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Removal of Eye Blink Artifacts
from EEG Signals using Sparsity
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Abstract—Neural activities recorded using electroencephalog-
raphy (EEG) are mostly contaminated with eye blink (EB)
artifact. This results in undesired activation of brain computer
interface (BCI) systems. Hence, removal of EB artifact is an
important issue in EEG signal analysis. Of late, several ar-
tifact removal methods have been reported in the literature
and they are based on independent component analysis (ICA),
thresholding, wavelet transformation, etc. These methods are
computationally expensive and result in information loss which
makes them unsuitable for online BCI system development. To
address the above problems, we have investigated sparsity-based
EB artifact removal methods. Two sparsity-based techniques
namely morphological component analysis (MCA) and K-SVD
based artifact removal method have been evaluated in our work.
MCA based algorithm exploits the morphological characteristics
of EEG and EB using pre-defined Dirac and discrete cosine
transform (DCT) dictionaries. Next, in K-SVD based algorithm
an over-complete dictionary is learned from the EEG data itself
and is designed to model EB characteristics. To substantiate
the efficacy of the two algorithms, we have carried out our
experiments with both synthetic and real EEG data. We observe
that the K-SVD algorithm, which uses a learned dictionary,
delivers superior performance for suppressing EB artifacts when
compared to MCA technique. Finally, the results of both the
techniques are compared with the recent state-of-the-art FORCe
method. We demonstrate that the proposed sparsity-based al-
gorithms perform as equal to the state-of-the-art technique.
It is shown that without using any computationally expensive
algorithms, only with the use of over-complete dictionaries
the proposed sparsity-based algorithms eliminate EB artifacts
accurately from the EEG signals.

Index Terms—Electroencephalography (EEG), brain computer
interface (BCI), artifact removal, dictionary learning, K-SVD,
morphological component analysis (MCA).

I. INTRODUCTION

THE objective of brain-computer interface systems (BCIs)
is to provide human beings with an alternative mode of

communication for directly conveying human intentions to a
computer without the use of peripheral nerves and muscles of
human body [1]. For people with severe physical disabilities,
such as limb damage, brainstem stroke, amyotrophic lateral
sclerosis (ALS) [2], [3], spinal cord injury [4] or other
neuromuscular diseases, BCI is found to be the best mode to
communicate [5]. Among the available non-invasive devices,
EEG is unique and most often used in BCI research, as it
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provides high temporal resolution of the measured brain sig-
nals, is less bulky and mobile, relatively convenient, affordable
and safe for users [3]. EEG measures the synaptic activity as
voltage fluctuations along the brain scalp due to the flow of
electrical signals between the neurons [5]. Traditionally, EEG
has been used for medical BCI applications, but in recent
years, there has been a great interest in non-medical BCI
applications such as device control, training and education,
and gaming/entertainment [3], [6], [7].

However, raw EEG signals are often contaminated by non-
cerebral signals such as ocular artifacts, muscle artifacts,
cardiac artifacts, power line interference and electrode arti-
facts [8]. Although, reliable solutions exist for dealing with
most EEG artifacts it is really hard for human subjects to
avoid ocular artifacts. The levator muscle potential developed
as a result of eye blink (EB) is 10 times larger in amplitude
than the EEG and is the most dominant over other artifacts.
On an average, a human involuntarily blinks once in 5s and
the blinking activity lasts for 100-400 ms [9], [10]. Due to
high magnitude of the EB signal and high resistance of the
skull and scalp tissues, the EB artifact contaminates majority
of the electrode signals [11]. Hence, EB artifact removal is
an important problem in EEG signal processing. It is crucial
as it can affect the detection and extraction of EEG features
which leads to undesired activations of a BCI system besides
causing frustration in users.

Although, in the literature there are several algorithms
available to remove EB artifacts, they still have major lim-
itations. Some techniques use extra elctrooculography (EOG)
channels [12], which may not always be available. Other
blind source separation techniques such as principal compo-
nent analysis (PCA) [13], independent component analysis
(ICA) [14] require prior knowledge of artifacts to detect
artifactual sources or contaminated components and they are
computationally expensive. In thresholding-based ICA tech-
nique [15], the threshold value needs to be decided a priori in
order to avoid any information loss.

To address the above problems, we need a method or repre-
sentation which can efficiently and accurately separate EB and
artifact-free EEG signal without any prior information from the
user. Recently, sparse representation of natural signals has re-
ceived great attention and has been used in many applications
such as image denoising [16], image compression [17], speech
signal compression [18] and speech signal classification [19].
According to compressive sensing theory, many natural signals
can be sparsely represented when expressed using a convenient
basis [20]. Subsequently, numerical optimization procedures
can be used to perfectly reconstruct the original signal from
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the sparse representation [21]. However, these advantages of
sparse representation are rarely studied for the purpose of
artifact removal. Hence, in this work, we investigated two
different sparsity-based approaches to remove EB artifacts
from EEG data.

In the first sparsity-based approach, we propose to use
morphological component analysis (MCA) technique, which
separates the EEG signals into components that have different
morphological characteristics. Each morphological component
is sparse in an over-complete dictionary constructed by merg-
ing pre-defined DCT and Dirac basis. From the obtained mor-
phological components, the component corresponding to EB
is subtracted from the original EEG signals to yield artifact-
free EEG. In the second proposed sparsity-based method, K-
SVD algorithm is applied wherein a sparsifying over-complete
dictionary is learned from the observed EEG signals contami-
nated with EBs. Then using sparse coefficients and the learned
dictionary, EBs are estimated and subtracted from the original
recorded EEG signal. To the best of our knowledge, no work
has been done to remove EB artifacts from EEG using sparsity
and over-complete learned dictionaries.

