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Abstract Spoken term detection (STD) provides an effi-
cient means for content based indexing of speech. How-
ever, achieving high detection performance, faster speed,
detecting ot-of-vocabulary (OOV) words and performing
STD on low resource languages are some of the major re-
search challenges. The paper provides a comprehensive sur-
vey of the important approaches in the area of STD and
their addressing of the challenges mentioned above. The
review provides a classification of these approaches, high-
lights their advantages and limitations and discusses their
context of usage. It also performs an analysis of the various
approaches in terms of detection accuracy, storage require-
ments and execution time. The paper summarizes various
tools and speech corpora used in the different approaches.
Finally it concludes with future research directions in this
area.
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1 Introduction

With increasing amount of spoken data being stored, shared
and processed nowadays, the mechanisms for their indexing
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and retrieval are also getting increasing attention. These in-
dexing mechanisms are used to organize spoken data records
that may be as diverse as cultural and heritage speech, audio
lectures in universities, meeting speech, broadcast news, call
center conversations, voice intercepts by law enforcement
agencies and so-on and so-forth. Typically, speech indexing
is performed based on identity of the speaker or spoken con-
tent or both. While speaker recognition and speaker diariza-
tion are used for indexing speech based on the identity of the
speaker, variants of speech recognition techniques such as
keyword spotting and STD are employed for content based
indexing. Keyword spotting involves finding occurrences of
specific spoken words in a speech utterance. STD extends
the same by finding a sequence of such words (single word
or a phrase) in the speech utterance. However, as far as this
survey is concerned, keyword spotting is considered as a part
of STD and both of them have been addressed in the survey.
The important challenges in the context of STD as are fol-
lows:

1. Improvement of the detection performance.
2. Faster search time.
3. Provision of handling unrestricted vocabulary including

OOV words.
4. Handling of pronunciation variants.
5. Resource sparseness towards application of statistical

techniques in underrepresented languages.

These challenges have been addressed using different ap-
proaches as described in the next section.

2 Broad approaches to STD

Spoken term detection is viewed as a variant of the prob-
lem of speech recognition. The essential difference between
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the two is that the former detects only a pre-defined set of
spoken terms while the later gives a complete transcription
of the contents of a speech utterance. Nevertheless, many of
the approaches meant for speech recognition finds their ap-
plicability in STD with modifications. A broad classification
of the different approaches used for spoken term detection
are as follows:

1. Supervised approaches
(a) Acoustic keyword spotting based
(b) LVCSR (Large Vocabulary Continuous Speech Re-

cognition) based
(c) Subword recognizer based
(d) Query-by-Example (text based STD)
(e) Event based

2. Unsupervised approaches: QBE (Query-by-example us-
ing template matching)
(a) Frame based template matching
(b) Segment based template matching

Much of the earlier research in this field originated in the
framework of acoustic keyword spotting (Rose 1996). Sec-
tion 3 presents a review of the developments in the area of
acoustic keyword spotting. Many of the present day STD
systems use large vocabulary continuous speech recogni-
tion (LVCSR) technology that requires supervised training
of HMMs with huge amount of annotated speech and lan-
guage resources. However, many of the new languages on
which STD tasks are to be performed are under-represented
in terms of resources required for building statistical models
of HMMs used in LVCSRs (Boves et al. 2009). Even for the
well represented languages, the LVCSR technology by itself
suffers from several limitations with respect to STD tasks.
Often the spoken data contains multilingual words which are
difficult to model. This is quite common in the context of In-
dian languages, where English words are often interspersed
in predominantly vernacular speech. The English words be-
come OOV words in the vernacular language. Another ex-
ample of OOV words are the different named entities like
names of places and persons, that are generally not covered
in a standard pronunciation dictionary of a language. Recog-
nition of such OOV words is an important research chal-
lenge in keyword spotting as they are not naturally handled
by LVCSRs. Another issue with the LVCSR based approach
is that the high word level accuracy of these recognizers is
primarily due to the effect of language model (Novotney
et al. 2009). This aspect makes these recognizers less ef-
fective for STD tasks in domains for which an appropriate
language model was not available during training. This issue
has been addressed to a great extent by keyword spotters that
makes use of phonetic recognizers (James and Young 1994;
Thambiratnam and Sridharan 2005; Vergyri et al. 2007;
Mamou et al. 2007) instead of word recognizers. These pho-
netic recognizers are based on subword modeling of HMMs.

However, the low accuracy of the phone level outputs makes
it difficult to achieve high accuracy for the overall system. In
addition to the limitations mentioned above, all these meth-
ods require huge amount of transcribed speech and lexi-
con resources for statistical modeling of HMMs. The de-
tails of these supervised approaches involving LVCSRs are
discussed in Sect. 4. The same for subword recognizers is
discussed in Sect. 5.

Alternative approaches of spoken term detection involve
query-by-example (QBE) methods, wherein the keyword
or the spoken term is introduced from the speech, either
from a speech recording interface or excising it from speech
cuts. They have either little or no requirements of annotated
speech data or prior knowledge of the underlying language
and hence hold considerable promise in the context of low
resource languages.

The QBE approaches can be classified into two cate-
gories. The first category of QBE approaches are supervised
methods that use phone lattice representation of keyword ex-
emplars to be matched against a similar representation of the
target utterance. Text-based STD techniques are applied on
phone lattices (Shen et al. 2009; Parada et al. 2009) dur-
ing the process of matching. These methods do not require
a phonetic lexicon for the queried keywords but require la-
beled resources for building lattices. Section 6 presents a
review of those approaches. The second category of these
approaches are unsupervised methods based on template
matching paradigm where the queried keyword template is
matched with the target utterance for detecting a possible
presence of the same. These approaches do not require the
availability of any kind of labeled resources and hence are
most suitable for under-represented languages. Section 8
presents a discussion on these methods. The template based
methods have two major steps. The first step provides a tem-
plate representation of the spoken term. This is followed by
matching of the template against a similar representation of
the target utterance to determine the possible positions of
occurrence of the term in the target utterance.

The template based methods are in existence since the
early days of speech recognition research (Bridle 1973).
They took a back seat with the advent of HMMs. How-
ever, they received renewed attention in the context of QBE
methods after the STD evaluations conducted by National
Institute of Standards and Technology (NIST) in 2006. The
focus in this category in recent times has been primarily
on novel methods of template representation and improve-
ment in speed of the template matching process. Earlier,
the templates were represented with Mel frequency cepstral
coefficients (MFCC) features. The more recent approaches
have used posterior features (Fousek and Hermansky 2006;
Zhang and Glass 2009; Silaghi and Bourlard 1999; Hui-
jbregts et al. 2011) and acoustic segment models (Wang
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Fig. 1 Taxonomy of
approaches to STD

et al. 2011) for template representation. Spectrogram seg-
ments (Chan and Lee 2010) and spectrographic image fea-
tures (Barnwal et al. 2012; Ezzat and Poggio 2008) have also
been used in template representation. For template match-
ing, almost all methods use some or the other variant of Dy-
namic time warping (DTW) (Sakoe and Chiba 1978) (Mey-
ers et al. 1980) that is essentially a dynamic programming
based algorithm to find the degree of similarity between two
time series differing in length. The DTW based approaches
operate at frame level while comparing a keyword template
with its counterpart in the target utterance. One such vari-
ant of frame based DTW, called segmental-DTW (Zhang
and Glass 2009) has been used to improve the accuracy of
detection. Alternatively, DTW techniques at segment level
(segment based DTW) has been proposed in place of frame
based DTW (Chan and Lee 2010) for reducing computation
time with slightly lower detection accuracy. Computational
efficiency of frame based DTW methods e.g., segmental-
DTW, have been improved using a lower bound estimate
based on inner product distance in Zhang and Glass (2011).
Apart from the methods employing DTW, a method us-
ing matched filters have been proposed in Barnwal et al.
(2012), Ezzat and Poggio (2008) for template matching. The
Sects. 8.2 and 8.3 discusses the various methods of template
representation and template matching respectively.

