixels in P,

and M; is the number of salient pixels in the image I;.

We consider salient pixels having saliency value higher than a
threshold of 0.5. The first term in Eq. (1) selects local regions with
large mean saliency value. Because a small local region may have
large mean saliency value, which results in incomplete segmenta-
tion, we use the second term to avoid the large value in a small
local region. The mean co-saliency threshold value is determined
by performing Otsu thresholding [6] on the co-saliency maps
obtained by [7]. Let T, be the Otsu threshold for an image I,
We consider only the proposals whose mean co-saliency value

i

(as determined from Eq. (1)), sJ'ﬁ > Ty, for graph construction (in
Section 3.2). Thus we get a refined set of proposals P = {P,...,P"}.

3.2. Graph construction

Based on the assumption that the common object is segmented
as a local region by the multiple local region generation method,
the co-segmentation can be achieved by selecting the common
objects from the local regions according to their similarities. We
represent the similarities between generated proposals, set P by
a labeled k-partite graph G. Assuming Ly and Lg denote the set of
nodes and edge labels respectively, the graph G is a 3-tuple
G = (V,E,v), where V is a finite set of nodes, ECV x V is the set
of edges and v is the image label of a node. Each node v; € V rep-
resents an object proposal P} . An undirected edge corresponding to
nodes »; and wv, is depicted as e=E(vq,v;)=E(vq, v1).
Furthermore, a weight « is assigned for each edge. To
increase the diversities of a class we do not consider the self-
similarities between regions within the same image. We avoid

the self-similarities by introducing two connection constraints:
(1) Edge e =E(vy,vik) =0Vi and (2) For any pair of edges
e = E(vy, vi) and € = E(vy, vyy) deriving from vy, we have k # K.
These constraints generate a k-partite graph.

3.3. Assignment of graph edge weights

We calculate the weight wj, of each edge e = E(vy, vy), by
combining factors representing region similarity and mean sal-
iency of nodes corresponding to object proposals.

(1) Region similarity: The region term o, represents the fea-

ture similarity between two local regions and is given by:

T —
Wij g =

1
d(fijvfkl) ' (2)

where f;; and f,, are the features vectors of the local regions PJ’ and
P,k respectively. In this paper, normalized color histogram of a pro-
posal P} is considered as its feature vector f;. d(f;,fy) denotes the
distance between two feature vectors f; and f,. Feature distance
d is calculated by y?-distance measure as follows:

d(fi’vfkl) = ZM7 3)
’ b (fﬁ +f£1)

where b = number of bins in the normalized color histogram.

(2) Saliency: Since the original images have similar background,
we introduce the saliency term to distinguish the common objects
from the similar backgrounds. As described in Section 3.1, we
obtain co-saliency maps S; for each image I; in their respective
image groups. The saliency term wj, represents gives more
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weightage to proposals whose mean co-saliency values (as mea-
sured in Section 3.1) are higher than the rest. It is measured as:

g = Sij + Sits 4)

where s; and s represent the mean saliency values of the object
proposals P; and Pj.
Finally, the weight wj;) (in Eq. (5)) is calculated as the product

of the weight corresponding to region similarity (in Eq. (2)) and the
weight corresponding to saliency value (in Eq. (4)).

AT s
Wijkl = Wjjgg - Djjgg 5)

3.4. Segmenting common objects from graph

We implement two different methods on the constructed graph
to find out the co-segmented regions for each image in the image
set with common object/objects. The first method extracts out
graph nodes based on their in-degrees on the graph thresholded
with entropy based thresholding method as in [31]. The second
method finds out nodes whose calculated site entropy rates on
the stationary distribution on the constructed Markov chain on
the graph are more. We describe below the two methods in details.

Fig. 4. Aperiodicity in a 3-partite graph A.

3.4.1. Degree centrality based co-segmented object proposal detection

Initially we have a k-partite graph G (k = number of images in
an image group) which we threshold to remove connections whose
strength fall below a certain threshold. To find an appropriate
threshold value, we follow the entropy based thresholding method.

