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Abstract. Link Prediction deals with predicting important non-existent
edges in a social network that are likely to occur in the near future. Typ-
ically a link between two nodes is predicted if the two nodes have high
similarity. Well-known local similarity functions make use of informa-
tion from all the local neighbors. These functions use the same form
irrespective of the degree of the common neighbors. Based on the power
law degree distributions that social networks generally follow, we propose
non-linear schemes based on monotonically non-increasing functions that
give more emphasis to low-degree common nodes than high-degree com-
mon nodes. We conducted experiments on several benchmark datasets
and observed that the proposed schemes outperform the popular simi-
larity function based methods in terms of accuracy.

Keywords: Degree of neighbors, Common Neighbors, Adamic Adar,
Resource Allocation Index, Markov Inequality.

1 Introduction

Link prediction problem employs similarity that could be based on either local or
global neighborhood. Here, we concentrate on some of the state-of-the art local
neighborhood measures. One of the local measures which is popularly employed
is the Resouore Allocation Index. The similarity function employed by this index
makes the contribution of each of the common neighbors inversely proportional
to its degree.

Social networks follow the power law degree distribution. According to this
law, the probability of encountering a high degree node is very small. We use
an appropriate threshold to split the set of nodes based on their degree into low
and high degree node sets. We have given different weights to common nodes
in different clusters while computing the similarity between a pair of nodes.
Specifically, we have compared the performance of the modified algorithms with
common neighbors, Adamic Adar and resource allocation index. We emphasize
the role of low degree common nodes in terms of their contribution to the simi-
larity and either deemphasize or ignore the contributions of high degree common
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nodes. We justify the proposed scheme formally. The modified algorithms have
resulted in an improved performance in terms of classification accuracy on sev-
eral benchmark datasets. Our specific contributions in this paper are:

1. We establish formally that the number of high degree common neighbors is
insignificant compared to the low degree common neighbors.

2. To deemphasize the role of high degree neighbors and increase the contribu-
tion of low degree neighbors in computing similarity.

2 Background and Related Work

We can view any social network as a graph G. Each link can be viewed as an
edge in the graph. We can represent the graph as G = (V, E) where V is the
set of vertices and E is the set of edges in the graph. Now, let us consider that
at some future instance ¢’ the graph after addition of some edges has become
G' = (V' E’) where V' is the set of vertices of graph G’ and E’ is the set of
edges of G’. Link Prediction problem deals with the prediction of edges from the
set of edges £/ — E accurately.

According to the power law, the probability of finding a k degree node in the
social network which is denoted by py is directly proportional to k=% where « is
some positive constant usually between 2 and 3. Hence, the probability of finding
a high degree node in the graph is very less as the corresponding value of k is
very high.In general, given G, it is not clear as to which are high degree nodes
and which are low degree nodes. For differentiating between high degree and low
degree nodes we make use of the Markov Inequality. It can be defined as: if X
is a non-negative random variable and there exists some positive constant b > 0
then,

P(x > 1)< P (1)
We make use of the above inequality to find a threshold value (T) which divides
the set of nodes based on degrees into low degree nodes and high degree nodes.
In this case, as degree is always non-negative we can make degree as the non-
negative random variable and T will be positive, we can represent the above
inequality as:

E[degree] LT< Eldegree]

P(degree > T) < .
(degree > T) < T ~ P(degree > T)

(2)
Thus, from inequality (2) we can calculate the threshold that we require based
on the number of high degree nodes that we need. The similarity functions could
be either local or global (takes the whole graph into account along with some
distance based measures). [I] and [2] present the survey of various similarity
measures and higher level approaches used in the area of link prediction. Further,
they show that Resource Allocation Index outperforms the other local similarity
measures. [3] refines the common neighbors approach by giving the less connected
neighbors higher weight and is popularly known as the Adamic-Adar index (AA)
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known after the authors. The authors in [4] designed the Resource Allocation
(RA) Index which is motivated by the resource allocation dynamics where node z
can transmit a resource through a common neighbor to another node y. In [5], the
authors make use of the latent information from communities and showed that
embedding community information into the state-of-the-art similarity functions
can improve the classification accuracy.

3 Standard Similarity Measures and Our Approach

We formally explain different similarity functions which are used for experimen-
tal comparison against our approach. Here, N(z) is the set of nodes adjacent to
node .

Common Neighbors (CN): Score between nodes x and y is calculated as the
number of common neighbors between x and y.

CN(z,y) =| N(x) N N(y) |- (3)

Adamic Adar (AA): Score between nodes = and y is calculated as the sum of
inverse of the log of degree of each of the common neighbors z between x and y.