A different paradigm of supervised keyword spotting
proposed in Jansen and Niyogi (2009), Kintzley et al. (2011)
uses an event based model to represent a keyword. These
approaches use a sparse representation of a keyword that
makes keyword spotting significantly faster than conven-
tional methods. Event based keywordspotting is discussed in
Sect. 7.1. All the methods described so far apply to detection

of spoken terms in unencrypted speech. An attempt towards
performing the same on encrypted VoIP speech was done by
Wright et al. (2010). Their work is described in Sect. 7.2.

The taxonomy of these approaches is shown in Fig. 1.
The paper concludes with a discussion and possible di-

rections of future work towards spoken term detection in
Sect. 10.

3 Acoustic keyword spotting

In acoustic keyword spotting, a parallel network of keyword
and background filler models are used (Rose and Paul 1990).
Here, the model of a keyword is represented by concatenat-
ing constituent phoneme models. The filler models are con-
structed using phoneme loops. Each phoneme is modeled as
a HMM/GMM trained using statistical techniques. Neural
networks are also used (Szoke et al. 2005) used for modeling
phonemes (Szoke et al. 2005). Log-likelihood scores corre-
sponding to the putative hits are obtained using keywords
with filler and filler only passes. Variants of likelihood ratio
of the scores are used to declare the putative keyword hits as
true hits and false alarms.

The HMM/GMM models are generally trained using
generative training techniques involving likelihood maxi-
mization. However, it has been argued that the training ob-
jective aims at maximizing the likelihood of the transcribed
utterances and not that of keyword spotting performance
(Grangier et al. 2009). This issue is addressed by discrimina-
tive training approaches. These approaches maximizes dur-
ing training, different criteria that have a direct impact on
the keyword spotting performance. The approach in Sukkar
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et al. (1996) aims at maximizing the likelihood ratio between
the keyword and garbage models for keyword utterances
and minimizing it over a set of false alarms generated by
a first keyword spotter. Sandness and Hetherington (2000)
proposed to apply Minimum Classification Error (MCE) to
the keyword spotting problem. The approaches in Weintraub
et al. (1997) and Benayed et al. (2003) combined different
HMM-based keyword spotters. The former used a neural
network to combine the likelihood ratios of different mod-
els while the later used a support vector machine to com-
bine different averages of phone level likelihoods. Keshet
et al. (2007) proposed a training algorithm to directly max-
imize the Figure-of-Merit criteria typically used to evaluate
the performance of keyword spotters. The same is achieved
by maximizing the area under the Receiver Operating Char-
acteristics (ROC) curve.

A major limitation of the acoustic framework for key-
word spotting is the difficulty encountered in handling new
keywords. The system must decode the target utterance with
the new keyword list all over again, every time a new key-
word is entered. This results in excessively high search
times. This limitation is addressed by STD system based on
LVCSRs and subword recognizers as described next.

4 STD using LVCSRs

A considerable amount of research efforts on spoken term
detection have focussed on extending information retrieval
techniques available for text to spoken documents. Some of
these are described in Garofolo et al. (2000). A LVCSR sys-
tem is used to generate word level transcription correspond-
ing to the input speech. These are then indexed using infor-
mation retrieval techniques available for text. These indices
are searched for the presence of query terms. However, of-
ten the word level transcription generated by 1-best output
of the LVCSR contains errors that affect the performance of
the STD system. Hence, word lattices are used for indexing
instead of 1-best output of the LVCSR. Word lattices are di-
rected acyclic graphs. Each vertex in a lattice is associated
with a timestamp. Each edge (u, v) is labeled with a word or
phone hypothesis and its prior probability, that is the prob-
ability of the signal delimited by the timestamps of the ver-
tices u and v, given the hypothesis. A similar but more com-
pact representation of a word lattice is called a word con-
fusion network (WCN) (Hakkani-Tur and Riccardi 2003;
Mangu et al. 2000). Each edge (u, v) labeled with a word
hypothesis and its posterior probability, that is the probabil-
ity of the word given the signal. The construction of a WCN
is based on word arcs. All word arcs that overlap in time are
clustered together irrespective of the positions of these arcs
in respective paths. Thus WCNs provide a strict alignment
in time of all the words in the lattice. A still compact rep-
resentation of the word lattice has been proposed in Chelba

Fig. 2 (a) Word lattice with seven words and corresponding (b) PSPL
(c) WCN respectively. Wi ’s represent keywords and Pi ’s represent the
corresponding posterior probabilities associated with each word

and Acero (2005) known as position specific posterior lat-
tice (PSPL). PSPL gives the posterior probability of a word
w at a specific position in a lattice. All paths in the lattice are
enumerated, each with its own path weight. The posterior
probability of a given word at a given position is computed
by summing all path weights that include the given word at
a given position as the numerator and then divided by sum
of the weights in the lattice. Figure 2 shows a word lattice
and its corresponding PSPL and WCN representation.

Word lattices and its variants have been successfully used
for improving the detection rate of in-vocabulary (IV) terms.
However, they cannot handle OOV or rare word queries
when used in word-based fashion. A detailed performance
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comparison of PSPLs and WCNs have been discussed in
Pan and shan Lee (2010). It is observed that the PSPLs
always yield a better performance than WCNs but require
more space for storing the indices. The use of subword units
is also explored to extend the word based PSPL/WCN one
step further to subword based PSPLs (S-PSPL) and subword
based WCNs (S-WCN). It is found that S-PSPLs/S-WCNs
always yield much better mean average precision (MAP)
performance for both OOV and IV queries while consum-
ing much less storage space than word-based PSPLs/WCNs.
The approaches for STD using other subword units are dis-
cussed next.

5 STD using subword recognizers

The approaches in this category involve building indices
with different subword units such as phone n-grams, multi-
grams, syllables, segments or lattice representations of the
previously mentioned units (Ng and Zue 2000; Szoke et al.
2008). The indices are built from transcripts of an appro-
priate subword recognizer using techniques available in text
IR community. In Ng and Zue (2000), phonetic transcripts
of a spoken document are obtained using a phone recog-
nizer. The phone level transcripts are then used to obtain
subword units of varying complexity in terms of their level
of detail and sequence length. It is observed that in terms
of mean average precision (MAP), the best performance
is exhibited by the 3-gram phone index (MAP value 0.86)
followed by that of 5-multigrams (MAP value 0.81). It is
also found that the overlapping subword units perform bet-
ter than non-overlapping subword units. Again, among non-
overlapping subword units, multigrams perform better than
syllable units. For broad phonetic classes, decreasing the
number of phonetic classes needs to be compensated by in-
creasing the sequence length for maintaining the same MAP
value. Their work also discusses techniques for building in-
dices robust to erroneous transcriptions. It suggests modifi-
cation of the query to include erroneous variants of the orig-
inal terms to improve matching of corrupted terms. This can
compensate towards substitution errors. Another approach is
to provide higher weightage to terms appearing more num-
ber of times in the top N -hypotheses. The work proposes
an approximate match retrieval metric between query and
document defined as opposed to an exact match to accom-
modate errors in automatic transcription.