First we select an edge weight threshold T, which is varied
between the minimum and the maximum edge weight in the
graph G. Next taking this threshold T, we form two sets of edges,
one set Sp representing discarded set of edges and the other set,
Ss the selected set of edges. Let w; be the weight of an edge E;.
For a particular threshold T, the ratio of summation of weights
for Sp to the weights for the set Sp U Ss is calculated as in Eq. (6).

_ ZwigTWi

L

The edge-weight entropy En, of the discarded and selected set of
edges Sp and Ss respectively is defined as:

(6)

En= —rlog(r) — (1 —r)log(1 —r) (7)

The edge-weight entropy En is a function of T. The threshold for
which edge-weight entropy is maximum is chosen as the edge-
weight threshold T. After thresholding, we get a modified thresh-
olded sparse graph Gu.s,. We intend to compute the in-degrees
of the nodes of the graph and select nodes with highest degrees.
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= 68.47%

Fig. 5. Comparison of image co-segmentation by DC and SER methods. (a) Original images, (b) co-saliency maps, (c) co-segmentations based on degree centrality,
(d) co-segmentations based on site entropy rate, (e) final co-segmented image regions, and (f) ground truth.

However, a fully connected graph has all nodes with the same
degree. In such a case, any random node could be a suitable candi-
date for selection. To circumvent this, we threshold the graph to
eliminate weak edges based on the entropy equation (7) and allow
edges above a certain threshold value (a threshold that maximizes
the entropy value) to participate in the node selection procedure to
achieve co-segmentation.

We show the co-segmentation procedure by employing entropy
based thresholding on the k-partite graph G in Fig. 2. We get the
co-segmented regions for each of the 3 images considered for the
Taj Mahal object class. The graph Gus, only keeps edges whose
edge-weights are greater than the determined threshold T. The
numbers aside the nodes (in brackets) denote their respective
in-degrees after thresholding. Nodes with the highest in-degrees
are marked by green circles. It may be noted that, there are two
nodes for image I which have the same highest in-degree value
(= 3). Therefore, we choose the node corresponding to that object
proposal, whose mean saliency value (as calculated in Eq. (1)) is
greater. In Fig. 2, the co-segmented proposal CSs, has greater mean
saliency than proposal CS;; and is thus selected as the final co-
segmented region CSs.

Fig. 3 shows the variation of mean edge-weight entropy, Enmean
(as in Eq. (7)) with threshold T, on iCoseg dataset used in [15]. In
our experiment, we sampled the mean entropy value, Eneq, at a
threshold interval of 0.05, starting from T; = 0.10 and ending with
Tr = 0.95. A threshold value, Tpaen = argmax;(Enmeqn) = 0.25 was
found to yield the highest mean entropy, Enme.; = 0.537 on the
iCoseg dataset [15]. Note here that, Tygen = 0.25 shown in Fig. 3,
indicates the threshold value which yields the highest mean
entropy on all image groups in the iCoseg dataset, whereas the
threshold T used for an individual image group depends on the
maximum entropy value En obtained for that particular group.

Now in the sparse graph Ggesn, We compute the in-degrees of
nodes. We sort the set N, of nodes with respect to the calculated
in-degrees. It is quite intuitive for nodes with higher in-degrees
to have better feature similarities as well as to represent proposals
with greater saliency as compared to others with lower in-degrees.
Thus we find for every image, the node with highest in-degree, and
the object proposals corresponding to those nodes become the co-
segmented regions for the respective images. Let this set of object
proposals be denoted by set Ppc.

3.4.2. Site entropy rate based co-segmented object proposal detection

Next, we consider the original constructed graph G for site
entropy rate computation. The stationary/equilibrium distribution
of a Markov chain constructed on a graph imparts insight about the
proportion of time a random walker would stay on each node in
such a distribution. In other words, it is indicative of node promi-
nence in terms of linkage strength with other nodes. Our goal is to
find the set of nodes which are most similar to each other, with
each node selected from one image in the group. Such a set of
nodes (for an image group) can be found when we determine the
node with greatest prominence among others, for every image.
Thus the use of the stationary distribution of Markov chain on
graph G, is quite intuitive in the context of co-segmentation
problem.

