
Data Condensation in Large Databases by Incremental Learning with Support
Vector Machines

Pabitra Mitra, C. A. Murthy and Sankar K. Pal
Machine Intelligence Unit, Indian Statistical Institute

203 B. T. Road, Calcutta 700 035, India *

Abstract

An algorithm for data condensation using support vec-
tor machines (SVM’s) is presented. The algorithm extracts
data points lying close to the class boundaries, which form a
much reduced but critical set for classification. The problem
of large memory requirements for training SVM’s in batch
mode is circumvented by adopting an active incremental
learning algorithm. The learning strategy is motivated from
the condensed nearest neighbor classification technique.
Experimental results presented show that such active incre-
mental learning enjoy superiority in terms of computation
time and condensation ratio, over related methods.

Keywords: Data Condensation, Support Vector Machines,
Incremental Learning, Active Learning, Data Mining

1 Introduction

The current popularity of data mining, data warehous-
ing has led to proliferation of terabyte data warehouses
[4]. Mining a database of even a few gigabytes is an ar-
duous task for machine learning algorithms, and requires
advanced parallel hardware and algorithms. A popular ap-
proach for dealing with the intractability problem of learn-
ing from huge databases is to select a small subset for train-
ing. Databases often contain redundant data. It would be
convenient if large databases could be replaced by only a
small subset of informative patterns. The accuracy of a clas-
sifier trained on such reduced data set should be comparable
to results obtained from training with the entire data set.

Various statistical sampling methods such as random
sampling, stratified sampling [3] have been developed
which often help in speed-up of classifier design. How-
ever, naive sampling methods are not suitable for real world
problems with noisy data, where classification results can
degrade unpredictably and significantly. Most of these sam-
pling methods select data in a model independent fashion,

*EMail: {pabitra-r,murthy,sankar)@isical.ac.in

0-7695-0750-6/00 $10.00 0 2000 IEEE

in a sense that no implicit classifier is used. Another class of
selection techniques use a specific classifier model for data
selection. One of the earliest such algorithms were the data
condensation algorithms proposed by Hart [5] for design-
ing k-nn classifiers. Several variants of the algorithm have
been developed and used for effective data condensation.
There exists another class of boundary hunting data con-
densation methods, which seek out training examples near
class boundaries because these examples tend to be useful
for locating class boundaries precisely. Assuming that only
a small fraction of training examples in a database lie along
class boundaries, these boundary hunting methods can be
desirable for selecting small but highly informative training
data subsets.

Support Vector Machines (SVMs) are a recently devel-
oped class of classifier architectures, derived from the struc-
tural risk minimization principle suggested by Vapnik [2] .
A promising aspect of the SVM classifiers is that, SVM
training involves selecting a small subset of critical data
points (known as support vectors) from the original train-
ing data base. This critical data subset fully and succinctly
defines the classification task at hand.

SVMs however, suffer from the problem of large mem-
ory requirement and CPU time when trained in batch mode.
The training process involves the solution of a non-sparse
quadratic programming (QP) problem. Several strategies
have been suggested to circumvent this problem. An im-
portant such technique is the “decomposition method” sug-
gested by Osuna et a1 [6]. In decomposition method the
Hessian matrix involved in the QP problem is iteratively
split into an active and a redundant set; thereby reducing
the computational complexity.

A simple strategy of incremental learning may also help
to overcome the huge memory requirements of batch mode
SVM design. The trick is to partition a huge database into
small subsets and incrementally train SVM classifier with
the subsets. The training would preserve only the support
vectors at each incremental step, and add them to the train-
ing set for the next step. It has been experimentally ob-
served that the model obtained by this method is similar to

708

what would have been obtained by using all the data to-
gether to train [7].

We suggest a generalization of the above strategy, for
incrementally extracting the support vectors. The SVM
is incremented using small samples drawn from the en-
tire database. However, the resampling is done in an ac-
tive manner, in the sense that the classifier obtained at
the current iteration is implicitly used. We present ex-
perimental results to show that such resampling strategies
are computationally superior to random partitioning of the
data base, while achieving comparable accuracy and smaller
condensed sets.

2 Support Vector Machines

Support Vector Machines are a general class of learning
architecture inspired from Statistical Learning Theory that
perform structural risk minimisation on a nested set struc-
ture of separating hyperplanes. Given a training data, the
SVM training algorithm obtains the optimal separating hy-
perplane in terms of generalisation error.
The Support Vector Algorithm. Suppose we are given
a set of examples (xI,y1), . . . , (xl,yl) E RN.yi E
{-1, +l}. We considerfunctionsof the form sgn((w-x)+
b), in addition we impose the condition

inf I (w .x i)+b l= l . (1)
k l , ..., l

We would like to find a decision function fw,b with the
properties f w , b (z i) = yi ; i = 1,. . . ,1. If this function
exists, condition (1) implies

yi((w.xi) + b) 2 1, i = I , . . . , l . (2)
In many practical situations, a separating hyperplane does
not exist. To allow for possibilities violating Equation 2,
slack variables are introduced

ti 2 0, toget yi((w.xi)+b) 2 1-&, i = 1 ,..., 1. (3)

