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A challenge in bioinformatics is to analyse volumes of gene expression data generated through microarray experi-

ments and obtain useful information. Consequently, most microarray studies demand complex data analysis to infer

biologically meaningful information from such high-throughput data. Selection of informative genes is an important

data analysis step to identify a set of genes which can further help in finding the biological information embedded in

microarray data, and thus assists in diagnosis, prognosis and treatment of the disease. In this article we present an

unsupervised feature selection technique which attempts to address the goal of explorative data analysis, unfolding the

multi-faceted nature of data. It focuses on extracting multiple clustering views considering the diversity of each view

from high-dimensional data. We evaluated our technique on benchmark data sets and the experimental results

indicates the potential and effectiveness of the proposed model in comparison to the traditional single view clustering

models, as well as other existing methods used in the literature for the studied datasets.
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1. Introduction

A challenge in bioinformatics is to analyse volumes of gene

expression data and obtain useful information.Many clustering

algorithms are being developed to handle the high-dimensional

data by projecting the data into a lower-dimensional subspace,

e.g. principal component analysis, which depends on stringent

separation requirements (Chaudhuri et al. 2009). In a typical

microarray dataset, the number of genes as measured is of

magnitude of several thousands, far exceeding the number of

samples, with many of the genes being either correlated or

irrelevant. A great deal of recent research has focused on the

challenging task of selecting informative genes from microar-

ray data. In this task, unsupervised dimensionality reduction

can be used as a preprocessing step where the goal is to find the

smallest gene subset that best uncovers interesting natural

clusters of data (Mitra et al. 2002; Ding 2003; Jaeger et al.

2003; Varshavsky et al. 2006; Hong et al. 2008; Li et al. 2008;

Sharma et al. 2012a, b).

Clustering has been used in many areas of biological data

analysis (Pirim et al. 2012), the goal being to find structures

in high-dimension data. Such structures are often multi-

faceted owing to the nature of the problem. Traditional

clustering methods seek to find a unified clustering solution

and are inherently limited in achieving multi-faceted struc-

tures (Cui et al. 2007). In most biological applications, data

can be interpreted in many different ways. There may exist

multiple groupings of the data that are all reasonable in some

perspective. This problem is often more prominent for high-

dimensional data, where each object is described by a large

number of features. In such cases, different feature subspaces

can often warrant different ways to partition the data. Each
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feature subspace presents the user a different view of the data

(Cui et al. 2007; Fang et al. 2010; Gupta et al. 2011).

2. Multiview clustering

Biological data is often multi-faceted by nature and may be

interpreted in alternate ways (Xu et al. 2013). Multiview

clustering provides multiple sets of clusters, all reasonable

in some perspective, thus providing greater insights than a

single solution in such analysis (Muller et al. 2012; Xu et al.

2013). Recently, many multiview-based learning methods

showing the diversity of different views have been proposed

in the literature. Multiviews obtained from multiple sources or

different feature subsets not only obtain the views of different

attributes but also ensure that each views best represent the

data and ensure the efficient learning (Xu et al. 2013). The

work done in the paper by Bickel and Scheffer (2004) de-

velops and studies partitioning and agglomerative, hierarchical

multiview clustering algorithms for text data. The article by

Cui et al. (2007) presents a multiview framework and suggests

two approaches within this framework: (1) orthogonal cluster-

ing and (2) clustering in orthogonal subspaces. Chaudhuri

et al. (2009) paper consider constructing high-dimensional

data projections to lower dimension using multiple views of

the data, via canonical correlation analysis (CCA). A proba-

bilistic multiview clustering model outperforming an early-

fusion approach based on multiview feature correlation

analysis is derived in the paper by Bruno and Marchand-

Maillet (2009). A new multiview clustering method which

uses clustering results obtained on each view as a voting

pattern in order to construct a new set of multiview clusters

is proposed in in the paper by Kim et al. (2010). The article

by Chen et al. (2013) proposes TW-k-means, an automated

two-level variable weighting clustering algorithm for mul-

tiview data, which can simultaneously compute weights for

views and individual variables. The survey work done in

articles by Sun (2013) and Xu et al. (2013) aims to provide

an insightful organization of current developments in the

field of multiview learning, identify their limitations, and

gives suggestions for further research. Considering the three

major issues, viz. diversity, compatibility and accuracy in

generating multiview feature sets different strategies based

on clustering, random selection and uniform band slicing

have been proposed in the literature (Di and Crawford 2012;