AA(z,y) = Z ! (4)

NN ) log(degree(z))

Resource Allocation Index (RA): Score between nodes = and y is calculated
as the sum of inverse of the degree of each of the common neighbors z between
z and y.

RAGy) = Y ! (5)

NN ) degree(z)

We use (2) discussed in section 2 to bound the threshold. For conducting the
experiment, we use P(degree > T') between 0.01 and 0.1 and on experimenting
we find the best threshold for each dataset. The thresholds are listed in table 2l
Once we have the threshold value, we divide the node set V based on the thresh-
old into low degree and high degree node sets. We justify our deemphasis of the
high degree common neighbors using the theorem below. Let,

— n = Number of nodes in the graph, n;, = Number of Low degree nodes,
nyg = Number of High Degree nodes, pr = Probability existence of a k degree
node in graph

— Lauvg = Average degree of a node in the low degree region , Hqng = Average
degree of a node in the high degree node

— K = Expected number of low degree common neighbors for any pair of
nodes, Ky = Expected number of low degree common neighbors for any
pair of nodes

— T = Threshold on degree, max = Maximum degree, L = {z|degree(z) < T}
, H = {x|degree(x) > T}
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Theorem 1. For any pair of nodes x and y, the expected number of common
neighbors of high degree is very small when compared to expected number of
common neighbors of low degree.

Proof: Consider the possibility that both x,y € L. The probability that a
common neighbour z € L is given by
nr nr nr nr

P(z€L)=" " *PLisg * " *PLavy *  *PLosy * " *PLauy: (6)
where "" accounts for the selection of a node from L and py,,, accounts for the
average probability of existence of a low degree node. Note that the first four
terms correspond to the probability of existence of an edge between x and z and
the last four terms correspond to the probability of existence of an edge between
y and z. The above equation can be simplified to the following form :

np np

n
P[ZEL]: n*me’g* L

K PLowy * (¥ DLu, )% (7)

n n

In a similar way the probability that a common neighbor z € H is given by

ny, ny, ng
PzeH|= " #pr.,*  *pr.,*(  *pm,,)" (8)
n n n
So,
K;p=nxPlz€ Ll =nx "L * DLavy * "L K DLayy * (nL *pL(wg)z. (9)
n n n
and
Ky =n«*Plz€ H =nx L ¥ DLy, * "L ¥ DLy, * (nH *prg)Z. (10)
n n n
Thus, the ratio of Ky to K, from (4) and (5) is given by
Ky ny DH,\q
= ()2 ( ). (11)

Ky nr PLaug

Note that there are 3 other possbilities for assigning x and y to L and H; these
are: l.x € Landye H,2.x € Handy € L and 3. x € H and y € H Note
that in all these 3 cases also, the value of II((‘Z is the same as the one given in
(6). Using power law

PlLavy = C % (Lavg) ™. (12)

From (6) and (7), we have

o _ (g (Lo

2a
= . 1
KL nrL Havg) ( 3)

Consider 7" which can be simplified as, (degree 1 nodes are ignored)

ny _ n * Z:':Tw Di (14)

T-—1
nL n* Zz‘zz Di
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Note that .
27 <Y i< (T—1) %27 (15)
i=2
Using power law we can substitute ¢~ for p; and cancelling out n, we get
maz . —q _ T x T 92
i e e DT e =Ty (2 (16)
ny, Zi:z e 22—« T

Also by noting that Ly,g < T and Hgyg > T we can bound fI“f’g as follows,

Lawg T—6
Hupg ~ T+6 for some 1 < § < max (17)
Lavg 20 _ 20
—(1- 1
Hayg ( T+6)<e T+9 (18)
So from (13), (16) and (18), we get
Ky 9 , 2.9 _ 26
< -T @ 1
< maa =T (2,7 ) (19)

which is a very small quantity and it tends to zero as T tends to a large value
which happens when the graph is large. It is intuitively clear that L,,g < Haug-
Further, because of the power law and selection of an appropriate threshold value
we can make 2’;’ as small as possible. For example, by selecting the value of T to
be less than or equal to 3" where max = maz,(degree(x)) we get "/ to range
between 0.003 to 0.04 for the datasets considered and for the same threshold
the value of Ig‘;z ranges from 0.07 to 0.14. So, the value of f(fz ranges from
0.000009 * (0.0049)* to 0.019 % (0.0016)<. Further, the value of « lies between 2
and 3. So, II?L’ can be very small. We show the corresponding values in Table

Now we present our modifications to the above metrics, let us call them C' N1,
AA1 and RA1 where these stand for the modified similarity functions for C'N,
AA and RA respectively. Let R = N(x) N N(y).