The proposed sparsity-based methods are designed to re-
move EB artifacts from the EEG signals accurately without
the use of additional EOG recordings. Besides, unlike other
existing methods [22], no knowledge of artifacts and no
selection of artifactual sources is required. To demonstrate
the efficacy of our proposed methods we have conducted
several experiments on both synthetic and real EEG data.
The results have been evaluated using different statistical
performance metrics. Our experiments confirm the capability
of the two proposed sparsity-based techniques for separation
of EB artifacts from the EEG signal. The results show that,
out of the two proposed techniques, K-SVD based artifact
removal method outperforms the MCA approach. Finally, the
efficacy of these sparsity-based methods has been evaluated
and compared with the recent state-of-the-art FORCe (Fully
Online and Automated Artifact Removal for Brain-Computer
Interfacing) method [15]. Note that we do not use independent
component analysis (ICA), wavelet decomposition and higher
order statistical properties of EEG signal. Only with a single
over-complete dictionary learned from the given EEG data,
the proposed K-SVD based method eliminates EB artifacts
accurately from the observed EEG signal.

Our paper is organised as follows. In Section II, we present
an overview of related research works. In Section III, we
provide the mathematical background of proposed techniques
along with algorithms for the purpose of EB artifact removal.
The experimental results using both simulated and real EEG
data are presented in Section IV. Comparison of the proposed
approaches with the existing state-of-the-art techniques is
given in Section V. In Section VI, a discussion regarding
phase delay and computation time of the proposed methods
are given. Finally, conclusions and directions for future work
are outlined in Section VII.

II. LITERATURE SURVEY

Investigating EB artifact properties is important for re-
searchers to devise novel techniques for their removal. A

variety of methods have been proposed to remove ocular
artifacts [12–15], [22–29]. One of the primary approaches
to restrict EB is eye fixation on a stationary target [23]. In
this method the user is asked to stare at a stable point for
fixed amount of time which is unrealistic and not suitable
for BCI applications. Further, this fixation method [23] does
not eliminate involuntary eye blinks [14]. Regression based
methods [25] play an important role in the removal of ocular
artifacts including blinks. Artifacts in EEG can be removed by
subtracting the weighted noise (EOG) from signals. However,
the main disadvantage of this method is that it requires extra
ocular channels to record ocular artifacts [12].

There is also accord among researchers in using techniques
such as principal component analysis (PCA) [30], independent
component analysis (ICA) [14], wavelet based denoising [24]
for ocular artifact correction. Among these algorithms, ICA
is a well-known blind source separation (BSS) technique to
remove ocular artifacts from EEG signals. ICA based methods
assume that the EEG recordings can be considered to be a
linear mixture of several components, namely, non-artifactual
and artifactual independent components (ICs). Artifactual ICs
represent potential of non-cerebral artifacts whereas non-
artifactual ICs represent electrical signals originating from
brain. After detecting the ocular artifact components and
eliminating them manually, the clean EEG can be acquired
by remixing remaining components [26]. The most important
issue in ICA based artifact removal methods is selecting the
correct number of ICs, that is, extracted components which
should be deflated [27]. Since these ICs do not unavoidably
only contain artifact data, but also contain the fundamental
EEG data, removing contaminated ICs will lead to loss of use-
ful data [28]. Hence, some researchers incorporated empirical
mode decomposition (EMD) [29], wavelet decomposition [12],
wavelet neural network [22] and higher order statistics such
as multiscale sample entropy [10] and kurtosis [15] into
their ICA-based algorithms to extract specific sources with
known behaviours. However, many of these approaches are not
suitable for BCI applications since they are computationally
expensive.

In recent years, algorithms exploiting sparse representation
of signals have witnessed a remarkable growth in variety of
applications such as image compression [17], speech signal
compression [18] and image denoising [16], but they have
been rarely studied for the purpose of artifact removal from
EEG signals. For instance, in [31] and [32], pre-defined basis
are applied to sparsely represent EEG signals for removing
existing artifacts. The work in [33] successfully removes
ballistocardiogram (BCG) artifact modeled from EEG-fMRI
data taking advantage of sparse representation and learned
dictionaries. MCA technique finds use in image-content sep-
aration problem [34] where it is used to separate the texture
and the cartoon parts. It has also been applied to signal sep-
aration, image separation, biomedical engineering and speech
processing [35]. The success of MCA is dependent upon
the choice of appropriate dictionaries (basis functions). In
the literature, curvelet dictionaries are found appropriate to
represent piecewise smooth images [36], wavelet dictionaries
can be used to represent isotropic structures [37] and ridgelet
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dictionaries are highly recommended to represent global lines
in an image [38]. If an appropriate dictionary is identified,
the use of sparse representation will lead to the desired signal
separation [35]. In K-SVD based artifact removal method in-
stead of using pre-chosen set of basis functions, it is proposed
to learn the over-complete dictionary from examples [16]. K-
SVD algorithm is an iterative method that updates sparse
coefficients and dictionary atoms jointly, which results in
accelerated convergence [39]. K-SVD algorithm is proven
to be simple, flexible and efficient for the image denoising
problem [16].

III. METHODOLOGY

In this section, each of the two proposed sparsity-based
methodologies is described briefly and their mathematical
background is given.