The use of multigrams (Deligne and Bimbot 1995) as
subword units for dealing with OOV words is explored in
Szoke et al. (2008). The impact of multigram parameters
namely its length and pruning factor on the size of the index
and STD accuracy is studied. The highest detection accu-
racy is obtained with multigram units of length five. How-
ever, the pruning factor does not have much impact on the

phone accuracy that saturates around a value of 50 %. Two
constrained methods of multigram training are proposed that
improved phone accuracy by 9 % and STD accuracy by 7 %
relative. It is also found that incorporation of standard n-
gram language model on top of multigram units is benefi-
cial, with tri-gram language model performing the best.

The phonetic lattices have been most useful in accom-
modating high error rates in the transcripts and allowing
OOV queries (Mamou et al. 2007; Allauzen et al. 2004;
Can et al. 2009; Saraclar and Sproat 2004; Thambiratnam
and Sridharan 2005). In Saraclar and Sproat (2004), an im-
provement in word spotting accuracy (in F-scores) by over
five points compared to single-best retrieval is reported for
IV and OOV queries by using both phonetic and word lat-
tices. Three different retrieval strategies have been proposed.
The first involves combining results after searching the word
and the phonetic index. The second suggests searching the
word index for IV queries and the phonetic index for the
OOV queries. The final strategy is to search the phonetic
index only if searching the word index does not return any
result. However, the paper does not deal with hybrid queries
involving both IV and OOV terms.

The issue of hybrid queries is addressed in Mamou et al.
(2007). Their approach uses two indices, a WCN for storing
word index and a phonetic index built from phone lattice.
For each unit of indexing (both word and phone), the time-
stamps corresponding to the beginning and end of the unit
are stored. During search of an IV query term, a posting list
is extracted from the word index. For an OOV query term,
the term is converted to a sequence of phones using a joint
maximum entropy N-gram model. The posting list of each
phone is then extracted from the phonetic index. For a hybrid
keyword query involving both IV and OOV terms, word in-
dex for IV terms and phonetic index for OOV terms are used.
In this case, the posting lists of the IV terms retrieved from
the word index is merged with the posting lists of the OOV
terms obtained from the phonetic index. The final result of
the query is obtained by ANDing or ORing the results of the
individual query terms depending on the relation between
the terms in the query. This approach outperforms methods
based only on word or phonetic index by achieving a pre-
cision value of 0.89 and a recall value of 0.83. This system
achieved the highest overall ranking for US English speech
in NIST 2006 STD evaluation.1 The performance of the ap-
proach (referred as Method 1) on different kinds of speech
data as well as its comparative evaluation with that of Sar-
aclar and Sproat (2004) (referred as Method 2) is given in
Table 1

The approach in Thambiratnam and Sridharan (2005)
claims to decrease the miss rate and increase the search
speed for unrestricted vocabulary keyword spotting. It

1http://www.itl.nist.gov/iad/mig/tests/std/2006/.
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Table 1 Comparison of STD performance on different types of speech
for Mamou et al. (2007) (Method 1) and Saraclar and Sproat (2004)
(Method 2)

Type of speech Method 1 Method 2

Precision Recall Precision Recall

Broadcast speech 0.94 0.89 0.87 0.85

CTS 0.90 0.81 0.60 0.57

Meeting speech 0.65 0.37 0.5 0.5

makes use of Dynamic Match Phone lattice search (DM-
PLS), an extension of Phone lattice search (PLS) that can
handle insertion, deletion and substitution errors of a phone
recognizer. The approach uses a phone lattice representation
of speech using N-best Viterbi recognition pass. The lattice
is then searched for the phone sequence constituting the key-
word. During search, appropriate cost penalties are imposed
for the errors of the phone recognizer following minimum
edit distance (MED) principle. The system achieved a miss
rate of 10.2 and a false alarm rate of 18.5 that are much lower
than conventional HMM based keyword spotting (Rohlicek
1995). However, the search speed is around 300 times real-
time. It is to be noted that the scope of searching is restricted
to matching of text string representation of keywords against
the phone lattice and does not include generation of lattice
from speech.

An important aspect related to the use of ASR lattices is
to construct the index in an efficient manner so as to mini-
mize the storage and search time requirements. In this con-
text, the ASR lattices are preprocessed into Weighted Fi-
nite State Transducers (WFST) and the timing information
is pushed onto the output label of each arc in the lattice.
The weights are converted into desired posterior probabili-
ties through an additional normalization step (Mohri et al.
1996). Allauzen et al. (2004) describes an algorithm to cre-
ate a full index represented as a WFST that maps each sub-
string x to the set of indices in the automata in which x ap-
pears. The set of substrings are known as factors. The cre-
ated index represents a factor transducer which is an inverted
index of the factors. During search, the query is represented
as a weighted acceptor and using a single composition op-
eration with the index, the automata containing the query
is retrieved. In Saraclar and Sproat (2004), the factor trans-
ducer (FT) maintains a single index entry for all the occur-
rences of a factor in an utterance and hence is suitable for
a spoken utterance retrieval task. A variant of the same in-
dex structure named as Timed factor transducer (TFT) that
stores timing information on arc weights is proposed in Can
(2011) for STD task. The main idea behind TFT is that the
timed index is represented by a WFST mapping each fac-
tor x to (1) start-end times of the interval where x appears in
each automata and (2) the posterior probabilities of x actu-
ally occurring in each automaton in the corresponding time

interval. The other considerations for FT are retained in TFT.
The advantage of this approach is that the search complex-
ity is linear to query length and hence is useful for longer
query strings. Also, the structure is highly flexible and sup-
ports several other functions in addition to STD. It supports
retrieval of any finite state relations from the index, search-
ing complex relations between query words and searching
of arbitrary permutations of query words without changing
the index.

An approach that has lesser requirements of annotated
resources compared to the techniques described above is
presented in Garcia and Gish (2006). In this case, a small
amount of annotated speech data (15 minutes of word-level
transcribed speech) is used to train a self-organizing speech
recognizer that defines its own sound units for a domain spe-
cific task. The transcriptions are used to train a grapheme-to-
sound-unit converter. The input speech is segmented auto-
matically and in an unsupervised manner based on spectral
discontinuities. The segments thus obtained are then mod-
eled using segmental Gaussian mixture models (SGMMs).
The subset of the speech recordings for which word level
transcriptions are available are decoded in terms of SGMM
indices. Using the parallel transcriptions, a joint multigram
model is used to used to obtain a probabilistic mapping be-
tween sequences of letters in the word-level text transcrip-
tions and sequences of SGMM indices. This model is then
used to predict the pronunciation of a given keyword in
terms of the SGMM units, thereby eliminating the need for
a pronunciation dictionary. Finally, a dynamic programming
search, which minimizes the string edit distance between
the predicted pronunciation of a keyword and the automatic
transcription obtained, is used to find putative occurrences
of the keyword. The average Figure-of-Merit (FOM) is 0.34
using 15 minutes of transcribed training set data.