Xu et al. 2013). Xu et al. (2013) states that increase in the

number of views to increase diversity, or increase in ran-

domness to avoid noisy view, further improves the perfor-

mance of the model. A multiview approach using controlled

vocabularies selected from nine well-known bio-ontologies

is presented by Yu et al. (2010) to retrieve biomedical

knowledge. Ensemble learning can reduce the potential for

over-fitting the training data (Yang et al. 2010).

Thus, multiview learning is considered to be more effec-

tive, more promising and shows better generalization ability,

as each view forms alternative solutions to the given prob-

lem, representing different perspectives on the data and thus

gives greater insight than only one solution or single view

(Muller et al. 2012; Sun 2013; Xu et al. 2013). Generating

multiple views needs decomposition of the original feature

set into multiple disjoint feature subsets each corresponding

to different views. Traditional machine learning solution for

the multiview problem is to consider all multiple views into

one single view to effectively define the learning model (Xu

et al. 2013). This approach of multiview selection may result

in over-fitting when training sample size is small and it

ignores the distinct statistical property of each view (Sun

2013; Xu et al. 2013). Although exhaustive work has been

done in this field, a wide variety of applications, viz. high-

dimensional microarray data, still require further research to

be done in this topic (Xu et al. 2013). In genomics, one gene

may have multiple functions, and each cluster may form

alternative solutions to the given problem, representing dif-

ferent perspectives on the data (Muller et al. 2012).

In this paper, we suggest a graph-based unsupervised

feature/gene selection (GUFS) technique and apply it to

obtain multiview clustering from microarray datasets. The

graph-based technique creates multiple views, each in-

volving varying number of genes that are automatically

obtained. This is natural in genomic data where gene

groups are important in deciding alternate interpretations

of the microarray data considering the diversity, thereby

facilitating gene subset selection which are informative

genes in regard to different views. We tested our gene

selection model on benchmark datasets, viz. B-cell chronic

lymphocytic leukemia (B-CLL) and interstitial lung dis-

ease (ILD). The experimental results indicate the potential

and effectiveness of the proposed model in comparison to

the traditional single view clustering models, as well as

other existing methods used in literature for the studied

datasets.

This work extends our earlier work on unsupervised fea-

ture selection (Mitra and Swarnkar 2012) and concept of this

multiview clustering has been used in integration with pro-

tein–protein interaction network in a conference paper

(Swarnkar et al. 2014). The remaining sections of the paper

are organized as follows: section 3 presents related materials

and methods used for our proposed graph-based multiview

model for feature selection and section 4 discusses results

and comparisons. Finally, section 5 presents our conclusion

and discussion.

3. Materials and methods

Block diagram in figure 1 represents the schematic work

flow of the proposed multiview feature selection model
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GUFS. To assess presence of outliers that can skew the

expression result in the study sample (B-CLL and ILD), we

have filtered the genes, based on their variance across the

samples, and thus considered the genes with variance less

than tenth percentile for further processing (Kohane et al.

2002). Further, the 10, 000 permutation’s t-test (Dudoit et al.

2002) is used and the genes with p-value cut-off of 0.05 are

considered to have statistical significance (Huang et al.

2009; Xiao et al. 2014) and are used for subsequent analysis.

This set of data are normalized using the mean column

intensity, and the raw intensities are transformed to the range

of [0, 1] values for each sample.

Figure 1. Steps of the gene selection method GUFS and multiview clustering.
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3.1 Graph-based unsupervised feature selection (GUFS)

We describe below the steps of graph-based feature/gene

selection algorithm on microarray data in obtaining gene

subsets and resultant multiview clusters.

(i) Construct gene profile network for each gene/feature

based on the expression level of that specific gene over

the samples. The network has samples as its vertices and

similarity of expression of that specific gene determines

the existence of an edge between two samples. For each

gene in the dataset there exists a gene profile network.