The support vector approach to minimise the generalisation
error consists of the following:

1

Minimize : @(w, 5) = (w . w) + y & (4)
i=l

subject to the constraints (3).
It can be shown that minimising the first term in Equation 4,
amounts to minimising the VC-dimension, and minimising
the second term corresponds to minimising the missclass-
fication error [2] . The minimisation problem can be posed
as a constrained quadratic programming (QP) problem. The
solution gives rise to a decision function of the form :

709

Only a small fraction of the ai coefficients are non-zero.
The corresponding pairs of xi entries are known as sup-
port vectors and fully define the decision function. The
support vectors are geometrically the points lying near the
class boundaries. We use linear kemels for SVM, nonlin-
ear kemels may also be used. However, it has been found
that support vectors are almost independent of the kemel
used [8], hence choice of linear kemel may suffice for most
datasets.

3 Data Condensation Algorithm

Our Algorithm is motivated from the condensation tech-
nique proposed by Hart [5] for reducing the computational
complexity and storage requirements of k-nn classifiers.

3.1 Condensed Nearest Neighbor Technique
(C")

The objective of the condensed nearest neighborhood
rule is to select one minimal subset such that the k-NNR
with the selected subset would correctly classify the remain-
ing points in the sample set. The following algorithm pro-
duces a subset with the above properties, except for the fact
that it is not guaranteed to be minimal.
Algorithm
Set up bins called STORE and GRABBAG. k randomly se-
lected samples are placed in STORE, all other samples are
placed in GRABBAG. Let ng denote the current number of
samples in GRABBAG.
Step 1: Use k-NNR with the current contents of STORE to
classify the ith sample of GRABBAG. If correctly classified
the sample is returned to GRABBAG, otherwise it is placed
in STORE. Repeat this operation for i = 1, . . . , ng.
Step 2: If one complete pass is made through Step 1 with
no transfer from GRABBAG to STORE, or GRABBAG is
exhausted, then terminate. Else go to Step 1.

The final contents of STORE constitute the condensed
subset to be used with k-NNR. The contents of GRABBAG
are discarded.

3.2 Proposed Algorithm

Our method is similar to the CNN technique. However,
instead of the k-NNR we use SVM classifiers. Also instead
of classifying all the points in GRABBAG, we incremen-
tally use only small number of points from GRABBAG to
update STORE.
Algorithm
We place a small number (k) of samples in STORE and the
remaining samples of the training set in GRABBAG.
Step 1: Design a SVM using the samples in STORE. Retain
the support vectors in STORE, discard other points.

Figure 1. Schematic of the proposed algo-
rithm

Step 2: Resample GRABBAG. Select n, and n, points,
correctly classified and misclassified respectively using the
SVM obtained in Step 1, from GRABBAG. Append the
(n,+n,) resampled points to STORE obtained after Step 1.
Repeat Step 1, till the required accuracy is achieved on a test
set, or GRABBAG is exhausted.

The algorithm is illustrated in Figure 1.

4 Results

The database is sampled to obtain a moderately sized
training set, such that the training set is a fair sample of
the original database, yet feasible in terms of memory re-
quirement. A smaller test set is also obtained by sampling
the database. Since the database is likely to be large ac-
curacy on the test set is likely to be a fair measure of the
generalisation performance of the classifier. As a measure
of efficiency of the condensation algorithms we study three
quantities : the accuracy of classifier on the test set (in terms
of error percentage), size of the condensed subset (as frac-
tion of the training set), and CPU time required (on a Pen-
tium 200 MHz processor) by the condensation algorithm.

We use two relatively large datasets and three smaller
datasets for our experiments. The datasets are described
below:
twonorm: This is a 20 dimension, 2 class data. Each class is
drawn from a unit multivariate normal distribution with unit
covariancematrix. Class 1 has mean (a, a, ... a) and Class 2
has mean (-a, -a , ..., - - U) . a = 2/(20)1/2.
ringnorm: This is a 20 dimension, 2 class data. Class 1 is
multivariate normal with mean zero and covariance matrix 4
times identity. Class 2 has unit covariance matrix and mean

Both the above datasets are widely used by Breiman [11.
Breiman reports a test set error of 7.4% and 11.0% respec-
tively for the datasets. We also use three other smaller real
life datasets for our experiments, namely - Wisconsin breast
cancer data, Monks-3 dataset and Hearts dataset. All the
datasets are available at UCI Machine learning repository.

We present results of three related condensation tech-
niques for comparison in Table 5.

(a,u, ..., a). a = 1/(20)1/?