On similar lines, an approach towards improving the per-
formance of a LVCSR using unsupervised techniques is de-
scribed in Novotney et al. (2009). The system uses unsuper-
vised techniques for improving acoustic and language model
training. The resulting acoustic model recovers 50 % of the
gain compared to its supervised trained counterpart. The lan-
guage model training involving multiplying the word con-
fidences together could achieve a 2 % reduction in Word
error rate (WER) over baseline and 0.5 % absolute over un-
weighted transcripts.

However, in all these approaches the query input is in
the form of text. Hence, these approaches assume the avail-
ability of phonetic expansion of the keywords either using
grapheme-to-phoneme rules or by some other means. This
limitation is overcome in QBE paradigm, wherein the key-
word or the spoken term is introduced from the speech, ei-
ther from a speech recording interface or excising it from
speech cuts. Non-usage of a phonetic dictionary also helps
to address the issues of pronunciation variants and OOV
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words in the query. The two categories of QBE techniques
for STD are described next.

6 QBE approaches using text based STD techniques

The QBE approaches falling in this category uses text based
STD techniques on phonetic lattices. The lattices are gen-
erated using methods described in the previous section. In
Shen et al. (2009), the approach is based on matching lat-
tices (query lattice against utterance lattice indices) using
different alignment models that include direct index match-
ing, Viterbi string edit distance alignment and HMM align-
ment. The query term is converted into a lattice and com-
pared against a phonetic index. The phonetic index is essen-
tially a pruned confusion network that is represented using
a compact phone n-gram index.

In direct index matching, the query and the index do not
require alignment during the matching procedure. At query
time, the query lattice is converted into a 2-gram index and
is compared against the phonetic index in sliding windows
over all utterances. The scores are obtained for each slid-
ing window which are used to decide the presence of the
spoken term in that particular window. The string-edit dis-
tance explicitly models the insertions and deletions of in-
dex columns. In case of HMM based alignment, the query
is treated as a discrete HMM in which each column of the
n-gram index is interpreted as a HMM state and unigram
probabilities as observation probabilities respectively. Ep-
silon arcs in the index structure are interpreted as skip arc
probabilities. A fixed stay probability parameter allows for
insertions in indexed utterances, given the query as a model.
The best achieved result under this approach is shown by
Discrete HMM alignment that has a precision value of 0.77
on conversational telephone speech (Fisher database). How-
ever, the performance varies with the length of the query
with very short queries having the lowest detection perfor-
mance. In terms of computational cost, the system is very
fast as n-grams can be accessed in constant time in case of
direct a match. The implementation of discrete HMM also
allows alignments to be done in 270 % faster than real time
for alignment based matching.

In Parada et al. (2009), the QBE framework is built upon
a WFST based search and indexing system (Saraclar and
Sproat 2004; Allauzen et al. 2004) that allows providing lat-
tice representation of the audio sample directly as a query
to the search system. The system employs two passes. The
lattice indices matching the query are identified in the first
pass. The relevant lattices are loaded and time marks corre-
sponding to the query are extracted in the second pass. How-
ever, it is possible to implement the same in a single pass
by modifying the index. Different representations and gen-
eration mechanisms for both queries and indices built with

word and combined word and subword units are studied. It is
found that the phone indices built from combination of word
and subword units are better than those consisting of only
words. Also, the queries represented using samples from the
index (lattice cuts) yield better STD performance compared
to the queries spoken in isolation. This approach exhibits
better STD performance in terms of Actual term weighted
value (0.479 vs 0.325) compared to those using reference
pronunciations for OOV words.

7 Other supervised approaches of spoken term
detection

All supervised approaches of STD mentioned so far makes
use of a speech recognizer in some form. A different ap-
proach of supervised STD is proposed in event based key-
word spotting and for performing STD on encrypted speech
that does not use a conventional speech recognizer. How-
ever, they require availability of phonetic pronunciations of
the keywords.

7.1 Event based keyword spotting

Event based keyword spotting is motivated by the fact that
a keyword can be characterized by a set of phonetic events
and a faster processing can be achieved by minimizing the
set of phonetic events used to represent a keyword. One such
event based KWS system using Poisson Process Models is
proposed in Jansen and Niyogi (2009). The input speech to
the system is represented by a sparse set of phonetic events.
The sequence and the relative timing between the events that
constitutes a particular keyword are used for modeling the
keyword. Given a keyword w and a set of observed phonetic
events O(t) beginning at time t , the output is the detection
function dw(t) given by

dw(t) = log

[
P(O(t)|θw)

P (O(t)|θbg)

]
(1)

where θw and θbg correspond to keyword-specific model
parameters and background model parameters respectively.
For each phone p in the set of all phones P , Np = t1, . . . , tnp

is defined as the set of points in time at which phone p oc-
curs relative to time t . The observation O(t) = {Np}p∈P is
collection of these set of points. These points are modeled
with the assumption that they have arisen from underlying
Poisson processes, the background model being homoge-
neous and the keyword model being in-homogeneous. The
detection function is a log likelihood ratio evaluated at t that
takes large values at possible occurrences of keywords. This
is done by setting a threshold δw on dw(t) which can be de-
termined from the development data. The system operates
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with a performance comparable to that of HMM based sys-
tem while using a far more sparser representation of key-
words. Another event based keyword spotting system is pre-
sented in Lehtonen et al. (2005) that performs data reduction
through phonetic matched filters. This filter reduces a phone
posteriorgram to a sequence of phonetic events for the task
of detecting digits.

The approach in Jansen and Niyogi (2009) and Lehto-
nen et al. (2005) are combined in Kintzley et al. (2011)
using phone-specific filters to derive a reduced set of pho-
netic events for an event-based keyword spotting. The sys-
tem achieves a reduction of the event set by 40 % while im-
proving the average word spotting performance by 23 %.

7.2 STD on encrypted speech

The methods discussed so far apply to detecting spoken key-
words in unencrypted speech. The complexity of the prob-
lem gets increased by several orders of magnitude when
the same needs to be performed on encrypted speech. An
approach towards identifying specific spoken terms in en-
crypted VoIP speech (traffic) was studied by Wright et al.
(2010). They concluded that it is possible to identify such
spoken terms when the audio is encoded using variable bit
rate codecs. A variable rate codec encodes phonemes consti-
tuting the spoken term with different bit rates, thereby gener-
ating packets of different size after encoding. The sequence
of the packet sizes corresponding to a spoken keyword pro-
vides its signature. A hidden Markov Model trained with the
knowledge of phonetic pronunciations of the spoken terms
and corresponding size of the packet sequences is used to
search instances of the specified term.

All the supervised methods discussed so far require the
availability for huge amount of speech and language re-
sources for statistical training. This may be a limitation
for under-represented languages which neither has adequate
speech nor language resources for building recognizers us-
ing statistical methods. This kind of resource sparseness is
addressed by the class of unsupervised QBE approaches us-
ing template matching as described next.

