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Abstract

In this article we describe an algorithm for feature se-
lection and gene clustering from high dimensional gene ex-
pression data. The method is based on measuring similarity
between features/genes whereby redundancy therein is re-
moved. This does not need any search and therefore is fast.
A novel feature similarity measure, called maximum infor-
mation compression index, is used. The feature selection
algorithm also obtains gene clusters in a multiscale fash-
ion. The superiority of the algorithm, in terms of speed and
performance, is established on a real life molecular can-
cer classification dataset.

Keywords: Microarray, maximal information compression
index, cancer classification, representation entropy, data
mining.

1. Introduction

Analysis of the gene expression provide a rich source
of data from which inferences about both overall cell func-
tion and the function of individual gene components can be
drawn. Gene expression data is obtained by extraction of
quantitative information from the images/patterns resulting
from the readout of fluorescent or radioactive hybridizations
in an microarray chip [1]. An important analysis task for this
data is feature selection or identification of the genes which
are significant or mostly associates with a tissue category
or disease [4]. A related task is gene clustering or partition-
ing of genes into well separated and homogeneous groups
based on the statistical behaviors of their expressions [3].
The objective of clustering analysis is convenience of un-
derstanding and visualization, or to find out the functional
role and regulatory control of a novel gene, based on other
better characterized members of its groups.

Challenges to feature selection and gene clustering in-
clude high dimensionality of the data, obtained from ten
thousands of genes which are studied in a single experiment

[7]. Many of these genes may be irrelevant and does not
carry any information. Existing algorithms for feature selec-
tion searches out the best subset of features based on some
evaluation criterion like information gain or classification
accuracy. However, the search algorithms have high com-
putational cost and are infeasible for high dimensional data.
A Markov blanket based approach has been proposed in [7]
to circumvent this problem. From the point of view of gene
clustering, genome wide collection of expression trajecto-
ries lack natural clustering structure, giving rise to difficulty
in determining the number of clusters to be generated. Here,
one needs a clustering algorithm which is fast and scalable
to high dimension, and can produce natural clusters at dif-
ferent scales of detail. Popular algorithms for clustering in-
volve measuring similarity between a pair of genes and then
using the similarity values to partition the genes using data
clustering algorithms like �-medoid and PAM [3]. These al-
gorithms often produce poor quality clusters which fail to
capture the natural grouping of the genes.

In this article we describe a feature selection algorithm
based on the principle of redundancy reduction, which can
also produce natural gene clusters at different levels of de-
tail i.e., in a multiscale manner. A novel gene similarity
measure, called maximal information compression index, is
used in clustering. Experimental results are presented for
a benchmark cancer classification problem. Before we ex-
plain the feature selection and gene clustering algorithm we
describe the similarity measure in the next section.

2. Maximal Information Compression Index

In this section we present an index for measuring dissim-
ilarity between expression levels of two genes/features over
a series of experiments. The two expression levels are con-
sidered as two random variables � and �, and the measure
is computed from the linear (in)dependency between them.
The index is used for subsequent gene clustering.

Let � be the covariance matrix of the random variables
� and �. Define, maximal information compression index as
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����� �� � smallest eigenvalue of � [5], i.e.,

������ �� � �var��� � var���� (1)�
�var��� � var����� � �var���var������ ���� �����

The value of �� is zero when the features are linearly depen-
dent and increases as the amount of dependency decreases.
It may be noted that the measure �� is nothing but the eigen-
value for the direction normal to the principle component
direction of feature pair (�� �). It is shown in [2] that max-
imum information compression is achieved if a multivari-
ate (in this case bivariate) data is projected along its princi-
pal component direction. The corresponding loss of infor-
mation in reconstruction of the pattern (in terms of second
order statistics) is equal to the eigenvalue along the direc-
tion normal to the principal component. Hence, �� is the
amount of reconstruction error committed if the data is pro-
jected to a reduced (in this case reduced from two to one)
dimension in the best possible way. Therefore it is a mea-
sure of the minimum amount of information loss or the max-
imum amount of information compression, possible.

The significance of �� can also be explained geometri-
cally in terms of linear regression. It can be easily shown
[6] that the value of �� is equal to the sum of the squares of
the perpendicular distances of the points ��� �� to the best
fit line � � �� ����, obtained by minimizing the sum of the
squared perpendicular distances. The coefficients of such a
best fit line are given by �� � 	��	
� � 	� and �� � ��	
�,

where � � � tan��
�

�cov�����
var�����var����

�
.