The stationary distribution of the Markov chain on the con-
structed k-partite graph G (as formulated in Section 3.2) exists
and is unique. For stationary distribution of Markov chain to exist
and to be unique, a graph must be ergodic i.e. irreducible and ape-
riodic. The constructed k-partite graph G is irreducible as there
always exists a positive probability path between any of the graph
nodes. From Fig. 4, we observe that in a 3-partite graph A, we have
two different paths for a random walker who starts from the node
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Fig. 6. Co-segmentation results of [14,18,33], and the proposed method on classes of iCoseg dataset. These classes are Redsox players, Ferrari, Stonehenge and Kendo. The rows
1, 7: original images. The rows 2, 8: Ground truth. The rows 3, 9: the results of DM method [14]. The rows 4, 10: the results of AD method [18]. The rows 5, 11: the results of SB

method [33]. The rows 6, 12: results of the proposed method.

P3;, i.e. path P3; — Py —P;; —P3; (walk length =3) and
P31 — Py — P13 — Py — P3q (Walk length = 4) This shows the
aperiodic nature of the graph A. Thus, for k > 2, we have an ergodic
Markov chain on graph G which ensures a unique stationary distri-
bution. For a bipartite graph (k = 2) however, the Markov chain
stationary distribution will exist, but it may not be unique.

Here, we utilize the site entropy rate (SER) of the equilibrium
distribution. SER was first defined by Wang et al. [32] where they
adopted it as a visual saliency measure. Inspired by the method, we
compute the entropy rates of nodes in the graph and select the
nodes with highest SERs for each image label. The selected nodes
(from each image) represents the object proposal which most
accurately contains the co-segmented image region. Transition
probability of the random walk from node i to node j is defined
in terms of the normalized edge weights between site i and j as
in Eq. (8).

(8)

Next, we compute the stationary distribution = on the Markov
chain formed with the transition matrix TP. For a random walk pro-
cess, the element of 7 at node i can be simply computed as 7t; = 2""7\',
where W; =37y is the total weight of edges emanating from
nodei,and W = 37, ;@ is the sum of the weights of all the edges.

The total information sent from one node to another is decided
by two terms: the transmission frequency and the amount of infor-
mation at each transmission. Site entropy rate measures the infor-
mation transmission which accounts for the two factors during the

random walk process. Site entropy rate (SER) of a node i is defined
as:

SER; = 7; - (Z —TP; - logTP,.j> ,

]

9)

The SER can be divided into two parts: the stationary distribu-
tion term 7; and the entropy term y_; — TP;; - logTP;. The 7; tells the
frequency at which a random walker visits node i. It is also the fre-
quency that node i communicates with the other nodes. The
entropy term ), — TP; - logTP; measures the uncertainty of node
i jumping to the other nodes at one step. It is related to the amount
of information transmitted from node i to the others at one step.
Thus we find for every image, the node with highest SER, and the
object proposals corresponding to those nodes become the
co-segmented regions for the respective images. Let this set of
object proposals be denoted by set Psgg.

3.4.3. Final co-segmentation

After obtaining the most salient object proposals Ppc and Psg
from the two methods respectively as described above, we choose
the object proposal with the highest mean co-saliency value as the

final co-segmented object proposal P}inu, for image I;Vi as shown in
Eq. (10). Fig. 5 shows some instances of co-segmented objects
using both degree centrality and site entropy rate based methods
and the selection of the more salient object proposal based on
co-saliency maps of the respective images. The IoU metrics of the
images have also been indicated (in percentages) for better

comparison.
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Fig. 7. Co-segmentation results of [14,18,33], and the proposed method on classes of Oxford 17 flowers dataset and Weizmann horses dataset. These classes are Windflower,
Dandelion, black horses and brown horses. The rows 1, 7: original images. The rows 2, 8: Ground truth. The rows 3, 9: the results of DM method [14]. The rows 4, 10: the results
of AD method [18]. The rows 5, 11: the results of SB method [33]. The rows 6, 12: results of the proposed method.