8 QBE approaches using template matching

The principle of template matching has been used for key-
wordspotting since early days of speech recognition re-
search. The first work was reported in Bridle (1973). Ini-
tially, this framework was used for matching isolated words.
Later, the same was extended to detect keywords in a con-
tinuous utterance in a sliding window setting. In template
matching, several examples of the spoken term to be de-
tected are provided in the form of spoken queries. A tem-
plate of the spoken term is created from the provided ex-
amples by deriving appropriate features. Though the most

commonly used features are Mel Frequency Cepstral coef-
ficients (MFCC’s), other novel features for template repre-
sentation are discussed in Sect. 8.2. The query template is
slided across the length of the target utterance in overlap-
ping windows. A similarity measure is computed between
the query template and its counterpart in the target utterance
for every window of observation. The similarity measure is
computed using Dynamic Time Warping (DTW) (Sakoe and
Chiba 1978), a technique based on dynamic programming
to measure the degree of match between two different sized
vector sequences.

For the purpose of DTW, the optimal alignment path φ̂,
also known as warp path between the two sequences is com-
puted and the distortion between the two along the warp
path is used for comparison. The measure of distortion is
defined by a local distance function between two vectors.
The distortion corresponding to the warped path (also called
DTW distance) gives the minimum overall costs between the
keyword template and its counterpart in the target utterance.
A threshold on the DTW distance is set to indicate the extent
of match between the two thereby indicating the presence of
the keyword. In recent works, variants of DTW, such as seg-
mental DTW and segment-based DTW have been proposed
that are presented in Sect. 8.3.

The important considerations in template matching frame-
work are template selection, representation and matching
that are discussed in the following sub-sections.

8.1 Selection of query templates

An important issue in QBE approaches using template
matching setting pertains to selection of the optimal exam-
ple to be used as the query template from a set of given
exemplars. The following three criteria have been proposed
in Tejedor et al. (2010) to select the optimal query.

1. Dot product based example selection: The phonetic pos-
teriorgram is computed for each query example. The one
that has higher average probabilities for each frame is
considered to be the optimal example. This is obtained
by computing the sum of the self dot product of each
frame vector of the posteriorgram. An individual value
cDP (E) for an example E that has N frames is given by

cDP (E) = − log(
∑

N

∑P
i=1 qi · qi)

N
(2)

where qi represents a frame vector containing P phone
state posteriors for the ith frame of the query example.

2. Cross entropy: The second criterion is based on the aver-
age cross-entropy of individual frames of the phonetic
posteriorgram of an example. The example having the
highest cross-entropy is judged as the optimal one. The
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cross entropy based value cCE(E) for an example E hav-
ing N frames is given by

cCE(E) = −∑
N

∑P
i=1 qi log(qi)

N
(3)

3. DTW based example selection: The previous two crite-
ria are based on the evaluation of an individual example
itself. If a mistake occurs during selection of any of the
examples in exemplar pool, there is a possibility that the
wrong example is judged as the optimal one. This prob-
lem is overcome with the DTW based example selection
in which the DTW distance on phonetic posteriorgram of
an example is computed with the rest using cosine dis-
tance function. The one having the least average distance
(best average similarity) is considered to be the optimal
(best) query example.

Apart from choosing the best example, several individ-
ual examples can be combined to produce an average rep-
resentative that gives a better performance. Two such query
examples are combined using the following steps: (1) The
examples are ordered using the previously defined metrics.
(2) DTW based match is performed between the best and
the worst query examples. (3) The phone state posteriors of
the best example is updated with that of the worst example
according to the best path derived from the DTW search.
In case of more than two examples, combination starts with
two least optimal examples that are combined into a tempo-
ral one. The temporal example is further combined with the
third least optimal example and this process continues in a
tree based manner. The final length of the combined exam-
ple is of the same length as that of the best example. Subse-
quently, STD is performed using DTW match between the
optimal query example and the target utterance. Both dot
product and cosine distance are used as the local distance
metric in the DTW search. It is reported that DTW cosine
distance-based example selection significantly outperforms
random query selection when cosine distance is also used as
a local distance metric in subsequent DTW search.

8.2 Representation of query templates

In a template based setting, apart from using the MFCC fea-
tures directly for representing the templates, several novel
feature representations have been proposed in recent years.
One class of representation uses posteriorgrams derived
from different units of speech. The other class of represen-
tation creates template using features derived from spectro-
gram image of the query speech template.

8.2.1 Posteriorgram based template representation

Posteriorgram is a time-vs-class matrix representing the pos-
terior probability of each class for a specific time frame. To

state formally, for a speech template having n frames (fea-
ture vectors), O = (o1,o2, . . . ,on), the corresponding pos-
teriorgram is defined as

PG(O) = (q1, q2, . . . , qn) (4)

Each vector qi can be calculated by

qi = (
P(C1|si),P (C2|si), . . . ,P (Cm|si)

)
(5)

where Ci represents the ith class and m denotes the number
of classes. The class can be the set of phonetic units, Gaus-
sian components or acoustic segments, depending on which
the posteriorgrams are referred to a phonetic (Hazen et al.
2009; Fousek and Hermansky 2006), Gaussian (Zhang and
Glass 2009) or acoustic segment (Wang et al. 2011) posteri-
orgrams respectively.

While phonetic posteriorgrams represent the acoustic
likelihood scores for each phonetic class at each time frame,
Gaussian posteriogram represents the posterior probabilities
of a set of Gaussian components corresponding to a speech
frame. The phone posterior probabilities in case of a pho-
netic posteriorgram is obtained from the lattice outputs of
a phone recognizer (Shen et al. 2009) or by using a well
trained Multi Layer perceptron (MLP) (Fousek and Herman-
sky 2006). For generating Gaussian posteriorgram, a GMM
is trained after removal of silence from the training data. The
GMM is used to obtain raw posterior values corresponding
to a speech segment. A threshold on the raw probability val-
ues is set to zero out very low probability values. The pos-
teriorgram vector is re-normalized to set the summation of
each dimension to one. Next, a discounting based smooth-
ing strategy is applied to move a small portion of probability
mass from non-zero to zero dimension while obtaining the
final posteriorgram vector.

Acoustic segment model (ASM) posteriograms (Wang
et al. 2011) are derived from acoustic segment models, that
are a set of HMMs obtained in an unsupervised manner
without transcription information. The ASMs are obtained
using an unsupervised iterative training procedure that con-
sists of initial segmentation, segment labeling and subse-
quent HMM training. During segmentation, similar neigh-
bouring frames are grouped into small segments based on
minimization of local distortion. The segments are labeled
using GMM tokenization. The assigned label is the index of
the highest scoring component when a segment is matched
against a GMM trained using the training data. With the ini-
tialized segment labels, a HMM model is constructed and
trained iteratively for each segment. These trained models,
also known as ASMs are used to compute posteriorgrams as
per Eq. (5).

A variation of the segment based approach is described
in Chan and Lee (2011) that uses a sequence of spectrogram
segments to construct the template instead of building the
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segment models. The segmentation is performed in an unsu-
pervised manner using hierarchical agglomerative clustering
(HAC) on the vectors representing the spectrogram. Similar
approaches have been used by Baghai-Ravary et al. (2009)
for identification of phoneme clusters using data driven tech-
niques.