A. Proposed EB removal techniques

The framework of the proposed approach is given in Fig 1.
The first task in sparsity-based approach is to obtain the
l0-norm sparse representation for the observed EEG signal.
With the obtained sparse solution, the degraded EEG signals
are modeled using MCA and K-SVD approaches. In MCA
method the dictionaries are pre-defined and remain unchanged
throughout the process of estimation of sparse coefficients. In
K-SVD method the randomly initialized dictionary is updated
using the estimated sparse solution. Then with the estimated
sparse solution and the updated dictionary matrix, EB artifacts
are estimated and subtracted from the degraded EEG signal to
obtain clean EEG data. The proposed algorithms are explained
briefly in the following sections.

1) Sparse representation of signals: The objective of sparse
representation is to compute the sparse coefficients sss ∈ Rk,
given the observed signal yyy ∈ Rm and over-complete dic-
tionary matrix D ∈ Rm×k (where k > m implies redun-
dancy) [16]. The EEG signal yyy of length m is divided into n
segments yyy = {yyyi}

n
i=1. Each of n segments {yyyi}

n
i=1 are rep-

resented by {sssi}ni=1 sparse coefficient vectors. The dictionary
D can be randomly generated or produced from the collection
of several known basis functions such as wavelet, curvelet,
Fourier, DCT, Dirac bases [40]. The columns of the dictionary
matrix D are called atoms and denoted as dddj , j = 1, 2.., k.
Assuming D as fixed, the signal segment yyyi can be represented
as a sparse linear combination of atoms of dictionary {dddj}kj=1,
such that yyyi = Dsssi with good approximation. Infinite number
of solutions are possible if D is a full-rank matrix; hence prior
constraints must be imposed on the solution [39], i.e.

min
sssi
‖sssi‖0 subject to yyyi = Dsssi (1)

where ‖.‖0 is l0- norm, counting non-zero entries in sssi.
Solving equation (1) is both numerically unstable and NP-hard,
requiring enumeration of all possible locations of nonzero
entries in si [21]. Nevertheless, methods exist in the literature
for obtaining an approximate solution which is found to be
quite accurate if the solution is sparse enough [41], [42]. In this
work, orthogonal matching pursuit (OMP) algorithm has been

used to find an approximate solution of equation (1) because
of its efficiency and simplicity [43].

Algorithm 1: OMP algorithm: sss = OMP (yyy, D, T )
Input: Observed signal yyy, Dictionary D, sparsity

threshold T
Output: sss
Initialize: the residual rrr0 = yyy, the index set I0 = ∅, t = 1
while t < T do

it = arg maxj=1,2,..,k |〈rrrt−1, dddj〉|
It = It−1 ∪ {it}
ssst = ddd†Ityyy
rrrt = yyy −Dssst
t = t+ 1

end
return sss = ssst

The steps of OMP [41] which is a greedy technique have
been outlined in Algorithm 1. At each iteration, this algorithm
attempts to find the atoms, that are maximally correlated with
the residual vector rrr. This implies that the selected atom
has maximum information and hence maximally minimizes
the error in reconstruction. Then OMP appends the index
of selected atoms it to the active set It. In the next step,
orthogonalization is carried out, where ddd†It indicates Moore-
Penrose pseudo-inverse of dddIt i.e., ddd†It := (dddTItdddIt)

−1dddTIt .
More importantly, this algorithm ensures that the residual rrrt
is always orthogonal to atoms indexed in It. Accordingly,
the correlation of the active atoms It will be zero in the
next iteration. Hence, no atom is selected twice in OMP. The
iteration is repeated until the pre-defined threshold T which
controls the sparsity is attained.

2) Morphological Component Analysis (MCA): This is a
method for decomposing a signal into its parts posessing
different morphological characteristics [31], [32]. MCA de-
pends on the hypothesis that for every signal to be separated,
there is a dictionary of atoms that allows its reconstruction
using a sparse representation [35]. With the benefit of sparse
representation sss, it assumes that a signal yyy can be represented
as linear combination of N morphological components, yyyi:

yyy = ΦsΦsΦs =

N∑
i=1

ψisi =

N∑
i=1

yyyi (2)

where ΦΦΦ = {ψ1, ψ2, ...ψN}. Note that {ψ1, ψ2, ...ψN} are the
basis matrices or dictionaries and sss = {s1, s2, ..sN} are the
corresponding sparse coefficient vectors. Choosing the correct
dictionary is crucial to create a good sparse decomposition.
If appropriate dictionaries are used, then the OMP algorithm
searching for the sparsest solution can lead to the desired
separation of EEG and EB artifacts. For the problem at hand,
discrete cosine transform dictionaries are used to represent the
background EEG signals [32] and Dirac dictionaries have been
used to represent EB artifacts [44].

In this work, the degraded EEG signal yyy is considered as a
linear combination of two morphological components ŷyy1, ŷyy2
obtained using DCT and Dirac basis and it is represented as

yyy = ŷyy1 + ŷyy2 = ψDCT sDCT + ψDsD (3)
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Fig. 1: Framework of the proposed approach.

where sDCT and sD are the sparse coefficient vectors cor-
responding to the DCT and Dirac basis, ψDCT and ψD,
respectively. The steps followed to separate EEG and EB
components using MCA technique are given in Algorithm 2.
Using the estimated morphological components, the compo-
nents corresponding to the EB artifact are subtracted from the
original degraded EEG to obtain the artifact-free signal.