Fig. 8. Co-segmentation of objects with multiple instances in an image by the proposed method.
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Fig. 9. Co-segmentation of images with two classes by the proposed method.

Table 1

IoU values of the compared methods (highest values marked in bold) on the object classes of iCoseg dataset.
Class Method Class Method

DM [14] oc [17] AD [18] SB [33] Our DM [14] oC [17] AD [18] SB [33] Our
Bear 0.4135 0.5308 0.3078 0.6544 0.7213 Panda 0.3937 0.3606 0.3510 0.6579 0.4788
FC Players 0.2097 0.3817 0.4005 0.6206 0.7819 Kite 0.4894 0.5514 0.3027 0.7267 0.7345
Red Sox 0.5532 0.6896 0.6341 0.5803 0.6944 Gymnastics 0.4212 0.4301 0.3470 0.7435 0.8174
Stonehenge 0.4591 0.4897 0.2964 0.5221 0.5664 Skating 0.4720 0.4460 0.5120 0.7808 0.6825
Liverpool 0.3972 0.4549 0.4535 0.5650 0.6453 Soccer 0.3962 0.4879 0.5023 0.6537 0.4612
Ferrari 0.4814 0.5091 0.6023 0.6518 0.7560 Monk 0.3273 0.7833 0.6836 0.7420 0.8211
Taj Mahal 0.3234 0.3998 0.2176 0.4807 0.5976 Balloon 0.4846 0.5124 0.3643 0.7990 0.8309
Pyramids 0.3925 0.3226 0.4272 0.6058 0.4190 Liberty 0.8792 0.9112 0.2854 0.8572 0.6715
Elephants 0.2542 0.2162 0.4511 0.5679 0.6342 Christ 0.3195 0.5448 0.4651 0.7548 0.7594
Goose 0.4934 0.3444 0.2105 0.6916 0.4507 Speed 03314 0.0745 0.2423 0.3598 0.5883
Helicopter 0.6281 0.6886 0.4269 0.8290 0.8769 Track 0.1413 0.4655 0.2754 0.5340 0.4082
Planes 0.2992 0.2730 0.0643 0.4879 0.6465 Windmill 0.2691 0.1219 0.1762 0.3324 0.3894
Cheetah 0.2751 0.4629 03779 0.6803 0.7011 Kendo 0.6013 0.5202 0.9034 0.5937 0.7932
Average 0.4117 0.4605 0.3954 0.6343 0.6511
. . . Table 2
P}ma, = argmaxp(Sp,. , Spg,,) (10) IoU values of the compared methods (highest values marked in bold) on the horse

In Fig. 5, we observe that for the Statue of Liberty and the
Helicopter classes, site entropy rate (SER) computation yields more
accurate segmentation as compared to the degree centrality (DC)
based computation. On the other hand, DC method yields more
stone area than the SER method for the Stonehenge and Wind-
millclasses. However both methods co-segment the same region
in the white flower. In the Panda class (last row) however, we
observe that Eq. (10) selects the proposal suggested by the SER
method, although it has a lesser IoU value than that computed
by the DC method. Such erroneous selections may occur when
surrounding background regions in an image have greater mean
co-saliency values, when compared to a major portion in the

classes of Weizmann dataset.

Class Method

DM [14] AD [18] SB [33] Our
White horses 0.6112 0.1113 0.7346 0.8924
Black horses 0.6523 0.8215 0.8426 0.9125
Brown horses 0.5212 0.5834 0.6803 0.8731
Average 0.5949 0.5054 0.7525 0.8927

foreground object region. As observed in the Panda class, the enitre
white fur portion (which constitutes the foreground region) has a
lesser mean co-saliency value (as indicated in the co-saliency
map) than the surrounding bright patch of sunlight in the
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Table 3
IoU values of the compared methods (highest values marked in bold) on the classes of
Oxford 17 Flowers dataset.

