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Rank aggregation mechanisms have been used in solving problems from various domains such as bioin-

formatics, natural language processing, information retrieval, etc. Metasearch is one such application

where a user gives a query to the metasearch engine, and the metasearch engine forwards the query

to multiple individual search engines. Results or rankings returned by these individual search engines

are combined using rank aggregation algorithms to produce the final result to be displayed to the user.

We identify few aspects that should be kept in mind for designing any rank aggregation algorithm for

metasearch. For example, generally equal importance is given to the input rankings while performing

the aggregation. However, depending on the indexed set of web pages, features considered for ranking,

ranking functions used etc. by the individual search engines, the individual rankings may be of differ-

ent qualities. So, the aggregation algorithm should give more weight to the better rankings while giving

less weight to others. Also, since the aggregation is performed when the user is waiting for response,

the operations performed in the algorithm need to be light weight. Moreover, getting supervised data for

rank aggregation problem is often difficult. In this paper, we present an unsupervised rank aggregation

algorithm that is suitable for metasearch and addresses the aspects mentioned above.

We also perform detailed experimental evaluation of the proposed algorithm on four different bench-

mark datasets having ground truth information. Apart from the unsupervised Kendall-Tau distance mea-

sure, several supervised evaluation measures are used for performance comparison. Experimental results

demonstrate the efficacy of the proposed algorithm over baseline methods in terms of supervised eval-

uation metrics. Through these experiments we also show that Kendall-Tau distance metric may not be

suitable for evaluating rank aggregation algorithms for metasearch.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction and motivation

The input to the rank aggregation problem is a number of rank-

ings obtained from different sources. The sources can be human

judges or algorithms. The task is to combine these input rank-

ings and produce an aggregate ranking. Rank aggregation tech-

niques have been used to solve problems from different appli-

cations domains. We mention here a few expert and intelligent

systems applications or application domains where rank aggrega-

tion techniques have been used to arrive at solutions to different

problems.
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• Voting: For voting applications, there is a fixed list of candi-

dates. There are voting schemes where the voters are allowed

to rank the candidates based on the order of their choices. For

such schemes, it is often necessary to combine the rankings

provided by the voters to produce an aggregate ranking of the

candidates, to obtain a consensus ordering of the candidates. This

aggregate ranking can be determined by rank aggregation algo-

rithms (de Borda, 1781; Davenport & Kalagnanam, 2004; Elkind

& Lipmaa, 2005).
• Metasearch: Metasearch engines (e.g. MetaCrawler (http://

www.metacrawler.com/), Dogpile (http://www.dogpile.com),

Entireweb (http://www.entireweb.com/), etc.) accept queries

from users, and forward that query to several second-level

search engines. Each of these second-level search engines

returns a ranked list of items for the query. The metasearch en-

gine then combines these ranked lists to produce an aggregate

list. This aggregate list is displayed to the user as a response
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to his/her query (Aslam & Montague, 2001; Chen, Wang, Song,

& Zhang, 2008; Jansen, Spink, & Koshman, 2007; Thomas &

Hawking, 2009). Thus rank aggregation is a central task for

successful working of any metasearch engines.
• Multi-criteria decision making: There are systems where the

objects (documents/products/candidates) might be scored or

ranked based on multiple criteria. However, a single order-

ing of the objects is required as the final ranking. Rank ag-

gregation algorithms are often used in tasks such as selecting

product or services for recommendation (Shao, Chen, & Huang,

2010), combining feature based rankings for producing a single

ranking for web search queries (Farah & Vanderpooten, 2007),

candidate screening for hiring process in a large organization

(Mehta, Pimplikar, Singh, Varshney, & Visweswariah, 2013), di-

versifying search results (Ozdemiray & Altingovde, 2015), etc.
• Recommender systems: Recommender systems have tradition-

ally recommended items to individual users. Recently there has

been a proliferation of recommender systems that recommend

items to groups of users (Jameson & Smyth, 2007). Examples

of such scenarios include a group of users listening to music,

watching a movie, going to a restaurant or a museum etc. For

recommending items to a group of users, Baltrunas, Makcin-

skas, and Ricci (2010) present a methodology where the system

first gets ranked recommendation list for each member of the

group, and then aggregates the individual lists to produce the

recommendation for the group. Sohail, Siddiqui, and Ali (2015)

aggregate user feedbacks to provide evaluation in product rec-

ommender systems.
• Natural language processing: For the language translation task,