8.2.2 Spectrogram image based template representation

The second approach for representing keyword templates
make use of information derived from the spectrogram im-
age of the corresponding spoken query. The word spotting
architecture in Ezzat and Poggio (2008) uses a set of ordered
spectro temporal patches extracted from exemplar spectro-
grams of keywords at random locations in frequency and
time. The extracted patches are organized into a dictionary
with two parameters namely their center locations in fre-
quency {f }Kk=1 and their center location in relative time
{rt}Kk=1, K being the number of patches in the dictionary.
The kth extracted patch is represented as Pk(f, t). Each
patch may be viewed as a matched filter that is selective for
other similar patterns. Given a target spectrogram S(f, t) of
duration T , the patch dictionary is applied to compute the
patch dictionary response {Rk} as follows: each patch Pk

in the dictionary is placed at location (fk, rtk ∗ T ) and the
L2 norm is computed between the patch and the underlying
portion of the spectrogram. The final feature vector repre-
sentation generated from the spectro-temporal response Rk

is of fixed dimension k that is independent of the length T

of the spectrogram.
Another recent approach that makes use of spectrogram

image to represent keyword templates is given in Barnwal
et al. (2012). The approach captures patterns of high energy
tracks or seams across frequency in spectrograms that carry
time invariant signatures of underlying sounds. The seams
are computed using a seam carving algorithm (Avidan and
Shamir 2007) based on a energy function. On a spectrogram,
each pixel bin corresponds to a time frequency bin and rep-
resents an energy value. The energy function for seam com-
putation maximizes the energy of each bin along the seam.
In the next step, Hough transform is used to capture charac-
teristics of the ensemble of seams that has been detected in
the images of all exemplars of a particular keyword. This re-
sults in a seam-hough feature vector that is used to represent
keyword templates.

Once the template is constructed using any one of the
template representation methods, the next step is to match
the query template with the target utterance. The methods
for matching query templates with the target utterance is
given below.

8.3 Matching of query templates

Template matching techniques are used for matching the
query templates against audio segments in a test utterance

in order to detect a possible existence of the spoken term.
DTW techniques and its variants have been most widely
used in this regard. Originally this technique was used for
aligning examples of isolated words with reference keyword
templates. Later it was extended to detect keywords in a con-
tinuous utterance wherein matching is done with segments
of speech in a sliding window setting. The following gives a
formal description of DTW.

Let the frame level representation of the query be

X = x1, x2, . . . , xNx (6)

and that of the utterance segment be

Y = y1, y2, . . . , yNy (7)

A warp path φ is an alignment that maps X to Y while obey-
ing several constraints. The warping relation is written as a
sequence of ordered pairs

φ = (ik, jk), k = 1,2, . . . , T (8)

that represents the mapping

xi1 ↔ yj1

xi2 ↔ yj2

·
·
·

xiT yjT

In case of global alignment, φ ties the endpoints of
both the utterances e.g., (i1, j1) = (1,1) and (iT , jT ) =
(Nx,NY ). During alignment, the monotonicity and conti-
nuity constraints are enforced. The monotonicity condition
ensures that the aligned sequences must retain their original
ordering and move forward in time. The continuity condi-
tion ensures that no intermediate frames are skipped along
the warp path. Thus the two utterances can be compared
based on accumulated distortion between aligned frames for
a given a warp path as:

Dφ(X ,Y) =
T∑

k=1

d(xik , yjk
) (9)

The optimal warping path φ̂ is given by the warping path
that minimizes the accumulated distortion i.e.,

φ̂ = arg
φ

min Dφ(X ,Y) (10)

The optimal path can then be found using dynamic program-
ming techniques. Figure 3 shows an example of matching
two sequences X and Y using DTW.
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Fig. 3 An example of warped path aligning sequences X and Y
of length Nx and Ny respectively. The warp path φ in this case
is the sequence of ordered pairs (1,1)(2,2)(3,2)(4,2)(5,3)(6,3)

(7,3)(8,4)(9,5). The alignment corresponding to the warp path is dis-
played in the lower path of the figure. Adapted from Park and Glass
(2008)

Over years various modifications to the original DTW al-
gorithm were made. Variations were made in the constraints
imposed and the distance metrics used for computing lo-
cal distance. Such a modified DTW technique was applied
on phonetic posteriorgram in Hazen et al. (2009). Another
variation of DTW called Segmental DTW (Zhang and Glass
2009) overcomes the limitation of isolated word templates
of the reference query. The other is Segment-based DTW
(Wang et al. 2011) that is used for matching utterances rep-
resented as sequences of segments instead of frames. These
techniques are discussed below:

8.3.1 Modified DTW on phonetic posteriorgram

The comparison of the query and the test segments in the
context of phonetic posteriorgram representation in Shen
et al. (2009) is translated to finding the similarity measure
between two posterior distributions. The feature vectors of a
posteriorgram correspond to the posterior distributions. The
similarity measure between two posterior distributions q and
x is computed based on the principle that the distributions
resulting from the same underlying phonetic event should
exhibit strong similarity. Such a similarity measure D(q,x)

is represented by the dot product of corresponding feature
vectors q and x in log probability space as:

D(q,x) = − log(q · x) (11)

To compare the posteriorgrams, the similarity measure be-
tween N frames of the query posteriorgram and M frames of
the test posteriorgram is computed. This results in a N × M
similarity matrix corresponding to the two posteriorgrams
compared.

A modified DTW search is employed to find the region
of time in the above matrix having high similarity values be-
tween the query segment and the target utterance. The DTW
search incorporates the following modifications:

1. It accumulates similarity scores along path extensions in
search space.

2. The search disallows simultaneous multi-frame path ex-
tensions in both query and test segments.

3. Path extensions with similar duration are favoured by
scaling the similarity along individual extensions of a hy-
pothesized path by an alignment slope factor. The align-
ment slope factor is exponentially weighted by a factor φ

designed to control the strength of alignment slope con-
straints.

This approach also allows the use of multiple query exam-
ples during search. The scores are generated individually by
matching the target utterance with one query example at a
time. These scores are then combined to arrive at the total
score for an input utterance as follows:

S(X|Q1, . . . ,QNQ
) = 1

α
log

1

NQ

NQ∑
i

exp
(−αS(X|Qi)

)

(12)

where S(X|Qi) is the score of the ith query, α is the weight-
ing factor and NQ is the number of queries. The results show
that performance improves when multiple queries are used.
The system also has a provision to receive feedback from
user, thereby confirming potential hits and re-evaluating the
scores for newly observed positive examples. This user-
relevance feedback improves precision and significantly re-
duces the EER of the system.

8.3.2 Segmental DTW on Gaussian posteriogram

Segmental DTW as described in Zhang and Glass (2009) is a
variation of DTW for comparing Gaussian posteriorgrams of
query and test utterances. In Segmental-DTW two important
modifications are made. (i) Global constraints are imposed
to restrict the shape of the warp path. (ii) Multiple alignment
path for the same two input sequences are generated from
different starting and ending points. The global constraints
are meant to prevent an overly large temporal skew between
two sequences. To state formally, for a warp path originating
at (i, j), the kth coordinate of the path P = (ik, jk) must
satisfy
∣∣(ik − i1) − (jk − j1)

∥∥ ≤ R (13)

This restricts the warp path to a diagonal of width
2R + 1. Additionally, it also generates multiple alignment
paths based on different starting points. For utterances of
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Fig. 4 Alignment in Segmental-DTW with band constraint R = 2.
The first two start coordinates of the warping path is given by s1 and
s2 respectively. Adapted from Zhang and Glass (2009)

length Nx and Ny with constraint parameter R, the start co-
ordinates will be

(
(2R + 1)k + 1,1

)
, 0 ≤ k ≤

⌊
Nx − 1

2R + 1

⌋

(
1, (2R + 1)k + 1

)
, 0 ≤ k ≤

⌊
Ny − 1

2R + 1

⌋

Based on these coordinates, the total number of diagonal
regions will be

NR =
⌊

Nx − 1

2R + 1

⌋
+ Ny − 1

2R + 1
� + 1 (14)

During the selection of start coordinates, a constraint is
imposed on the step length of the start coordinates. By ap-
plying different start coordinates, the matrix can be divided
into several contiguous diagonal regions with width 2R + 1.
Figure 4 shows a snapshot of the diagonal regions formed
following band constraint R = 2.