Class Method
DM [14] AD [18] SB [33] Our

Windflower 0.6043 0.4602 0.7327 0.7218
Sunflower 0.5523 0.4306 0.7317 0.6134
Dandelion 0.5643 0.4126 0.6057 0.7266
Daisy 0.6428 0.4913 0.7863 0.8233
Daffodil 0.6693 0.5812 0.7692 0.7817
Snowdrop 0.1958 0.2351 0.6078 0.6883
Lilyvalley 0.4611 0.4817 0.5126 0.5586
Bluebell 0.3087 0.3591 0.5700 0.5202
Pansy 0.3450 0.2902 0.4663 0.5412
Buttercup 0.4883 04213 0.6652 0.6919
Colt’s Foot 0.6374 0.5321 0.7576 0.7412
Fritillary 0.6210 0.5810 0.7887 0.7317
Iris 0.6735 0.5238 0.5705 0.7234
Average 0.5203 0.4462 0.6588 0.6818

background. The object proposal obtained by the SER method thus
gets selected by Eq. (10), which gives higher selection priority to
the proposal with greater mean co-saliency value.

4. Experimental results and evaluation

In this section, we test the proposed co-segmentation algorithm
on many groups of images. The qualitative and quantitative assess-
ments of the segmentation results are reported.

4.1. Datasets used

We verify the proposed co-segmentation method on three
datasets:

e iCoseg dataset, used in [15].
e Oxford 17 flower dataset, used in [34].
e Weizmann horses dataset, used in [35].

Here we consider all object groups in the iCoseg dataset for
quantitative and qualitative evaluation. For the Oxford 17 flower
dataset, we test our method on 13 flower groups (30 images con-
sidered per group), as the ground truth data for the rest four classes
was not available. We group horses in Weizmann horses datasets
into three categories based on horse color: white horses, brown
horses and black horses (30 images per group) and then use these
groups in our evaluation. Pixel ground truth hand annotations pro-
vided for all three datasets were used for quantitative evaluation.

4.2. Evaluation

In this subsection, we evaluate our method both from qualita-
tive and quantitative aspects. We compare our method with three
well known methods. They are:

e Discriminative clustering method (DM) [14].
e Anisotropic diffusion method (AD) [18].
e Similar background method (SB) [33].

Table 4

Average execution time of each method on iCoseg dataset.
Method DM [14] AD [18] SB [33] our
Time (in s) 45.78 13.23 83.07 24.52

3k T T T T T T
o

30

25

Average time (in secs.)

il L I L L I L
20 30 40 a0 B0 70 80 90

% of maximum co-saliency value

Fig. 10. Average execution time, t; vs number of object proposals used (in terms of
% of maximum co-saliency value).

4.2.1. Qualitative evaluation

Figs. 6 and 7 show the segmentation results of [14,18,33] and
the proposed method respectively on iCoseg dataset and Oxford
17 flowers dataset, Weizmann horses datasets respectively. We
consider the Redsox players, Ferrari, Stonehenge and Kendo image
groups in iCoseg dataset for comparison in Fig. 6. The image groups
Windflower and Dandelion from Oxford 17 flowers dataset and
black horses and brown horses from Weizmann horses dataset are
used for comparison in Fig. 7. The proposed method gives better
segmentations as compared to the compared methods for almost
all image groups considered. It might be observed that the com-
pared methods segment undesired image regions along with the
common object in most images, which lead to inaccurate segmen-
tations. For some images, such as the 5th image (from left) in the
Ferrari group and 3rd image (from left) in the Kendo group in
Fig. 6, the compared methods do not segment out the complete
object region. A similar problem is observed in the 4th flower (from
left) in the Sunflower group in Fig. 7. For the DM method [14],
unsuccessful segmentations are obtained as similar local regions
of the backgrounds affect the training of the classifier used in the
algorithm. Also for the AD method [18], inaccuracies in segmenta-
tions are observed because location of seeded points of the com-
mon objects and backgrounds becomes difficult when the
backgrounds are similar to each other. In the proposed method,
we filter out only those object proposals which score well in terms
of co-saliency values, for further processing. This step ensures that
majority of object proposals containing similar background regions
get eliminated before they get considered for the DC and SER meth-
ods. Thus our method reduces such inaccuracies to a great extent.