Algorithm 2: MCA algorithm
Input: Observed signal yyy, dictionaries ψ1, ψ2, ..ψN ,

number of iterations Niter, sparsity threshold T
Output: Morphological components ŷyy1, ŷyy2, ..ŷyyN
Initialize: r0n = yyy, ŷyy0n = 0
for t = 1...Niter do

for n = 1...N do
update residual rtn = rt−1n

compute sparse coefficient vector, stn, using OMP
stn = OMP (rtn, ψn, T )
update nth component ŷyytn = ψns

t
n

compute residual rtn = yyy −
∑N
n=1 ŷyy

t
n

end
end

3) K-SVD based artifact removal method: In the previous
section, to find sparse vector sss, the dictionary (D = ΦΦΦ) is pre-
defined and assumed fixed. However, such a matrix may not be
the optimal over-complete dictionary. Hence, in this work K-
SVD algorithm is used to fine-tune or update the dictionary D,
one atom at a time, so as to further reduce the reconstruction
error. This algorithm is flexible and works with any pursuit
technique. Mathematically, the dictionary learning problem for
the given signal yyy = {yyyi}

n
i=1 can be defined as

min
D,sssi

n∑
i

‖yyyi −Dsssi‖
2
F subject to ‖sssi‖0 ≤ T (4)

where ‖.‖F denotes Frobenius norm. The parameter T controls
the number of non-zero entries in sssi and should satisfy T �
k, where k is the number of atoms in the dictionary D i.e.,
D = {dddj}kj=1. K-SVD algorithm consists of two steps. In the
first step it finds the sparse representation vector sssi using OMP
algorithm. Subsequently, in the second step the dictionary D
is updated such that it best represents the observed signal yyyi
for the estimated coefficient vector sssi. For a detailed study of
K-SVD algorithm we refer the reader to [39]. This algorithm
is called “K-SVD” because it carries out K number of singular
value decomposition (SVD) computations to obtain the learned
dictionary D [39]. Here, K = k, the number of atoms in
the dictionary, and each atom in D is updated as outlined in
Algorithm 3.

Algorithm 3: K-SVD algorithm
Input: Observed signal yyy, initial estimate of dictionary

D = D0, sparsity parameter T , K denotes
number of atoms in dictionary, N is the number
of K-SVD iterations.

Output: D,sss
for t = 1...N do
∀i si = OMP (yyyi, D, T )
for l = 1...K do

Find the set of signals that use the current atom,
wl =

{
i | 1 ≤ i ≤ n, sl 6= 0

}
Compute overall representation error El
El = yyy −

∑
j 6=l dddjsss

j

Set El as matrix by choosing only those columns
in wl and obtain ERl

[U, S, V T ] = SV D(ERl )
Update the dictionary column dddl with the first
column of U
sssl ⇐ S1,1 ∗ V1

end
end

We denote the given raw EEG signal by yyy, the clean EEG
signal as ccc and EB artifact as zzz, then these quantities can be
related as

yyy = zzz + ccc (5)

The aim of this work is to model the eye blink zzz using dictio-
nary learning technique so as to separate it from yyy. Initially,
this method is applied to single channel EEG data yyy of length
m. For learning the dictionary, we require n training signals
as input. Hence the original signal is divided into n smaller
segments which can have varying degrees of overlap with each
other. In this work, we used fully overlapping segments in
order to capture the behaviour of the entire observed EEG
signal. However, our main objective is to remove EB artifact
from EEG, hence the original dictionary learning problem is
modified as:

min
D,si,z

λ ‖yyy − zzz‖22 +
∑
i

µi ‖sssi‖0 +
∑
i

‖Dsssi −Rizzz‖22 (6)

Here, the first term is the Euclidean norm between observed
EEG yyy and eye blink zzz and λ is a Lagrange multiplier.
The other terms are equivalent to the problem of dictionary
learning. Ri is a binary matrix which extracts ith segment
from zzz i.e. zzzi = Rizzz. The parameter µi controls the level
of sparsity. To calculate zzz we assume D and sssi as fixed in
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equation (6) and take its derivative with respect to zzz equating
it to zero. The solution is given as

ẑzz =

(
λI +

∑
i

RTi Ri

)−1(
λyyy +

∑
i

RTi Dsssi

)
(7)

In the above equation, I refers to an identity matrix, ẑzz is the
estimated EB artifact of the observed EEG signal. Subtracting
it from yyy gives us the clean EEG ĉcc i.e. ĉcc = yyy− ẑzz. In equation
(7) ẑzz can be calculated sample-wise so that handling huge
matrices can be avoided.

B. Performance metrics

The performance of our proposed artifact removal methods
is evaluated using various quantitative metrics such as root
mean square error, signal to artifact ratio, correlation coeffi-
cient, mutual information and power spectral density.

Root Mean Square Error (RMSE) or Root Mean Square
Deviation (RMSD) [22] is the measure of difference between
the estimated artifact-free EEG signal (ĉcc) and the data actually
observed (yyy). This difference is also called as residuals and
RMSE aggregates them into a measure of predictive power. It
is computed using the equation:

RMSE =

√∑n
t=1

(
yyyt − ĉcct

)2
n

(8)

where n is the length of the corrupted EEG signal yyy.
Signal to Artifact Ratio (SAR) is a method to measure the

amount of artifact removed from the observed EEG signal
after processing with the proposed methodologies [45]. SAR
between the observed EEG signal with artifacts (yyy) and the
artifact-free signal (ĉcc) is given as

SAR = 10 log10
std(yyy)

std(yyy − ĉcc)
(9)

where std refers to standard deviation. Higher value of SAR
index indicates superior performance of the algorithm.