(ii) A gene correlation network, i.e. pair-wise distance

measure matrix of genes, using symmetric difference

between the edge set is constructed in this step. Here,

we have used the XOR, (i.e., the number of edges

present in one network but absent in the other), as

symmetric difference measure for its computational

simplicity and effectiveness. The resultant graph is a

gene correlation network with genes as vertices and

above distance as edge weight, where edge weight

represents the degree of co-expression between two

genes. Lower the edge weight, higher the degree of

co-expression between two genes.

(iii) The resultant gene correlation network is now clustered

into k different non-overlapping partitions, where k is

user defined parameter. Choice of k takes into consider-

ation the cluster or view quality, as well as the size of the

views. This step we call it as, gene network clustering.

The proposed model here uses hierarchical agglomera-

tive clustering with edge weight of the gene correlation

network as the distance measure. We tested for different

values of k and for the dataset being considered here we

got the best result for k = 10.

Gene subset profile network are constructed for each

cluster obtained above, expecting that each gene group is

having some biological functional similarity. We denote this

as a view (V) and there exists, k clusters of the data (V ⊆ V)

each corresponding to a set of related genes. This network

has sample as its vertices and edge weights represents the

Euclidean distance between two samples considering only

the expression of the gene subset belonging to that particular

gene network cluster.

To measure the class performance of each of the views

obtained in above step, we partion each of these k networks

into l sample clusters. For this we have used hierarchical clus-

tering, as well as kNN. Thus, each of these k graphs (V ⊆ V)

gives rise to a separate clustering set of l clusters each. For our

dataset l is same as that of the true class label count, otherwise it

can be dependent on the cluster quality or domain knowledge.

Each of these clustering may lead to multiview interpre-

tation of the microarray expression data. The number of

these informative genes is very small in comparison to the

actual number of genes present in the training data set; it may

vary from view to view.

It may be noted that most of the noisy features is seen to

get accumulated in one of the view, and it has been observed

during analysis that this view do not give any significant

information in regard to statistical analysis. We discarded

this largest cluster from our analysis.

In our experiment, predictive accuracy of the multiview

clusters were measured in terms of specificity, sensitivity,

precision, overall accuracy and the number of correctly

classified instances in comparison to the known true clas-

ses. The biological significance of the views were measured

by finding the percentage of known disease related genes in

these views or finding the true positives in these views in

regard to ground truth. Further, we studied the dominance

of certain biological processes in these selected views.

3.2 Cluster validation

We aimed to measure the accuracy of the proposed model

ability to select the relevant features to find structure in the

data (cluster). In our evaluation we assumed the ground

truth or true clusters were provided. These true clusters

were referred as ‘class labels’. These labels were used only

during validation of the proposed model and were not used

in selecting features and discovering clusters.

To evaluate the proposed models ability to select “rele-

vant” features, we report the overall accuracy, sensitivity,

specificity, precision, f-measure and result in comparison to

the known true classes (Ji et al. 2014), and are respectively

defined by equations 1–6 stated as follows:

Accuracy ¼ TP þ TNð Þ= TP þ TN þ FP þ FNð Þ ð1Þ

Sensitivity ¼ TP= TP þ FNð Þ ð2Þ

Specificity ¼ TN= TN þ FPð Þ ð3Þ

Precision ¼ TP= TP þ FPð Þ ð4Þ

F−measure ¼ 2� TPð Þ= 2� TP þ FP þ FNð Þ ð5Þ

Result ¼ TP þ TN ð6Þ

where TP is the number of true positive samples, TN is the

count for true negative samples, FP is the number of false-

758 T Swarnkar and P Mitra

J. Biosci. 40(4), October 2015



positive samples and FN is the number of false-negative sam-

ples. These measures have been adopted for statistical analysis

and comparison with existing methods in the literature. Sam-

ples were considered to be divided in two categories, namely

positive samples (diseased) and negative samples (non-diseased

or normal). We used the National Center for Biotechnology

Information (NCBI) database (http://www.ncbi.nlm.nih.gov/

gene/) as our reference to collect disease related genes. A record

may include nomenclature, Reference Sequences (RefSeqs),

maps, pathways, variations, phenotypes, and link to genome,

phenotype, and locus-specific resources worldwide. Consider-

ing this set of genes as actual data we calculated the number of

hits or true positive in each clusters or gene sets. True positive

or number of hits is the count of correctly classified genes as

disease related.