Our method also co-segments images which have more than
one instance of the common object. The object proposal generation
algorithm [5] we use in our experiment, generates proposals which
include those, which have the multiple instances of the object. The
accurate segmentation of the multiple instances can be attributed
to the edge-weight entropy maximization of the DC method and
information transfer entropy maximization of the SER method
used in our algorithm. This ensures that only the proposal carrying
all the object instances in an image (of an image group) is
segmented.

In Fig. 8, we show the segmentation results of the proposed
method on images having multiple instances of the common
object. Clearly, all possible instances are segmented with good
accuracy. In the Liverpool class however, we find the red logo por-
tion in the background, segmented along with the red colored
dress of the players. This can be due to the dependence of the pro-
posed algorithm on color histograms rather than contour based
computation. For most other instances, highly accurate segmenta-
tions are obtained.
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Fig. 11. Failure cases of Pyramid and Hot balloon object classes from iCoseg dataset. 1st row: Original image, 2nd row: Ground truth, 3rd row: Co-saliency map, 4th row:

Segmented region.

To investigate the performance of our model on images with
multiple classes, we selected images from the iCoseg dataset which
contain two classes. Here we consider two distinctly colored objects
as belonging to two different classes, as our model uses color his-
tograms to compare object proposals. Fig. 9 depicts the segmenta-
tions generated by the proposed algorithm on the images of
Women soccer, Airshow planes and Liverpool classes of the iCoseg
dataset. Joint co-segmentations of two foreground class instances
(e.g. the red and white jersey players in the Women soccer class,
planes and their smoke trails in the Airshow planes class) can be
observed. Note here that the segmentation result of the 1st image
of the Airshow planes group in Fig. 9 is different from the same
image in Fig. 8. The white smoke regions are segmented in this case
as only selected similar images (containing red planes with white
smoke) from the image group are considered for co-segmentation,
unlike Fig. 8. The efficient co-segmentation can be attributed to
the fact that, the co-saliency maps generated for the images assign
high values to image regions corresponding to all the common
classes present in the image group. The DC and the SER methods,
thus get implemented on the object proposals carrying all class
instances. Thus our model successfully co-segments images with
more than one class object.

4.2.2. Quantitative evaluation

Here we compare our method with the four methods
[14,17,18,33] from quantitative aspect. We objectively evaluate
the methods by the segmentation accuracy which is measured by
the intersection-over-union metric (IoU). It is defined as,
IoU; = 13, % where GT; is the ground truth and R; is the seg-
mentation of image I;. A large accuracy corresponds to accurate co-
segmentation. The mean accuracy over the images in a group is
used to evaluate the performance of each group. Tables 1-3 list
the IoU values obtained for the image groups in iCoseg dataset,
Weizmann horses dataset and Oxford 17 flowers dataset respec-
tively. We also include the proposal based segmentation method
in [17] for comparison in Table 1. It may be observed that our
method performs better than other methods for most classes.
The proposed method has the highest mean IoU on all the three
datasets. Of the compared methods, the similar background (SB)
method [33] yields IoU values closest to the values obtained for
the proposed method. Our method fails to generate segmentations

with good accuracy for some classes such as the Pyramids, Soccer,
Windmill and Track, as evident from Table 1. The Soccer and Track
classes contain cluttered background regions. The Pyramids class
has background regions quite similar to the foreground and images
of the Windmill class all contain sky in the background, a portion of
which is also co-segmented along with the windmill in certain
images. In such cases, accurate separation of foreground objects
from the background becomes a difficult task. This accounts for
the low mean IoU values of these image classes.