3. Feature Selection and Gene Clustering
Method

The feature selection algorithm involves two steps,
namely, partitioning the original set of genes/features into
a number of homogeneous subsets (clusters) and select-
ing a representative gene from each such cluster [5]. Parti-
tioning of the genes is done based on the � nearest neighbor
(�-NN) principle using maximal information compres-
sion index as the feature similarity measure. In doing
so, we first compute the � nearest features of each fea-
ture. Among them the feature having the most compact
subset (as determined by its distance to the farthest neigh-
bor) is selected, and its � neighboring features are assigned
to its cluster. The process is repeated for the remaining fea-
tures until all of them are either selected or assigned to a
cluster.

While determining the � nearest neighbors of features
we a assign a constant error threshold () which is set equal
to the distance of the �th nearest neighbor of the feature
selected in the first iteration. In subsequent iterations, we
check the �� value, corresponding to the subset of a fea-
ture, whether it is greater than  or not. If yes, then we de-

crease the value of �. Therefore � may be varying over iter-
ations. The algorithm may be stated as follows:

Let the original number of genes/features be �, and
the original feature set be � � ���� � � �� � � � � ��. Rep-
resent the similarity between features �� and �� by
����� ���. Higher the value of � is, more dissimi-
lar are the features. The maximal information compression
index (Equation 2) may be used for �. Let ��� be the simi-
larity between feature �� and its �th nearest neighbor fea-
ture in �. Then

Step 1: Choose an initial value of � � � � �. Initialize the
selected feature subset � to the original feature set �, i.e.,
�� �.
Step 2: For each feature �� � �, compute ��� .
Step 3: Find feature ��� for which ���� is minimum. Retain
this feature in � and assign to its cluster � nearest features
of ��� . (Note: ��� denotes the feature for which removing �

nearest neighbors will cause minimum error among all the
features in �). Let  � ���� .
Step 4: If � � cardinality���� �: � � cardinality���� �.
Step 5: If � � �: Go to Step 8.
Step 6: While ���� �  do:

(a) � � � � �.
���� � 
������ ��� .

(b) If � � �: Go to Step 8.
End While

Step 7: Go to Step 2.
Step 8: Return the clusters corresponding to each of the
features in �, and the feature set � as the reduced fea-
ture set.

Computational complexity: The algorithm has low com-
putational complexity. With respect to the dimension (or,
number of genes) (�) the method has complexity �����.
Among the existing search based feature selection schemes
only sequential forward and backward search have com-
plexity �����, though each feature subset evaluation is
more time consuming. Other algorithms like plus-�-take-�,
sequential floating search and branch and bound algorithm
have complexity higher than quadratic.

Notion of scale in clustering/feature selection and choice
of �: In our algorithm � controls the size of the reduced
set. Since � determines the error threshold (), the repre-
sentation of the data at different degrees of details is con-
trolled by its choice. This characterstic is useful in data min-
ing where multiscale representation of the data is often nec-
essary. Note that the said property may not always be pos-
sessed by other algorithms where the input is usually the
desired size of the reduced feature set. The reason is that
changing the size of the reduced set may not necessarily re-
sult in any change in the levels of details. In contrast, for the
proposed algorithm, � acts as a scale parameter which con-
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trols the degree of details in a more direct manner. An in-
teresting fact observed in all the datasets considered is that,
for high values of � the size of the selected subset varies lin-
early with �. Further, it is seen in those cases, � � � � �,
where � is the size of the reduced subset and � is the size
of the original feature set.

Non-metric nature of similarity measure: The similarity
measures used in the above algorithm need not be a metric.
Unlike conventional agglomerative clustering algorithms it
does not utilise metric property of the similarity measures.
Also unlike other clustering method used previously for fea-
ture selection, our clustering algorithm is partitional and
non-hierarchical in nature.

The nature of both the clustering algorithm and the max-
imal information compression index is geared towards two
goals - minimising the information loss (in terms of second
order statistics) incurred in the process of feature reduction,
and minimising the redundancy present in the reduced fea-
ture subset.

4. Experimental Results

Experimental results are presented for a benchmark mi-
croarray classification problem. The data [4] is a collec-
tion of 72 samples from leukemia patients, with each sam-
ple giving the expression levels of 7130 genes. Accord-
ing to pathological criteria, these samples include 47 type
I Leukemias (called acute lymphoblastic leukemias, ALL)
and 25 type II Leukemias (called acute myeloid leukemias,
AML). The task is to design a classifier for these two classes
based on the expression patterns. The samples are split into
two sets with 38 samples serving as training set and remain-
ing 34 as a test set. The data was used as a contest data
in Critical Assessment of Techniques for Microarray Data
Analysis (CAMDA’00) conference.