Study of the biological relevance in the form of gene-to-

annotation is a promising high-throughput strategy that helps

the researchers to identify biological processes most perti-

nent to their study (Huang et al. 2009; Sharma et al. 2012a,

b). To study the pertinent or enriched biological process of

genes in each cluster, we used the Database for Annotation,

Visualization and Integrated Discovery (DAVID) v6.7

(http://david.abcc.ncifcrf.gov/home.jsp) (Huang et al. 2009)

as our biological tool. The tool provides a comprehensive set

of functional annotation tools for investigators to understand

biological meaning behind large list of genes (Dennis et al.

2003). A set of user’s input genes is highly associated with

certain terms, which is statistically measured by the Fisher

Exact in DAVID system. Fisher Exact p−value=0 represents

perfect enrichment; usually p-value is equal or smaller than

5×10−2 to be considered strongly enriched in the annotation

categories (Huang et al. 2008, 2009). Fold change enrich-

ment (FE) measure the magnitude of enrichment for a spe-

cific annotation category. Let xij and yij denote the log2
expression levels of gene i in sample j in the control and

disease, respectively, then the fold-change for gene i is

defined as FEi =xi−yi (Tibshirani and Witten 2007). Thus,

FE score ranks the enriched terms in a more comprehensive

manner, FE 1.5 and above are suggested to be considered as

interesting (Huang et al. 2008). FuncAssociate (http://

llama.med.harvard.edu/funcassociate), a Web-based

application which discovers properties enriched in lists of

genes or proteins that emerge from large-scale experimen-

tation (Berriz et al. 2009) is also used for biological

significance measurement. Further, gene-card (http://

www.genecards.org/) (Safran et al. 2010) is used to study

the biological functions of individual gene.

3.3 Datasets used

The DNA microarray datasets for Homo sapiens, col-

lected from NCBI’s Gene Expression Omnibus. are

utilized in our study to show the effectiveness of the

proposed model. The database Web link is http://

www.ncbi.nlm.nih.gov/geo/. The description of the

datasets is given as follows:

Leukemia dataset: B-cell chronic lymphocytic leukemia

(B-CLL) is the most common adult leukaemia and is

characterized by accumulation of monoclonal B cells in

the blood, marrow, and secondary lymphoid tissues. The

clinical outcome of patients with CLL is highly variable, some

of the patients usually have no clinical symptoms for many

years and do not require treatment, the other half the disease is

relatively aggressive and require therapy soon after diagnosis

or else patient dies due to causes related to CLL. It is a

heterogeneous disease with a pronounced variation in the

clinical course. Although, several methods have facilitated

the identification of a number of prognostically and diagnos-

tically important genetic markers for CLL, the genetic mech-

anism that result in the development and progression of CLL

are mainly unknown (Fält et al. 2005; Codony et al. 2009;

Chuang et al. 2012). The dataset consists of lymphocytes from

patients with indolent B-CLL are compared to those with

progressive B-CLL, and consists of intensities of genes in 11

B-CLL patients with stable and 10 patients with clinically

progressive disease.

Lung Cancer dataset: This dataset contains samples from

patients with different types of interstitial lung disease (ILD)

which represent a broad category of restrictive lung disorders,

exhibit cellular infiltration and distortion of the interstitium

and alveolar gas units. To better understand the disease, the

molecular pathways involved in the ILDs needs a detail anal-

ysis, as this disease is associated with biological processes, viz.

aberrant wound repair, scarring, apoptosis, or fibrosis at tissue

or cell levels and with dysregulation of a complex set of

cytokines, growth factors, and signalling molecules at molec-

ular level (Cho et al. 2011; Cottin 2013). It consists of inten-

sities of genes in 12 normal and 23 ILD.

3.4 Related dimensionality reduction

algorithms compared

We compared the proposed GUFS algorithm with two other

popular dimensionality reduction schemes developed in this

study.

Principal component analysis (PCA) has beenwidely applied

dimensionality reduction technique and has been widely applied

on datasets in all scientific domains (Boutsidis et al. 2008).