4.2.3. Computation cost

In addition to the segmentation accuracy, we compare the exe-
cution time of different methods. The computational cost of the
compared methods on a 2.39 GHz Intel(R) Core i3 CPU with 4 GB
RAM, are summarized in Table 4. The software platform used
was Matlab R2013a. Table 4 shows the average execution time
taken by each method for processing an image on the iCoseg data-
set. Our method runs faster than the DM [14] and SB [33] methods.
The SB [33] algorithm executes significantly slower than other
methods, due to the large number of iterations it needs to obtain
the final refined co-segmentations.

In our method, for an image set with n images, the object pro-
posals are generated with complexity O(n), and the two methods
considered (DC and SER) take O(n?) time each. Thus the proposed
algorithm has an overall complexity of O(n?). Other methods
[14,18,33] have the same time complexity of O(n?).

From Fig. 10, we can observe the effect of the number of object
proposals considered on the running time of the proposed method
(DC and SER methods). Here, running time considered ¢, is given by
tq = tq — (tp + tes), where, t, = total average running time of the
algorithm, t, = average time taken for object proposals generation
and t, = average time taken for co-saliency map computation.
Note here that, we do not consider all object proposals generated
by the method in [5]. We only consider proposals having mean
co-saliency value greater than the Otsu threshold, Tos, of the co-
saliency map, as outlined in Section 3.1. However, for the purpose
of algorithm execution time study, we vary the threshold, T
between 20% and 90% of the maximum co-saliency map value of
an image and observe its effect on the execution time of the pro-
posed method. It is observed that the running time falls with
increase in the co-saliency threshold value, T. An image dependent
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threshold, Ty, has been used in our experiments, as higher values
of threshold often leads to consideration of very few object propos-
als, which results in inadequate segmentation for some object
classes.

4.3. Error analysis

In the previous subsections, we made various qualitative and
quantitative evaluations of all compared methods. Now we look
into some of the instances in image classes where the proposed
method fails to yield desired segmentation. Fig. 11 shows such
cases. In the 1st and 3rd images (from left) of thePyramid class,
we find that horses are the wrongly segmented regions. The 2nd
image (from left) segments the horse cart along with the pyramid.
These inaccuracies occur due to co-saliency map strength domina-
tion over color histogram similarity in the graph weight modeling.
In these images, the horses have relatively more co-saliency than
the pyramid, thus leading to inaccurate segmentation. Similarly
in the Hot balloon class, all balloons shown are inadequately seg-
mented. The red stripped regions in the balloons gain more sal-
iency values than the bluish regions on the balloon skin, in the
co-saliency map and thus carry more site entropy rate and in-
degree values, leading to incomplete segmentations. Note here
that, the selection of object proposals (as segmented regions) in
our method relies to a large extent on the co-saliency map values
of the images. The proposed algorithm only selects from among the
object proposals, which carry regions that get more prominence in
the co-saliency maps (3rd row in Fig. 11). Both the DC and SER
based algorithms are likely to fail in such cases, where the common
objects do not get high mean co-saliency values.

5. Conclusion and future work

In this paper, we propose a new co-segmentation model to seg-
ment common objects from multiple images. We first generate
several possible object proposals on the images. Then, based on
the region similarities and co-saliency values, we construct a
k-partite graph to represent the relationships between different
object proposals. Next, we apply two well known graph based
methods: entropy based degree centrality computation and site
entropy rate computation to extract object proposals which repre-
sent the co-segmented image regions.

In our future work, we will extend the proposed model by con-
sidering other features such as texture and contour to model the
graph weights, which indicate proposal similarity. Incorporating
contour information can highly increase the segmentation accu-
racy by preserving object boundaries better. We also plan to
extend the current graph based co-segmentation model to perform
object co-localization.
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