CN1(z,y) =|S(z)| where S(z) = {z|z € R A degree(z) < T} (20)

AAl(z,y) = 3 ! (21)

zERAdegree(z)<T lOg(degree(z))
1 1
z€RANdegree(z)<T \/degree(z) 2€RAdegree(z)>T degree(z)

Thus, in general we can write the score function as a combination of two mono-
tonically non-increasing functions low and high , where low is applied on com-
mon neighbors having degree less than threshold and high is applied on common
neighbors having degree greater than the threshold.

score(z,y) = Z(low(z) + high(z)) (23)

zER
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Table 1. low(z) and high(z) for various schemes

Metric  low(z) high(z)

CN1 1 0
1

AA1 log(degree(z)) 0

RA1 ! !

\/degTee(z) degree(z)2

where z is the common neighbor of x and y. In our approach we use values for
functions low and high as shown in table [Il It is clear from our approach that
we have given less importance or zero weight to high degree nodes. Let z; and
z2 be two common neighbors of nodes x and y with degrees p and ¢ respectively
such that z; € L and 29 € H then their contributions are:

— contribution of z; to RA is ! and for RAl it is ! ; further, ! >!
VP v TP

— contribution of z5 to RA is ; and for RA1 it is q12 ; further, q12 < ;

— contribution of z; to CN is same as its contribution in CN1 and contri-
bution of z5 does not contribute to CN1 as it contributes in CN. Similar
interpretation holds for AA and AAL.

i

So, common neighbors in L contribute more to RA1 than RA and those in H
contribute less to RA1 than to RA.

Table 2. Details of various datasets

Dataset |V | |E| T Lavg Havg 1z nm Z‘;’ZZ i
GrQc 5241 28968 65 9 99 5168 73 0.09 0.014
HepTh 9875 51946 53 9 80 9792 83 0.1125 0.008
CondMat 23133 186878 45 13 92 22221 912 0.14 0.04

AstroPh 18771 396100 322 40 551 18714 57 0.07 0.003

4 Datasets and Experimental Methodology

For conducting our experiments we used collaboration graphs [6] which are undi-
rected. In the case of collaboration graphs, the nodes represent the authors and
the edge between two nodes x and y represents a collaboration between authors
z and y. We conduct the experiments on the four datasets listed in table 2. We
remove the self loops and nodes having degree one. The details of the datasets
after preprocessing are given in Table 2] The datasets for papers from January
1993 to April 2003 are : AstroPh (Astro Physics), CondMat (Condense Mat-
ter Physics), GrQc (General Relativity and Quantum Cosmology), and HepTh
(High Energy Physics - Theory).
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We perform the link prediction on a static snapshot of the graph. We follow
the approach to set up the data similar to the one explained in [2] and [5]. We
take each of the graph datasets and randomly partition the graph into five parts
by removing the edges randomly where each part has 20% of the edges. Now, we
use one part as test data and the remaining 4 parts for training. That is we use
a 5 fold cross validation. We repeat this five times each time taking a different
part to be the test data; we report the average values.

5 Results and Discussions

On performing the experiments using the modified metrics described in section 3
we report the results in table [}l which indicate the accuracy on various datasets.
From table [Bl we observe that RA outperforms CN and AA. This result is con-

Table 3. Percentage Classification Accuracy

Dataset CN CN1 AA AAl1 RA RAl
GrQc 984 99.3 98.7 99.5 984 99.5
HepTh 78.1 85.4 90.4 93.8 92.2 94.5
CondMat 81.61 93.42 92.41 96.76 96.76 97.13
AstroPh 98.81 99.02 99.36 99.45 99.45 99.55

sistent with the results shown in [2]. We can observe that our modified approach
for each of the similarity functions CN, AA and RA performs better than the
corresponding base metric as shown in boldface. We can observe that on the
above datasets, CN1 performs almost as well as AA and AA1 performs as well
as RA. Further, RA1 is the best. Also note that in some cases the accuracy has
increased up to 12%.

6 Conclusion

Based on experimentation, we observed that our approach performs better than
the corresponding base similarity functions. RA1 performs the best among all
the metrics. Thus, from the results we can conclude that our approximation of
the state-of-the-art local neighborhood similarity functions performs better than
the original similarity functions in terms of classification accuracy; further, it can
decrease time when the contribution of high degree neighbors is ignored. We can
conclude that high degree neighbors are not so useful in predicting new links.
Thus, we can completely ignore or minimize the contributions of high degree
nodes by making use of a suitable non-linear similarity function to weigh their
contributions accordingly.
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