Correlation Coefficient (CC) measures the degree of asso-
ciation between the degraded original EEG with EB artifacts
(yyy) and the artifact-free EEG (ĉcc). More positive the correlation
value, stronger is the correlation [46]. Suppose C(yyy, ĉcc) is the
covariance, then CC of yyy and ĉcc is given as:

CC =
C(yyy, ĉcc)√

C(yyy,yyy) ∗ C(ĉcc, ĉcc)
(10)

Mutual information (MI) measures how much relevant in-
formation the degraded original EEG with EB artifacts (yyy)
shares with the artifact-free EEG (ĉcc) [47]. Mathematically, it
is defined as

MI =

∫ ∞
−∞

∫ ∞
−∞

p(yyy, ĉcc)log

(
p(yyy, ĉcc)

p(yyy)p(ĉcc)

)
dyyydĉcc (11)

where p(yyy, ĉcc) is the joint probability density function and p(yyy)
and p(ĉcc) are the marginal probability density functions of yyy
and ĉcc, respectively. The resemblance between the observed
EEG signal and the artifact-free EEG signal is more if the
magnitude of MI is large [10].

To estimate the similarity in frequency content between
the raw EEG signal (yyy) and the artifact-free EEG signal
(ĉcc), magnitude squared coherence (MSC) [10] measure is
computed. Mathematically, it is defined as follows:

MSCyyy,ĉcc (f) =
PSDyyy,ĉcc (f)

2

PSDyyy,yyy (f)PSDĉcc,ĉcc (f)
(12)

where PSDyyy,ĉcc denote the cross-spectral density between yyy
and ĉcc, PSDyyy,yyy and PSDĉcc,ĉcc denote the auto-spectral density
of yyy and ĉcc, respectively.

IV. EXPERIMENTS AND RESULTS

We used both synthetic and real EEG data in our exper-
iments. The synthetic data was used to evaluate the perfor-
mance of the proposed approaches whereas the real EEG
dataset was used to validate them.

A. Experiments with Synthetic EEG Data

The design of synthetic EEG data consists of two parts:
creation of EEG-like signal and EB-like artifact. Considering
the noise-like nature of EEG signal we decided to choose 1/f
or pink noise to simulate our EEG signal. The EB-like artifact
signal is created using several combinations of sinusoids with
different amplitudes and frequencies. The created EEG-like
signal ccc, EB-like signal zzz and their summation as noisy EEG
signal yyy are shown in Figs 2 (a), (b) and (c), respectively. As
in a real-world EEG signal, pink noise which resembles EEG
also has lower amplitude than EB signal.
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Fig. 2: (a) Simulated EEG-like signal, ccc; (b) EB-like signal, zzz; (c) their
summation, yyy.

Initially, we use the MCA technique to obtain the morpho-
logical components from the synthetically generated corrupted
EEG signal of Fig. 2 (c). DCT and Dirac basis are selected
as the two dictionaries in the MCA algorithm because the
noise-like low amplitude EEG-like signal can be represented
by DCT basis [32] and the spike-like components caused by
EB-like signal can be sparsely represented by Dirac basis [44].
The MCA algorithm decomposes the generated noisy EEG
signal into EB artifact and EEG signal as shown in Figs. 3
(b) and (c), respectively. The extracted EB artifact in Fig. 3
(b) is similar to the generated EB artifact in Fig. 2 (b).
The correlation coefficient between the extracted EB artifact
and the generated EB artifact is 0.7832. As our aim is to
extract artifact-free EEG, the quantitative metrics are measured
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between the generated pink noise in Fig. 2 (a) and extracted
EEG signal in Fig. 2 (c). The quantitative metrics such as
RMSE, CC, SAR and MI values listed in Table I show good
performance of MCA algorithm.
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Fig. 3: (a) Generated noisy EEG signal; (b) Extracted EB-like signal; (c)
Artifact-free EEG-like signal estimated using MCA method.

Next, the K-SVD based dictionary learning artifact removal
method is applied over the noisy EEG signal yyy of Fig. 2 (c).
The signal yyy of length m is divided into n smaller segments.
For example, if a random dictionary of size 100 × 150 is
chosen, then the signal of length 1200 samples is divided into
n segments where each segment includes N (=100) samples
which depends on the size of the dictionary. That is, if the
dictionary size is p×q, then the number of samples N in each
segment is equal to p. The number of segments n, depends on
the degree of overlapping. Considering again the EEG signal,
yyy, of length m = 1200 samples, if there is no overlap between
segments then the value of n is 12. For partial overlap with
50% coverage n is 23 and for fully overlapping segments n
is 1101. In this work we consider fully overlapping segments
and hence the K-SVD technique outlined in Algorithm 3 is
applied to 100 samples of each segment to obtain the sparse
coefficient vector of size 150× 1 with 5 non-zero coefficients
and the learned dictionary D ∈ R100×150.

This process is repeated for each segment with full overlap
until the entire signal is covered. Then the obtained sparse
coefficient vectors and the learned dictionary are used in
equation (7) to separate EB-like signal and EEG-like signal
which are shown in Figs. 4 (b) and (c), respectively. The
extracted EB artifact using K-SVD technique is very similar
to the generated EB artifact in Fig. 2 (b) and the correlation
coefficient between them is 0.8214. The quantitative metrics
measured between the generated EEG signal in Fig. 2 (a) and
the extracted EEG like signal in Fig. 4 (c) are listed in Table I.
From the values in the Table I it is observed that K-SVD based
artifact removal method outperforms MCA method since it
produces smaller RMSE value and higher CC, SAR and MI
values. The magnitude squared coherence (MSC) between the
generated noisy EEG signal yyy and the extracted noise-free
EEG signal by MCA and K-SVD method are shown in Figs. 5
(a) and (b), respectively. It clearly shows that both the sparsity-
based methods have strongest coherence above 10 Hz and
therefore, preserve the neural signal frequency after removing
the EB-like artifacts.
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Fig. 4: (a) Generated noisy EEG signal; (b) Extracted EB-like signal; (c)
Artifact-free EEG-like signal estimated uisng K-SVD method.
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Fig. 5: MSC of the generated noisy EEG signal yyy and the extracted artifact-
free EEG-like signal using (a) MCA method and (b) K-SVD method.