algorithms are suggested that for a source sentence, consider

the ranked list of translations returned by different translator

algorithms, and combine them to produce a final ranking of the

candidate translations (Rosti et al., 2007). Similar techniques of

combining ranked lists of candidate solutions for finding the fi-

nal output are used for approaching the problems of syntactic

dependency parsing (Sagae & Lavie, 2006) and word sense dis-

ambiguation (Brody, Navigli, & Lapata, 2006).
• Networking: In the networking domain, a number of metrics

have been proposed to quantify the inherent robustness of a

network topology against failures. However, each single met-

ric usually offers only a limited view of network vulnerabil-

ity. When applied to certain network configurations, different

metrics rank the network topologies in different orders, and

no single metric fully characterizes network robustness against

different modes of failure. To overcome this problem, Yazdani

and Leonardo Duenas-Osorio (2013) propose a multi-metric ap-

proach where the ordering of the topologies given by differ-

ent individual metrics are combined to get an overall ranking

of robustness for the network topologies. In social network-

ing domain, Tabourier, Libert, and Lambiotte (2014) use rank

aggregation for link prediction. Ordering of a user’s neighbors

according to various network-based features (such as Adamic-

Adar, Jaccard Index, Katz measure, etc.) are identified. These or-

derings are aggregated to suggest set of possible new connec-

tions for the user.
• Healthcare: In Fields, Okudan, and Ashour (2013), the authors

present a system where in an emergency department of a hos-

pital, nurses provide orderings of the patients in terms of the

severity of the patients’ conditions. Nurses put patients requir-

ing medical attention more urgently than others near the top of

the list. Such orderings provided by multiple nurses are aggre-

gated to produce a single ranking of patients and the patients

are attended in that order.
• Bioinformatics: Rank aggregation algorithms are used in the

bioinformatics domain also, for cluster validation in microarray

data analysis (Pihur, Datta, & Datta, 2007), identifying differen-
tially expressed genes (Fang, Feng, & Ng, 2011), high throughput

screening in nanotoxicology (Patel et al., 2012), multimodal bio-

metric systems (Monwar & Gavrilova, 2013), feature selection

(Sarkar, Cooley, & Srivastava, 2014), etc.

It is evident from the discussion above that rank aggregation al-

orithms are used to solve problems in different expert and intel-

igent systems. Most of the rank aggregation algorithms discussed

n literature are unsupervised in nature. This is because unsuper-

ised methods can be easily ported across different applications.

upervised approaches to rank aggregation need supervised ranked

ata, which is expensive to acquire (Klementiev, Roth, & Small,

008; Wu, Greene, & Cunningham, 2010). Therefore, unsupervised

ank aggregation is an important problem to be studied. We wish

o develop an unsupervised rank aggregation algorithm. Our main

otivation is to work on the metasearch problem. In metasearch,

anked responses from different search engines are combined and

he aggregate ranking is displayed as the output. As the aggrega-

ion is performed in runtime when the user is waiting for the final

esult for his query, it is essential for the algorithm to be of low

omplexity, and also the steps involved in performing the aggre-

ation should involve low cost operations. Also, the quality of the

nput rankings given by individual search engines are affected by

arious factors such as indexed set of web-pages, features used for

anking, ranking function used etc. Due to this fact, qualities of the

nput rankings may not be equal. So, in metasearch, there is a need

o identify the qualities of the input rankings and use that quality

nformation while performing the aggregation. We have not come

cross any work in literature that emphasizes on these requirements

hile developing unsupervised algorithms for metasearch. The un-

upervised algorithm proposed in this paper is developed keeping

hese aspects in mind.

Several unsupervised rank aggregation algorithms and their

nalysis are presented in the works (Aslam & Montague, 2001; Bet-

ler, Bredereck, & Niedermeier, 2014; de Borda, 1781; Dwork, Ku-

ar, Naor, & Sivakumar, 2001; Schalekamp & van Zuylen, 2009).

hese algorithms are widely used in metasearch engines and in

etasearch literature. However, all these methods consider the in-

ut rankings to be equally good. Equal importance is given to the

ankers for computing the aggregate ranking. Cohen, Schapire, and

inger (1998) learn quality weights of the rankers and uses that in-

ormation for aggregation. The algorithm maintains a single query

ector over the rankers at any time, which is irrespective of the

uery. However, relative qualities of the rankers can be different

or different input queries. This is often true for metasearch, due

o different sets of indexed pages maintained by different search

ngines. Also, the method learns the quality weights from user

eedback data, which as mentioned earlier, may be difficult to get.

everal other recent researches also use supervised approaches for

ank aggregation (Liu, Liu, Qin, Ma, & Li, 2007; Pujari & Kanawati,

012; Tabourier et al., 2014). The work in Rajkumar and Agar-

al (2014) discusses desirable theoretical properties for rank ag-

regation algorithms and provides a supervised algorithm for rank

ggregation.