4.1. Classification accuracy

Training set and test set accuracies using three differ-
ent classifiers, namely, �-nearest neighbor (�-NN, � � �),
naive Bayes with Gaussian distribution, and a linear sup-
port vector machine, are reported. The classifiers are trained
using reduced sets of 50 features (from original 7130) ob-
tained using (a) the proposed method, (b) Markov blanket
(M-B) based method [7]. The comparative results are pre-
sented in Table 1 along with the computational time taken
for feature selection on a Sun UltraSparc 350MHz work-
station. The accuracy of the informative gene class predic-
tor used in [4] is also provided in Table 1 for convenience.
The reduced feature set is taken to be of size 50, as it was
observed in [4] that 50 genes most closely correlated with
AML-ALL distinction in the known samples.

Algorithm time �-NN naive Bayes SVM
(sec) Train Test Train Test Train Test

Proposed 1079 100% 94.5% 100% 93.5% 94% 87%
M-B [7] 3074 100% 93% 100% 91% 91% 82%

Test
Class predictor of [4] 85%

Table 1. Classification performances

It can be seen from Table 1 that the proposed method
provides a higher classification accuracy compared to the
other two methods. It was found that the amount of overlap
with the informative genes identified in [4] is higher for our
method as compared to the Markov blanket based approach.
While our method generates 31 common genes with the in-
formative set, the Markov blanket based method obtains 21
common genes. The computation time of our method is also
substantially lower.

4.2. Gene clustering performance

Gene clustering performance is quantitatively evaluated
using an index called representation entropy [2], which
measures the information compression obtained in the gene
clustering process. The index is defined below.

Let the eigenvalues of the � � � covariance matrix of a
feature/gene set of size � be �� � � � �� � � � � �. Let ��� �

���
�

���
��

. ��� has similar properties like probability, namely,

� � ��� � � and
��

��� �� � �. Hence, an entropy func-
tion can be defined as

�� � �

��

���

��� log ��� � (2)

The function �� attains a minimum value (zero) when
all the eigenvalues except one are zero, or in other words
when all the information is present along a single co-
ordinate direction. If all the eigenvalues are equal, i.e., in-
formation is equally distributed among all the features, ��

is maximum and so is the uncertainty involved in feature re-
duction.

The above representation entropy index is a property of
the dataset as represented by a particular set of features,
and is a measure of the amount of information compres-
sion possible by dimensionality reduction. This is equiva-
lent to the amount of redundancy present in that particular
representation of the dataset. Since the proposed algorithm
involves partitioning of the original feature set into a num-
ber of homogeneous (highly compressible) clusters, it is ex-
pected that representation entropy of the genes in individ-
ual clusters are as low as possible, while that of the final re-
duced set of features/genes has low redundancy i.e., a high
value of representation entropy.

Proceedings of the 17th International Conference on Pattern Recognition (ICPR’04) 
1051-4651/04 $ 20.00 IEEE 



Avg. gene cluster Selected gene set
Algorithm entropy (��

�) entropy (��
�)

Proposed 0.14 0.84
�-medoid 0.27 0.72

Table 2. Representation entropy of gene clus-
ters

The representation entropies of the clustering obtained
by the proposed method is compared with those obtained by
a method described in [3], which uses correlation between
two genes as their similarity measure and the �-medoid al-
gorithm to cluster the genes based on the similarity mea-
sure. The number of gene clusters were specified to be 50.
Let us denote the value of �� computed for the genes in a
single cluster by ��

� and the value of �� for the final se-
lected genes/features by ��

�. Average value of ��
� com-

puted over all the clusters are reported in Table 2. It is ob-
served from Table 2 that the gene/feature subset selected
by the proposed scheme is less redundant, and the genes
within a cluster have higher homogenity among them sig-
nifying minimum information loss in the process of feature
selection.

5. Conclusion and Discussions

An algorithm for gene clustering and feature selection
using a novel feature similarity measure and a multiscale �
nearest neighbor based clustering algorithm is described.

Unlike other feature selection approaches which are
based on optimizing classification performance explic-
itly, here we determine a set of maximally independent fea-
tures by discarding the redundant ones. This enhances the
applicability of the resulting features to modelling and vi-
sualization in addition to classificatory analysis.

We have used linear dependency as gene dissimalirity
measures. More sophisticated techniques like independent
component analysis may be used for computing the dissim-
ilarity. Use of the clustering algorithm presented here along
with such measures will provide better results.
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