The distortion score for each warping path is also com-
puted. The warping region with the minimum distortion
score is chosen as the candidate region of the keyword oc-
currence for that utterance. This approach also supports mul-
tiple keyword examples for each query as in Hazen et al.
(2009). However, unlike the direct merging method used in
Shen et al. (2009), the reliability of each warping region on
the test utterance is considered for during merging of scores.
The reliability of a warping region is described as follows:
Given multiple keyword samples for the query and a test ut-
terance, a reliable warping region on the test utterance is the
region where most of the keyword samples aligned. Regions
having two or more samples of keyword aligned are only
considered for merging of scores. The final distortion score
for region is

S(rj ) = − 1

α
log

1

k

k∑
i=1

exp
(−αS(si)

)
(15)

where rj denotes j th region, si denotes ith sample and k is
the no of keyword samples aligned to region rj . The variable

Table 2 STD performance comparison using Segmental-DTW on dif-
ferent types of posteriorgram representations

System P@10 P@N EER/MAP

PP + SDTW 63.3 52.8 16.8 (EER)

GP + SDTW 61.3 33.0 10.4 (EER)

ASM + SDTW 56.6 40.6 40.4 (MAP)

ASM + GMM + SDTW 59.2 42.1 43.1 (MAP)

α changes the averaging function from a geometric mean to
an arithmetic mean by varying between 0 and 1. The region
with the smallest average distortion score may contain the
keyword.

In Wang et al. (2011), the segmental DTW is applied
on acoustic segment posteriorgrams. A comparison of the
STD systems employing segmental-DTW on GMM and
ASM posteriorgrams with different local distance measures
is presented. The distance measures considered are inner-
product, cosine and Bhattacharya distance. A system em-
ploying score level linear fusion of the above two systems
with equal weights is also presented. Among the different
distance measures used for computing the local distortion
during DTW search, Bhattacharya distance consistently ex-
hibits the best performance for ASM based system. It gives
performance comparable to that of the inner-product dis-
tance in case of GMM based system.

It is seen that the ASM system outperforms the GMM
system in all the above evaluation metrics. The performance
also improves as the number of query examples increases.

The performance comparison between phonetic posteri-
orgram with modified DTW (PP + SDTW), Gaussian poste-
riorgram with Segmental-DTW (GP+SDTW), ASM poste-
riorgram with Segmental DTW (ASM + SDTW) and fusion
system (ASM + GMM + SDTW) is given in Table 2.

Though these frame based DTW techniques on different
types of posteriorgrams are effective in an unsupervised set-
ting, one major limitation is their high computational over-
head. Segment-based DTW, discussed next addresses the is-
sues of computational overhead but at the cost of reduced
detection performance.

8.3.3 Segment-based DTW

In segment-based DTW (Chan and Lee 2010), a superseg-
ment in the query is matched with a supersegment in the
test utterance. A supersegment is represented as a sequence
of several contiguous basic segments. Let, the query Q be
represented as (q1, q2, . . . , qNQ

) where qi ’s are basic seg-
ments constituting the query. Similarly, for a test utterance
T = (t1, t2, . . . , tNt ), ti denotes the basic segment. There-
fore, the supersegment Q(ik−1 + 1, ik), consists of basic
segments (qik−1+1, qik−1+2, . . . , qik ) that starts from the first
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frame of qik−1+1 and ends at the last frame of qik . This is
matched with T (jk−1 + 1, jk) or (tjk−1+1, tjk−1+2, . . . , tjk

).
During matching, the duration ratio between the two su-
persegments to be matched is also constrained. Under these
conditions, the distance between Q and T is given by

D(Q,Y ) =
K∑

k=1

d
(
Q(ik−1 + 1, ik), T (jk−1 + 1, jk)

)
(16)

where K is the number of matched index pair sequence on
the warped path. Here, the indices refer to the indices of the
basic segments constituting the query and the test utterance.
In the next step, a fixed number of vectors M is used to rep-
resent each supersegment. This is done by splitting the basic
segment if the number of basic segments constituting the
basic segments is less than M . Alternatively, the basic seg-
ments are merged using a HAC scheme if the number of ba-
sic segments is greater than M . In both cases, the number of
final segments is equal to M . This results in two sequences
of M subsegments. By averaging the feature vectors in each
of these M subsegments, we get M vector representations of
the supersegment denoted by (q ′

1, . . . , q
′
M) and (t ′1, . . . , t ′M)

respectively. Let, v(q ′
i ) be the mean vector of q ′

i , f (q ′
i ) the

number of frames in q ′
i and p(q ′

i ) = f (q ′
i )

f (q ′
1)+···+f (q ′

M)
. Then

d
(
Q(ik−1 + 1, ik), T (jk−1 + 1, jk)

)

= f
(
Q(ik + 1, ik+1)

) M∑
m=1

eα|p(q ′
m)−p(t ′m)|∥∥v

(
q ′
m − v

(
t ′m

))∥∥
(17)

where the first term f (Q(ik + 1, ik+1)) makes the distance
proportional to the length of the query segment, and the ex-
ponential term penalizes composition differences of these
two super segments with a control variable α.

It is observed that the segment-based DTW has a mini-
mum 4.1 % lower detection performance in terms of MAP
compared to frame based DTW. However, it achieves a
65.4 percent reduction of CPU time compared to the later.

A more desirable approach will reduce both the compu-
tation load as well as preserve the detection performance at
the same time. It has been observed that when inner-product
distance between posteriorgram vectors is used as a local
measure, it yields better results in a DTW setting. In this
regard, a lower bound estimate is derived for the inner prod-
uct distance that significantly reduces the number of DTW
computations (Zhang and Glass 2011). The proposed lower
bound estimate eliminates 89 % of the previously required
calculations in a segmental DTW setting without affecting
the keyword spotting performance. Alternatively, the seg-
ment based DTW is replaced by a two-pass framework that
integrates frame-based and segment-based DTW (Chan and
Lee 2011). The segment based DTW is performed in the first

pass to locate hypothesized spoken term regions followed
by a frame-based DTW in the second pass on those regions
for a precise rescoring. This method achieves a 54.6 % re-
duction of CPU time compared to frame-based DTW and a
8.4 % increase of MAP score compared to only segment-
based DTW.

8.3.4 Techniques other than DTW for template matching

Apart from DTW, support vector machines (SVMs) have
been used for matching of keyword templates in a sliding
window setting. Features are computed for the segment of
speech under an analysis window, the length of which is
roughly same as that of the average keyword duration. These
features are used to train a SVM from positive and negative
example segments. In Ezzat and Poggio (2008), the fixed
length spectro-temporal response vectors derived from the
spectrogram segments of keywords (Sect. 8.2.2) are consid-
ered as positive training examples. The ones from the non-
keyword segments are considered as negative training exam-
ples. The negative examples are chosen randomly from the
speech segments of the training set that do not contain the
keyword. The positive and the negative examples are used
to train a two-class SVM to be used for classification of
the test segments. The test segments are generated by slid-
ing a window on the test utterance with overlaps. This ap-
proach consistently outperforms HMM-MFCC based key-
word spotting. However, the performance decreases with in-
crease in the size of the patch dictionary and increases with
number of positive training examples.