Relief is a popular feature selection scheme which

searches for nearest neighbours of instances of different

classes and weights features according to how well they

differentiate instances of different classes (Yu and Liu 2004).

These two methods were used as dimensionality reduc-

tion to get single views and the result obtained from these

were compared with our multiview approach. We also
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compared our approach with existing single view supervised

learning models for B-cell chronic lymphocytic leukemia (B-

CLL), viz. Weighted Voting classification (WtVoting) and

Linear Discriminant Analysis (LDA) (Fält et al. 2005), and

for interstitial lung disease (ILD), we considered the method

being used from (Cho et al. 2011).

4. Results and comparisons

We have used different evaluation methodologies, all focus-

ing on the aspect of detecting multiple views. The results

presented are as follows:

1. Baseline cluster quality considering all features.

2. Cluster quality of the best view for each data set obtain-

ed using GUFS

3. Effectiveness of the multiview representation obtained

using GUFS considering top k views.

4. Biological process dominance in the views.

5. Effectiveness of GUFS as a gene selection technique as

compared to related dimensionality reduction schemes.

6. Effectiveness of GUFS as a biologically relavent gene

selection technique as compared to related gene selec-

tion schemes.

4.1 Baseline cluster quality measure

In table 1 we have summarized the results for two bench-

mark datasets in terms of sensitivity, specificity, results and

model accuracy when the original or all the features/genes

are used for clustering the data. The hierarchical clustering is

applied on the normalized data set to get the required l

number of clusters depending upon the true class label count

or the domain knowledge.

4.2 Cluster quality measure for different set of views

Next we study the effectiveness of the views V ⊆ V in terms

of cluster quality. Figure 2 presents the cluster performance

for only the best view V ⊆ V, in each dataset. Note that the

number of views that may be obtained is user defined. Figure 2

shows the effect of varying numbers of views in a view set V

being selected for different datasets. We studied the perfor-

mance of view sets Vwith size k as 5, 10, 15 and found that the

optimal number of views is data specific, and does effect the

clustering quality. For our studied datasets, we got view set V

for k=10, showing best performance in terms of overall accu-

racy and cluster size, as seen from figure 2.

4.3 Effectiveness of the multiview considering top k views

Figure 3 shows the performance of the views V ⊆ V with

varying number of genes, in terms of accuracy. After ob-

serving the performance of the best views V from Figure 3,

in terms of number of genes present in V and accuracy

measure, we studied the effectiveness of multiview represen-

tation of data. Table 2 summarizes the performance of top 3

of 10 different views V ⊆ V, shown in figure 3, explored in

terms of model accuracy and other evaluation measures for

Leukemia and Lung Cancer datasets. On the basis of this

performance measure, the top three views we have considered

for our further analysis are views 8, 1 and 4 for Leukemia, and

view 8, 4 and 5 for Lung data from figure 3. In each case, a

small number of genes are involved in each view V, yet each

view achieves a significant overall model accuracy as com-

pared to the baseline, as seen from tables 2 and 1, respectively.

Thus, the advantage of multiview along with dimensionality

reduction is clearly visible from the comparison of results from

tables 1 and 2. This demonstrates that GUFS can significantly

reduce the number of redundant features in high-dimensional

data set and retain highly informative features/genes, which is

essential for clustering and/or classification.

4.4 Biological functional association of genes in views

The weight age in terms of percentage of genes related with

specific relevant biological process in each view V ⊆ V are

shown in tables 3 and 4 for Leukemia and Lung data,

respectively. The biological significance of the genes be-

longing to an enriched functional category can be measured

Table 1. Baseline cluster quality considering all genes: Number of genes used for learning (Gene Count) and accuracy count for specified

class label (Accuracy Count) (Leukemia (B-cell chronic lymphocytic leukemia) and Lung (interstitial lung disease)

Test Data Gene Count Class label Sensitivity Specificity Accuracy Count Model Accuracy