TABLE I: Comparison of RMSE, CC, SAR and MI values of K-SVD and
MCA methods computed using simulated EEG (pink noise) like data and
extracted EEG like data.

Metrics K-SVD MCA

Root Mean Square Error (RMSE) 4.6731 6.7164
Correlation Coefficient (CC) 0.7892 0.6831

Signal to Artifact Ratio (SAR) 3.4592 1.7722
Mutual Information (MI) 0.7241 0.6468

B. Experiments with Real EEG data

1) Experimental Setup: Seven healthy subjects (four males
and three female), between ages of 23 and 30, volunteered
for the experiment. Emotiv EPOC+ [48] device with sampling
rate of 128 samples per second, with low pass filter cut-
off frequency 45 Hz and resolution of 14 bits was used to
record data. Users were seated in a chair with their arms and
legs extended, resting on a desk and resting on a footrest,
respectively. We made sure that there was no background noise
while the data was recorded. Initially, the user is asked to close
his/her eyes for 10 seconds. Then they were asked to open
and sit relaxed for one minute and again instructed to close
their eyes for 10 seconds. We could see that most of the users
blinked their eyes once in 5 seconds or at least eight times in a
minute. So, EEG data of total one minute 20 second duration is
collected in each trial for each user. The experiment is repeated
two times with all users. Hence, a total of 14 datasets were
collected and used. Each session lasted about 10 - 15 minutes,
including the time for experimental setup and data recording.
The data was captured on all 14 channels which were labelled
as AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8,
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AF4 and channels P3, P4 were used as reference channels. The
recorded EEG signals are transferred to the computer using
wireless USB connector.

2) Experiments with Single channel EEG data:
Case 1 (Subject S1 - dataset 1, S1 1): Out of 14 channels

acquired using Emotiv EPOC+ device, the data of AF3 channel
is severely affected by EB artifacts as it is located over
the dorsolateral prefrontal cortex [10]. Fig. 6 (a) shows the
acquired AF3 EEG signal with EBs for the subject S1 1.
Before using the proposed artifact removal techniques, we
normalized the data by subtracting the mean value of the
signal from each data point. Then the proposed MCA and K-
SVD based EB artifact suppression techniques were applied
to AF3 channel data. MCA method decomposes the acquired
EEG signal in Fig. 6 (a) into EB component and artifact-free
EEG component. The artifact-free EEG obtained from MCA
method is shown in Fig. 6 (b). The result shows that MCA
method removes EB artifacts from the AF3 channel data to
a significant degree. However, one can observe that some EB
artifatcs still exist in the estimated artifact-free EEG signal.
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Fig. 6: (a) Acquired AF3 channel data with EB for subject S1 1; (b) Artifact-
free EEG estimated using MCA method; (c) Artifact-free EEG estimated using
K-SVD method

Similar to experiments on synthetic data, the normalised
signal of length m samples is divided into n segments. Each
segment of N (=100) samples is processed using Algorithm 3
to obtain the sparse coefficients and the learned dictionary. As
explained previously in section IV A, the choice of value of N
depends on size of the dictionary. Finally, we use equation (7)
to separate EB contribution from the AF3 channel data. The
artifact-free EEG obtained from K-SVD technique is shown in
Fig. 6 (c). The result shows that K-SVD method successfully
removes EB artifacts from single channel EEG data.

By comparing the results of applying the proposed methods
on the EEG signal corrupted with EB artifacts, we observe that
the K-SVD method removes all the EB artifacts and yields an
artifact-free EEG signal. Hence, the learned dictionary of K-
SVD algorithm delivers superior performance for removing
artifacts than using pre-defined DCT and Dirac dictionaries
in the MCA technique. We reach the same conclusion by
evaluating quantitative metrics such as RMSE, CC, SAR and
MI for both the sparsity-based approaches. The metrics are
calculated between the acquired raw AF3 channel signal and
the artifact-free signal obtained by applying the proposed

sparsity-based approaches. The values obtained are listed in
Table II. We observe from Table II that the proposed K-SVD
based artifact removal method outperforms MCA method since
it produces smaller RMSE value and higher CC, SAR and MI
values. The MSC plots obtained for the acquired AF3 channel
data with EBs of subject S1 1, and the estimated artifact-free
EEG signal using MCA and K-SVD method are shown in
Figs. 7 (a) and (b), respectively. The coherence values show
that the sparsity-based artifact removal algorithms preserve the
neural signal frequency after removing the EB artifacts.

TABLE II: Comparison of RMSE, CC, SAR and MI values of K-SVD and
MCA methods for single channel data for the subject S1 1.

Metrics K-SVD MCA

Root Mean Square Error (RMSE) 8.0143 9.3249
Correlation Coefficient (CC) 0.6687 0.5131

Signal to Artifact Ratio (SAR) 1.9946 1.2561
Mutual Information (MI) 0.6984 0.6244
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Fig. 7: MSC of the acquired AF3 channel data for the subject S1 1 and
the extracted artifact-free EEG signal using (a) MCA method and (b) K-SVD
method.