The approach described in Barnwal et al. (2012) also
uses SVM for classification in a sliding window setting. The
seam-hough features obtained from segmented out instances
of a keyword makes the positive training set. Similarly, the
seam-hough features obtained from randomly drawn seg-
ments of speech that do not contain the target keyword con-
stitute the negative training set. These set of positive and
negative examples are used to train a SVM for the purpose
of classifying a speech segment under the analysis window
as an instance of the keyword. This approach surpasses the
method in Ezzat and Poggio (2008) terms of performance
accuracy.

9 Corpora and tools used in experiments

It is seen that most of the work reported in the survey used
one or the other speech corpora available from Linguistic
data consortium, USA.2 The tools used for experimenta-
tion, specifically speech recognizers (word and phonetic)

2https://www.ldc.upenn.edu/.

https://www.ldc.upenn.edu/
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Table 3 Speech corpora and the tools used in the methods reported in the survey

Method Corpora Other tools

Saraclar and Sproat (2004) 1998 HUB4, SWB, Teleconferences –

Thambiratnam and Sridharan (2005) TIMIT and WSJ (clean), SWB (telephony) –

Mamou et al. (2007) 2006 NIST evaluation data IBM 2004 CTS system, Juru

Szoke et al. (2008) 2006 NIST STD –

Ezzat and Poggio (2008) TIMIT –

Parada et al. (2009) HUB4 OpenFst toolkit, IBM 2004 CTS

Shen et al. (2009) SWB, 2006 NIST evaluation data AMI meeting transcription system (AMIDA project
LVCSR)

Zhang and Glass (2009) TIMIT, MIT lecture corpus –

Hazen et al. (2009) SWB (cellular) BUT phone recognizer

Jansen et al. (2010) SWB, Fisher –

Tejedor et al. (2010) Fisher, SWB BUT STK toolkit

Chan and Lee (2010, 2011) Mandarin broadcast news –

Wang et al. (2011) TIMIT, Fisher –

Zhang and Glass (2011) TIMIT –

Huijbregts et al. (2011) Dutch broadcast news LVCSR-BN system

Kintzley et al. (2011) TIMIT –

Can (2011) 2006 STD evaluation data –

Barnwal et al. (2012) TIMIT –

aSWB—Switchboard-1 Release 2 (LDC97S62)
bTIMIT—TIMIT acoustic phonetic speech corpus (LDC93S1)
cFisher—Fisher English speech corpus (LDC2004S13 and LDC2005S13)
dWSJ—Wall street journal complete (LDC94S13A)
eHUB4—1998 HUB4 speech corpus (LDC2000S86)

are from both proprietary and open sources. The impor-
tant open source tools used in this context are HTK toolkit3

from Cambridge University, tools from Brno University of
Technology (BUT phone recognizer4 and STK toolkit5) and
OpenFST6 tookit. These were used in the supervised ap-
proaches for generation of lattices (word and subword) and
generation of posteriorgrams (phonetic and Gaussian) in su-
pervised QBE approaches. A summary of the corpora and
tools used in different methods reported in the survey is
given in Table 3.

10 Discussion and conclusion

The paper presents a comprehensive survey of recent de-
velopments in the field of spoken term detection. It is seen

3htk.eng.cam.ac.uk/.
4http://speech.fit.vutbr.cz/software/phoneme-recognizer-based-long-
temporal-context.
5http://speech.fit.vutbr.cz/software/hmm-toolkit-stk.
6www.openfst.org.

from the survey that both supervised and unsupervised ap-
proaches for STD have own their advantages and disadvan-
tages and the choice is made depending on the context of
usage. The best performing supervised approaches clearly
surpasses their unsupervised counterparts both in terms of
speed and accuracy. However, a major limitation of the su-
pervised approaches is their requirement of huge amount of
annotated speech resources for statistical training. The un-
supervised approaches though have a low detection rate, but
are suitable for use in zero/low resource environments. The
supervised approaches rely on a high accuracy word (sub-
word) recognizer to generate corresponding word (subword)
lattices from which the indices are constructed. The use of
lattices instead of 1-best output helps to accommodate er-
rors in the output of the recognizer while the use of subword
indices help to address the issue of OOV queries. The query
terms are usually in text form and are searched in these in-
dices. The size of the indices can be huge depending on the
word (subword) vocabulary and size of the target utterances.
Hence, recent research efforts focus on effective representa-
tion of the indices in terms of lesser storage space and faster
searching. The use of WFST, PSPL, WCN and their variants
to represent indices are steps in this direction.

http://htk.eng.cam.ac.uk/
http://speech.fit.vutbr.cz/software/phoneme-recognizer-based-long-temporal-context
http://speech.fit.vutbr.cz/software/phoneme-recognizer-based-long-temporal-context
http://speech.fit.vutbr.cz/software/hmm-toolkit-stk
http://www.openfst.org
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The unsupervised approaches use template matching in
a QBE framework. The spoken term queries are presented
in speech form unlike text as in supervised approaches. Fea-
tures are derived from examples of the spoken terms for rep-
resentation of templates. These templates are matched with a
similar representation of the target speech utterance in a slid-
ing window setting. The matching process uses some variant
of the DTW algorithm. In this context, posterior features in
the form of phonetic posteriorgram, Gaussian posteriorgram
and ASM posterior gram with segmental DTW have shown
promising results, though they are yet to catch up with the
performance of the supervised techniques. It is also seen that
the above techniques incur considerable computational cost
due to frame-wise DTW matching. Hence, recent efforts in
this area are directed towards lessening the computational
cost during matching, keeping the accuracy figures at an ac-
ceptable level. An instance to this point is the implementa-
tion of segmental-DTW based on inner-product distance be-
tween the posteriorgram vectors. In addition to speed and ac-
curacy, issues related to indexing of spoken terms (queries)
and the results in the context of unsupervised techniques in
the QBE framework need to be studied from the perspective
of effective storage.

Apart from the posterior features, templates compris-
ing of spectrogram image features have been proposed in
unsupervised template matching framework. It is observed
that these methods exhibit performance better than HMM-
MFCC methods. However, the efficacy of these methods
have been studied only on clean speech. The next step can be
in extending them to multi channel speech that is subjected
to various distortions with appropriate pre-processing of the
spectrogram images.

An important observation in the context of STD tech-
niques in general, and the unsupervised techniques in par-
ticular is that most of the reported results have been per-
formed on different databases and hence is difficult to com-
pare the performance of different methods. The NIST 2006
STD evaluation workshop has been a major milestone that
established the parameters for evaluation and benchmarked
the performance of the participating systems on various
types speech data (broadcast news, conversational telephone
speech and meeting speech). However, the evaluation was
carried out only for the well represented languages having
sufficient annotated resources. From 2011 onwards, a STD
track has been made a part of MediaEval workshops,7 whose
primay aim is to progress the current state-of-the-art in STD
for low resource languages. This will help to benchmark the
techniques for STD tasks with minimal amount of annotated
speech resources, a requirement that will become a necessity
in coming years.

7http://www.multimediaeval.org/.
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