Leukemia 6572 1
2

0.00
0.80

0.80
0.00

0
8

0.38
0.38

Lung 4739 1
2

1.00
1.00

1.00
1.00

12
23

1.00
1.00

The boldface signifies the best performance of proposed method considering all genes.
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in terms of p-value (Ghosh et al. 2014). The results are vali-

dated using p-value statistics and fold enrichment, of enriched

attributes/functions (EA), the p-value cut-off of 5×10−2 and FE

1.5 is being considered in our study. The enrichment of the

functional association of the gene sets V ⊆ V is evaluated in

three top views considered from section 4.3. Tables 3 and 4

reports the top three enriched gene sets of Leukemia and Lung,

respectively, from table 2 with their respective gene count,

DAVID gene ID count, the functionally EA’s (enriched attri-

butes), and its number, percentage of EA (% of EA) in a view

Leukemia Lung
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u

ra
c
y

 

 

No. of Views k=5

No. of Views k=10

No. of Views k=15

Figure 2. Comparison of best accuracy of GUFS for different number of views V ⊆ V selection for Leukemia and Lung dataset; k denotes

the size of view set V and V represents the gene set with different genes (g) and gene count (Leukemia (chronic lymphocytic leukemia) and

Lung (interstitial lung disease (ILD)).

Leukemia Lung
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Different views of the study material

A
c
c
u
ra

c
y

Figure 3. Comparison of accuracy of different views V ⊆ V obtained from GUFS for k = 10 different views (Leukemia (chronic

lymphocytic leukemia) and Lung (interstitial lung disease (ILD)).
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V for a specific biological process and the fold change enrich-

ment (FE) of these related genes.

DAVID gene ID refers to the percentage of DAVID genes

in the list associated with particular annotation term. Since

DAVID gene ID is unique per gene, it is more accurate to

use DAVID ID to present the gene-annotation association by

removing any redundancy in user gene list, i.e. two user's IDs

represent same gene (Dennis et al. 2003). The threshold of

minimum gene counts belonging to an annotation term, has

been considered to be equal or greater than 5 (default is 2), as

we do not trust the term only having one gene involved.

Interestingly, for the database leukemia, view (V) I and III

shows relatively large number of EA’s satisfying our p-value

and FE cut-off. The relative good percentage of genes is

involved in each enriched category as seen from table 3. Sim-

ilar trend can be seen from table 4 for lung database, specifi-

cally, in View-III, where the number of enriched attributes are

13, as per the threshold considered in our study.

Thus, from tables 3 and 4 we can say that our proposed

graph-based multiview clustering feature selection is able to

select strongly correlated genes, corresponding to those re-

sponsible for certain related biological processes. The pres-

ence of these important biological processes with higher

weightage in terms of percentage as seen from tables 3 and

4 in each views gives an insights for further in depth study of

biological relevance of the genes present in these views.

4.5 Comparison of GUFS with existing methods as

a gene selection technique

Finally, we studied the effectiveness of GUFS as a gene selec-

tion technique. We compared the performance of GUFS with

two other feature selection techniques in terms of the quality of

clusters obtained using only the selected genes. For each of the

dataset we ran all the three feature selection algorithms, namely

PCA, Relief and GUFS, in comparison and obtained the best

selected genes for each algorithm. We then applied the hierar-

chical agglomerative clustering on both the original dataset and

each of the datasets with only selected features, and we have

reported the overall accuracy of the model in tables 1 and 5

respectively. The accuracy results were also compared with the

other existing methods from the literature.

Table 5 shows the comparative accuracy of our proposed

graph-based multiview clustering feature selection and other

studied single view feature selection methods. It can be seen

that GUFS, with small number of features (we report only one

view from each dataset with best predictive accuracy among

all V ⊆ V), performs well in terms of accuracy for leukemia in

comparison to weighted voting. Another supervised learning

method linear discriminant analysis shows better accuracy in

comparison to GUFS for leukemia data. Table 5 shows the

accuracy measure for lung dataset is either same or comparable

to GUFS when we consider number of genes to be 25 in PCA

and 20 for Relief, whereas the study shows that the PCA and

Relief shows zero accuracy if the number of feature are con-

sidered to be same as GUFS, i.e. 18 for lung data. The PCA is

known to be the most popular single view algorithm for

mixture model and it requires more stringent separation re-

quirements (Chaudhuri et al. 2009). The accuracy obtained in

work done by (Cho et al. 2011) using hierarchical clustering

with 1423 genes shows the same accuracy as GUFS. Thus, for

lung data all the methods show 100% accuracy. This shows

that GUFS on average selects small number of features with

higher prediction accuracy.