1. The classical condensed nearest neigbor (CNN) algo-
rithm of Hart [5] .
2. Incremental SVM with passive resampling, i.e. the train-
ing set is randomly resampled at each iteration [7].
3. Incremental SVM with active resampling. The train-
ing set is sampled to obtain n, and n, correctly classified
and misclassified points respectively using the classifier ob-
tained at current iteration.
Following conclusions can be drawn from Table 5:
Condensed nearest neighbor technique is computationally
less demanding but achieves poorer condensation.
SVM when designed in batch mode gives best accuracy
and condensation, but it has too high computational require-
ments.
Incremental SVM design with passive resampling performs
better than condensed k-NN (CNN), in terms of condensa-
tion but requires greater CPU time.
Incremental SVM design with active resampling performs
better than CNN in terms of condensation ratio and accu-
racy and requires comparable CPU time. Compared with
batch mode SVM and incremental SVM with passive re-
sampling, it has comparable condensation ratio but requires
less CPU time than both batch mode design and passive re-
sampling. The gain in time is even more in case of datasets
having overlaps (i.e larger bayes error) as can be seen from
the comparisons in case of the ringnorm data.

An important consideration with regards to the active
resampling technique is the choice of number of correctly
classified (n,) and misclassified points (n,) to be sampled.
It was experimentally found that our algorithm works for
almost any value of n, and n, if the amount of overlap
is small. However, for datasets having substantial over-
lap, the choice of n, and n, influences the convergence.
It has been observed that choosing the ratio nc/n, 5 1
leads to oscillation of the error convergence curve. On the
other hand choosing a large value of n,/n, leads to bet-
ter convergence but more CPU time. Whether there exists
any value of n,/n, corresponding to convergence in mini-
mal time is not clear. In principle, for larger overlap, higher
n,/n, ratio gives better results. If nothing is known about
the overlap, we choose nc/n, = 1, which performs atleast
better than the passive resampling. This is illustrated for
the data twonorm in Figure 2, for different ratios of n,/n,.
In Figure 2 , it is seen that 7:l ratio is better than 1:l for
the twonorm data. In general it need not be true for other
datasets.

Another important observation concerns the asymptotic
nature of the condensed subset. We have found out that the
condensed set of points obtained by our learning strategy
converges to an almost fixed set. To illustrate this point we
plot the Hausdorff distance between the condensed sets of
two successive iterations in Figure 3 (for the twonorm data).
It can be seen that the metric converges to a small value with

710

70

01 I
5 10 15 20 25 30

lteratlo"

Figure 2. Convergence of the error rate for
different values of n, : n, for twonorm data.

iterations.

5 Conclusions and Discussion

We have proposed an algorithm for extracting a re-
duced but critical subset of points from a large database
using Support Vector Machine. To circumvent the com-
putational complexity and large memory requirements of
training SVM in batch mode, we proposed an incremen-
tal learning algorithm inspired from the condensed nearest
neighborhood technique.

Results are presented to show that actively selecting the
examples to update the classifier at each iteration leads to
faster convergence, with almost comparable level of accu-
racy and condensation ratio. However, whether any opti-
mal active resampling strategy is present or not is not very
clear, and seems to be somewhat dependent on the amount
of overlap present.

It may be noted that our method is similar in spirit to
Adaptive Resampling and Combining (ARCing) classifiers
[11 developed in the framework of PAC learning. The dif-
ference being, in all the aforesaid methods the classifiers
obtained at each iterations are combined to obtain the final
classifier, our algorithm does not have the combining step.
Also the data samples used for designing the classifiers in
the above methods, do not converge to some fixed set. Such
convergence is however necessary for our purpose. The
sampling strategy used by us is shown to converge to an
almost fixed subset of critical points, which ensures robust-
ness of the incremental learning strategy.

References

Figure 3. Plot of the Hausdorff distance be-
tween condensed subsets of two succesive
iterations against iterations, for the twonom
data.

C. J. C. Burges. A tutorial on support vector machines. Data
Mining and Knowledge Discovery, 2, 1998.
J. Catlett. Megainduction: machine learning on very large
databases. PhD thesis, Department of Computer Science,
University of Sydney, Australia, 1991.
U. Fayyad and R. Uthurusamy. Data mining and knowl-
edge discovery in databases. Communications of the ACM,
39(11):2&27, Nov. 1996.
P. E. Hart. The condensed nearest neigbor rule. IEEE Trans.
Information Theory, 14515-516, 1968.
E. Osuna, R. Freund, and F. Girosi. An improved training
algorithm for support vector machines. In IEEE NNSP'97.
IEEE, 1997.
N. A. Sayeed, H. Liu, and K. K. Sung. Handling concept
drifts in incremental learning with support vector machines.
In Proceedings of 1st Intl. Con& on Knowledge Discoveiy and
Data Mining, pages 317-321. AAAI, 1999.
B. Scholkopf, C. Burges, and V. Vapnik. Extracting sup-
port data for a given task. In Proceedings of 1st Intl. Conf.
on Knowledge Discoveiy and Data Mining, pages 252-257.
AAAI. 1995.

Table 1. Comparison of the performances of the
condensing techniques

[I] L. Breiman. Arcing classifiers. Annals of Statistics, 26:801-
849, 1998.

711