Case 2 (Subject S3 - dataset 2, S3 2): Out of seven subjects,
subject S3 involuntarily blinked two times at certain instances
during experimental trials. We found that this was a mannerism
of the particular subject. We observed that our proposed
sparsity-based methods remove such blinks accurately from
the EEG signals. The acquired AF3 channel data for the
subject S3 2 with double EBs is shown in Fig. 8 (a) and
the observed double EB artifacts are shown encircled with an
ellipse. Artifact-free EEG signals obtained using MCA and K-
SVD methods for the subject S3 2 are shown in Figs. 8 (b)
and 8 (c), respectively. The quantitative metrics obtained are
listed in Table III and it is observed that K-SVD based artifact
removal method outperforms MCA method in removing EB
artifacts. The MSC obtained for the acquired AF3 channel
data with double EBs for the subject S3 2 and the extracted
artifact-free EEG signal using MCA and K-SVD method is
shown in Figs. 9 (a) and (b), respectively.

3) Experiment with 14-channel EEG data (Subject S4 -
dataset 1, S4 1): Next, we use both MCA and K-SVD
based artifact removal methods on all the 14 channel EEG
data acquired using Emotiv Epoc+ device. Fig. 10 shows the
observed EEG signals of all the 14 channels with EB artifacts
for the subject S4 1. First, MCA technique is applied to all the
14 channels by keeping the two pre-defined DCT and Dirac
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Fig. 8: (a) Acquired AF3 channel data with double EBs for the subject S3 2;
(b) Artifact-free EEG estimated using MCA method; (c) Artifact-free EEG
estimated using K-SVD method

TABLE III: Comparison of RMSE, CC, SAR and MI values of K-SVD and
MCA methods for single channel data for the subject S3 2.

Metrics K-SVD MCA

Root Mean Square Error (RMSE) 8.3279 10.5682
Correlation Coefficient (CC) 0.6598 0.5001

Signal to Artifact Ratio (SAR) 1.9346 1.2282
Mutual Information (MI) 0.6874 0.6053

0 10 20 30 40 50 60
Frequency [Hz]

(a)

0

0.5

1

C
oh

er
en

ce

0 10 20 30 40 50 60
Frequency [Hz]

(b)

0

0.5

1

C
oh

er
en

ce

Fig. 9: MSC of the acquired AF3 channel data with double EBs for the subject
S3 2 and the extracted artifact-free EEG signal using (a) MCA method and
(b) K-SVD method.

dictionaries unchanged throughout the process. To attain this
task, the extracted signals from all the channels are divided
into segments of size N samples, and each segment is then
used as input to Algorithm 2. The MCA algorithm decomposes
the acquired EEG signal into EB artifact and artifact-free
EEG signal. We follow a similar procedure for processing 14-
channel EEG data using K-SVD method. The only difference
here is that instead of pre-defined dictionaries, a single over-
complete dictionary is learned. Algorithm 3 and equation (7)
are applied to each segment of raw EEG signal to learn a single
over-complete dictionary. Fig. 11 shows the artifact-free EEG
obtained by applying the proposed K-SVD based technique on
the acquired EEG data of all the 14 channels for the subject
S4 1 shown in Fig. 10.

The performance of the proposed sparsity-based techniques
on all the fourteen datasets is evaluated using metrics such as
RMSE, CC, SAR and MI. Each dataset consists of 14 channel
EEG data. The performance metrics are applied separately
to each channel data of each dataset. The averaged RMSE,
CC, SAR and MI values of each channel for all the fourteen
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Fig. 10: Observed 14 channel data with EB artifatcs for the subject S4 1
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Fig. 11: Artifact-free EEG signals using K-SVD method for the subject S4 1.

datasets is enumerated in Table IV. The total average value of
RMSE (7.6801, 8.5167), CC (0.6738, 0.5561), SAR (2.0282,
1.3606) and MI (1.0102, 0.8795) demonstrate that K-SVD
based artifact removal method outperforms MCA method. The
average MSC obtained for all the 14 channels for one of the
subjects (S4 1) is shown in Figs. 12 (a) and (b), respectively.
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Fig. 12: Average MSC of all the 14 channel data for the subject S4 1 and
the extracted artifact-free EEG signal using (a) MCA method and (b) K-SVD
method.

V. COMPARISON WITH EXISTING WORK

To evaluate the performance of the proposed K-SVD-based
artifact removal method, we provide a comparison of statistical
metrics with a very recently proposed artifact removal method
namely, Fully Online and Automated Artifact Removal for
Brain-Computer Interfacing (FORCe) method [15]. FORCe
technique is based upon a combination of wavelet decom-
position, ICA, hard and soft thresholding. FORCe is mainly
intended for the removal of participant generated artifacts
and it has been shown to outperform state-of-the-art artifact
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TABLE IV: Comparison of average RMSE, CC, SAR and MI values of
K-SVD and MCA based EB artifact removal methods for all the 14 channel
EEG data of all the fourteen datasets.

Metrics Channel location K-SVD MCA

Average RMSE AF3 12.0352 13.4814
F7 9.5141 10.6113
F3 7.4345 8.1279

FC5 11.8764 12.4589
T7 5.5465 6.0214
P7 5.2163 5.5242
O1 5.3690 5.6348
O2 5.8525 6.0259
P8 6.3476 6.9884
T8 7.3451 8.2486