Table 2. Performance of multiview clustering consisting of top k views from V ⊆ V: View V sequence in decreasing order of their

accuracy measure (VN), Number of genes in respective views (GC) (Leukemia (B-cell chronic lymphocytic leukemia) and Lung (interstitial

lung disease)

Test Data VC GC Model Accuracy Class Label Sensitivity Specificity Precision

Leukemia 1 0.82 0.70 0.75

1 42 0.76 2 0.70 0.82 0.78

1 1.00 0.40 0.65

2 23 0.71 2 0.40 1.00 1.00

1 0.65 1.00 0.40

3 59 0.71 2 1.00 0.40 1.00

Lung 1 1.00 1.00 1.00

1 18 1.00 2 1.00 1.00 1.00

1 0.92 1.00 0.96

2 70 0.97 2 1.00 0.96 1.00

1 0.92 0.92 0.96

3 64 0.94 2 0.96 0.96 0.92

The boldface signifies the best performance of proposed method, as well as most efficient result after analysis of top three views.
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Table 3. Biologically enriched attributes in the views V obtained from proposed GUFS gene selection and multiview clustering; GUFS

view V ⊆ V (GUFS-V), Number of gene in a view V (GC), DAVID ID count (DC), Enriched attributes (EA) (Leukemia (B-cell chronic

lymphocytic leukemia)

GUFS-V

Test Data View No. GC DC No. of EA Enriched Attributes
% of Enriched
Attributes

Fold
Enriched

Leukemia I 42 39 29 Phosphoprotein 71.8 1.9

Nucleus 35.9 1.6

Cytoplasm 30.8 1.8

Adenyl nucleotide binding 25.6 2.7

Purine nucleoside binding 25.6 2.7

nucleoside binding 25.6 2.7

nucleotide binding 25.6 1.9

cytosol 23.1 3.3

ATP binding 23.1 2.6

adenyl ribonucleotide binding 23.1 2.6

ribonucleotide binding 23.1 2.6

purine ribonucleotide binding 23.1 2.1

active site:Proton acceptor 20.5 2.1

nucleotide phosphate-binding 20.5 5.9

region:ATP 20.5 4.1

transferase 17.9 2.8

protein kinase activity 15.4 5

domain:Protein kinase 15.4 6.3

Protein kinase, ATP binding site 15.4 5.8

Protein kinase, core 15.4 5.5

binding site:ATP 15.4 5.4

kinase 15.4 4.3

protein amino acid phosphorylation 15.4 3.4

phosphorylation 15.4 2.8

cell fraction 15.4 2.4

DNA binding 12.8 7.3

Lipoprotein 12.8 3.8

II 23 22 Phosphoprotein 63.6 1.7

plasma membrane part 31.8 2.3

cell-cell junction 22.7 14.0

III transcription factor activity 18.5 3.0

plasma membrane part 25.9 2.1

activator 11.1 4.1

plasma membrane 35.2 1.7

regulation of apoptosis 14.8 2.9

regulation of programmed cell death 14.8 2.8

regulation of cell death 14.8 2.8

mutagenesis site 22.2 2.1

transcription regulator activity 20.4 2.1

topological domain: Extra-cellular 25.9 1.8

regulation of transcription, DNA-dependent 22.2 1.9

regulation of RNA metabolic process 22.2 1.9

kinase 11.1 3.1
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4.6 Comparison of GUFS with existing methods as a

biologically relevant gene selection technique

Finally, we studied the correlation between the selected

genes and the studied disease, in each view V ⊆ V, in

comparison to other existing methods. To find genes associ-

ated with a phenotype or disease, NCBI Gene option was

used which integrates information from a wide range of

species as stated in section 3.2. Figure 4 shows that the

GUFS selects more number of correlated genes in a view,

or we can say that GUFS automatically selects groups of

genes which have some biological functional similarities.