FC6 4.3430 5.5473
F4 8.4465 8.9759
F8 6.5932 8.6424

AF4 11.6016 12.9456
Total average RMSE 7.6801 8.5167

Average CC AF3 0.5048 0.4124
F7 0.6812 0.5182
F3 0.6488 0.5876

FC5 0.7028 0.4849
T7 0.7998 0.6731
P7 0.7368 0.6444
O1 0.7285 0.6744
O2 0.7960 0.6417
P8 0.6679 0.5037
T8 0.6843 0.6284

FC6 0.7025 0.5638
F4 0.6215 0.4515
F8 0.6299 0.5184

AF4 0.5191 0.4837
Total average CC 0.6738 0.5562

Average SAR AF3 1.4129 0.7378
F7 1.6427 0.8721
F3 2.1261 0.9666

FC5 1.3122 0.5107
T7 3.1374 1.9571
P7 2.6438 1.5914
O1 1.5953 1.5356
O2 2.9674 1.8752
P8 1.3994 1.1735
T8 3.5603 2.8642

FC6 3.2868 2.3035
F4 1.2353 0.5461
F8 1.4598 0.9890

AF4 0.6150 0.3657
Total average SAR 2.0282 1.3063

Average MI AF3 0.6963 0.6585
F7 0.7939 0.7489
F3 1.1629 1.0580

FC5 1.1696 1.0468
T7 1.3416 0.9841
P7 1.1728 1.0603
O1 1.0723 0.9419
O2 1.2517 1.0423
P8 1.1590 0.8482
T8 0.9141 0.8705

FC6 1.0438 0.9619
F4 1.0576 0.8453
F8 0.6588 0.6157

AF4 0.6476 0.6298
Total average MI 1.0102 0.8795

Fig. 13: Average CC, SAR, RMSE and MI values obtained by K-
SVD, MCA and FORCe methods for all the 14 channels of all the
fourteen datasets.

removal methods such as Lagged Auto-manual Information
Clustering (LAMIC) [49] and Fully Automated Statistical
Thresholding for EEG artifact Rejection (FASTER) [50].

The average RMSE, CC, SAR and MI values of our
proposed K-SVD method and the existing FORCe method for
all the fourteen datasets are enumerated in Table V and the
average values of each channel for all the fourteen dataset
is shown in Fig. 13. From Table V it is shown that the
RMSE (7.6801, 7.6702), CC (0.6738, 0.6853), SAR (2.0282,
2.0565) and MI (1.0102, 1.0154) values of K-SVD algorithm
and FORCe method, respectively are nearly equivalent. It is
therefore demonstrated that the proposed K-SVD based artifact
removal technique performs equivalent to FORCe method.

TABLE V: Comparison of average RMSE, CC, SAR and MI values of the
Proposed K-SVD method with FORCe method for all the fourteen dataset.

Metrics K-SVD FORCe

Root Mean Square Error (RMSE) 7.6801 7.6702
Correlation Coefficient (CC) 0.6738 0.6853

Signal to Artifact Ratio (SAR) 2.0282 2.0565
Mutual Information (CC) 1.0102 1.0154

VI. DISCUSSION

1) Phase delay: In our proposed sparsity-based methods,
we are processing the EEG signals in time-domain without
performing any transformations such as Fourier, wavelet, etc.
Also, we are not using any filters for processing the signals.
The acquired EEG signals are segmented and directly passed
through the proposed MCA and K-SVD algorithms to estimate
artifact-free EEG signals. Hence, no phase delay involved in
the proposed methods.

To validate our argument, we estimated time-delay between
the degraded EEG signal and the artifact-free EEG signal. The
generalized cross-correlation (GCC) [51] between the acquired
raw EEG signal x1(t) and the artifact-free EEG signal x2(t)
is computed as

GCCx1x2
(τ) =

∫ ∞
−∞

ψg(f)X1(f)X∗2 (f)ej2πfτdf (13)

where X1(f) and X2(f) are the Fourier transform of the sig-
nals x1(t) and x2(t), respectively, and ψg(f) is the weighting
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function and it is chosen as ψg(f) = |X1(f)X∗2 (f)|−1. Fig. 14
shows the GCC of the degraded EEG signal and the estimated
artifact-free EEG signal (300 samples) and we observe no
time-delay between the signals.
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Fig. 14: Generalized cross-correlation (GCC) of the acquired raw EEG
signal and the artifact-free EEG signal using K-SVD method for the subject

S1 1. The time-delay is 0 samples between the two EEG signals.

2) Computation time: The speed of the algorithm is an
important issue in real-time BCI applications. In this work,
we have compared the execution times of each algorithm. The
proposed sparsity-based algorithm and FORCe algorithm have
been executed on the same PC with 3.2 GHz CPU, 4 GB RAM
and software (MATLAB R2015b). MCA took an average
execution time of 24.32s, K-SVD requires 31.02s and FORCe
consumes 27.48s for executing all the 14 channels. MCA
method provides lesser execution time since it uses pre-defined
dictionaries. In recent literature [52], [53], the original K-SVD
algorithm has been modified to perform parallel updation of
atoms with less computation time. For the sake of simplicity
and in order to provide a benchmark comparison, we used the
original K-SVD algorithm with sequential updation of atoms.

VII. CONCLUSION

In this paper, we proposed two sparsity-based approaches,
namely, MCA and K-SVD to remove EB artifacts from the
raw EEG signal. The advantage of the proposed K-SVD based
method is that the learned dictionary adaptively estimates
the EB artifact from the given EEG signal. On the other
hand, if the pre-defined basis functions are not chosen ap-
propriately in MCA method, the morphological components
of the given EEG signal may not be modeled accurately.
The experiments on synthetic and real EEG data demonstrate
that learning the dictionary from the given data using K-
SVD algorithm yields superior performance as compared to
using pre-defined dictionaries in the MCA algorithm. The
proposed K-SVD algorithm is also compared with the recent
state-of-the-art EEG artifact removal method FORCe [15].
Experimental results show that our K-SVD based artifact
removal algorithm performs equivalent to the FORCe method.
The proposed sparsity-based methods do not require any
channel information, parameter tuning such as thresholding or
additional equipments/EOG channels to remove EB artifacts
from the EEG signal. Although, the algorithms proposed in
this paper are intended only for EB artifact correction, they
can also be applied to other artifacts in raw EEG data.
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