GUFS shows very good result for leukemia and is compara-

ble or better for lung in terms of disease correlated gene

selection; this shows the effectiveness of GUFS to select

genes, known to be closely associated with a disease.

5. Conclusion and discussion

The goal of explorative data analysis is to extract the

underlying structure of a given set of data. This may be

Table 4. Biologically enriched attributes in the views V obtained from proposed GUFS gene selection and multiview clustering: GUFS

view V ⊆ V (GUFS-V), Number of gene in a view V (GC), DAVID ID count (DC), Enriched attributes (EA) (for Lung (interstitial lung

disease)

GUFS-V

Test Data View No. GC DC No. of EA Enriched Attributes % of Enriched Attributes Fold Enrichment

I 18 9 2 repeat:TPR 2 22.2 31.6

repeat:TPR 1 22.2 31.6

II 70 42 2 methylation 11.9 8.2

golgi apparatus 11.9 4.2

Lung III 64 50 13 domain:Fibronectin type-III 2 10.2 15.3

domain:Fibronectin type-III 1 10.2 15.2

Fibronectin, type III-like fold 10.2 10.1

SM00060:FN3 10.2 9.6

Fibronectin, type III 10.2 9.7

alternative splicing 59.2 1.6

splice variant 59.2 1.5

membrane 49.0 1.5

protein kinase cascade 10.2 4.5

cytoplasm 30.6 1.8

transmembrane region 38.8 1.5

transmembrane 38.8 1.5

cell projection 12.2 2.9

The boldface signifies the highest percentage of enriched attributes for the top three views of Lung.

Table 3 (continued)

GUFS-V

Test Data View No. GC DC No. of EA Enriched Attributes
% of Enriched
Attributes

Fold
Enriched

DNA binding 25.9 1.7

phosphorus metabolic process 14.8 2.4

regulation of transcription 27.8 1.7

transcription regulation 20.4 1.9

regulation of cell proliferation 13 2.6

nucleotide phosphate-binding region:ATP 13 2.6

The boldface signifies the highest percentage of enriched attributes for the top three views of Leukemia.
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multi-faceted by nature. The proposed graph-based mul-

tiview gene selection algorithm (GUFS) attempts to ad-

dress this problem by extracting multiple clustering

views from high-dimensional data. GUFS facilitate gene

subset selection from multiple views considering the

diversity of each view.

The framework was evaluated through experiments

comparing with two popular single view clustering algo-

rithms and other existing methods of gene selection. It is

observed that the method can select a small gene subset

that provides satisfactory performance in terms of clus-

tering and is able to identify the subset of genes that are

biologically significant or correlated. A subsequent anal-

ysis of the views is done and found that GUFS shows a

very promising result in terms of disease correlated gene

selection in comparison to existing methods. These re-

sults may facilitate the biologists in unfolding many

biological significance questions related with the disease.

Using a single source of data limits our understanding of

complete biological model. The integration of various

kinds of data including gene expression profiles, gene

ontology, etc., may provide further insights into the

fundamental biology and pathogenesis of the disease

and will uncover the collective behaviour of genes.
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Figure 4. Comparison in terms of biological significance of views obtained by the proposed GUFS method (considering the three most

enriched clusters separately) and other methods for datasets leukemia (chronic lymphocytic leukemia) and lung (interstitial lung disease).

RFGS: random forest gene selection; SVST: Support vector sampling technique; SOM: Self-organizing map; GUFS: proposed graph-based

multiview clustering feature selection; View I, View II and View III: first, second and third most enriched clusters obtained by GUFS

respectively.

Table 5. Gene selection performance of related algorithms evaluated in terms of accuracy measure: HC (Hierarchical Clustering), WV

(Weighted Voting), LDA (Linear Discriminant Analysis), GUFS (Proposed method), (Leukemia (B-cell chronic lymphocytic leukemia) and

Lung (interstitial lung disease)

Accuracy

Single view Multiview

PCA Relief Fält et al. Fält et al Cho et al. GUFS
Test Data HC HC WV LDA HC HC

Leukemia 0.67 0.33 0.71 0.90 - 0.76

Lung 1.0 0.97 - - 1.00 1.00

The boldface signifies the performance of the proposed method in comparison to related methods.
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