The method proposed in this work considers each input ranking

s a preference graph and aggregates the preference graphs to gen-

rate the aggregate ranking. We want to give different weights to

ifferent rankers (or the corresponding preference graphs) depend-

ng on their qualities or goodness on a given query. We want to as-

ign the weights in an unsupervised manner. At the same time, we

ant the weight assignment and ranking aggregation algorithms

o involve low cost operations, so that the algorithm is fast and

uitable for real time processing. Although the algorithm is devel-

ped keeping in mind the metasearch problem, it can be used for

ll the applications/frameworks mentioned earlier in this section
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(except for the voting application, where it is mandatory to give

equal importance to all the voters).

We provide detailed experimental evaluation of the proposed

algorithm. Different supervised and unsupervised evaluation met-

rics are used as evaluation measures. Generally unsupervised rank

aggregation algorithms are evaluated using the unsupervised met-

ric Kendall-Tau distance. This metric computes the number of in-

versions between to rankings. Lower number of inversions lead to

lower values of the metric and are preferred by the algorithms.

However, this metric is known to have some drawbacks (Carterette,

2009; Yilmaz, Aslam, & Robertson, 2008) as it does not distin-

guish between inversions at the top and bottom of the rankings.

Recently, few benchmark datasets (Chapelle & Chang, 2010; Qin,

Liu, Xu, & Li, 2009) with ground truth information have been

released for the rank aggregation task. It is possible to use su-

pervised evaluation measures for these datasets. We use these

datasets for experimentation. The experimental results indicate the

effectiveness of the proposed algorithm. From the results, we also

see that algorithms that obtained good Kendall-Tau distance mea-

sure performed badly according to supervised evaluation measures

and vice-versa. The ordering of the algorithms according to the

Kendall-Tau distance measure was completely different from the

ordering obtained using the supervised evaluation measures. Su-

pervised measures use ground truth information for determining

the quality of results. Hence the experimental evaluations indi-

cate that if supervised labels are available, then it might be better

to use supervised evaluation measures for evaluating the perfor-

mances of the rank aggregation algorithms for metasearch.

The specific contributions of the work are three-fold:

• We propose an unsupervised rank aggregation algorithm that

assigns weights to the rankers depending on their qualities.

These quality weights are different for different queries and are

assigned in an unsupervised manner.
• The algorithm is developed keeping in mind that the operations

need to be fast for real time aggregation of the input rankings.
• We perform detailed evaluation of different unsupervised rank

aggregation algorithms. Four different benchmark datasets are

used for experimentation. Apart from the Kendall-Tau distance,

we also use several supervised evaluation measures like Preci-

sion, NDCG, MAP, mean NDCG, ERR as evaluation metrics. By

using both supervised and unsupervised evaluation measures

for performance evaluation, we show that Kendall-Tau distance

may not be suitable for evaluating Rank aggregation algorithms

for metasearch.

The rest of the paper is organized as follows. We discuss the

related work from literature in Section 2. A formal definition of

the rank aggregation problem for metasearch is given in Section 3.

The rationale behind using preference relations is described in

Section 4. Section 5 describes a data structure that can be used

to store the preference relations. The details of the proposed algo-

rithm is presented in Section 6. Experimental results are presented

and analyzed in Section 7. Section 8 concludes the discussion and

also provides pointers for future research directions.

2. Related work

In this section, we describe some of the existing rank aggrega-

tion methods and discuss their merits and demerits.

2.1. Existing methods: unsupervised

We classify the existing unsupervised rank aggregation algo-

rithms into different categories based on the ways the aggregation

is performed and review each of these categories in detail.
.1.1. Positional score based methods

Borda Count (de Borda, 1781) is the most widely used rank ag-

regation algorithm that is based on positional scores. In Borda

ount, scores are assigned to the items or candidates based on

heir absolute ranks in the different input lists. For each ranking,

he lowest item is assigned a score of x. The candidate at the sec-

nd lowest position in that list is given a score x + 1, the third

owest item is given a score of x + 2 and so on. The value of x is

ften set to 1. For each item, the scores that it gets for the dif-

erent lists are added up, and the items are sorted in decreasing

rder based on their total scores. This sorted list is output as the

ggregate list. Amin and Emrouznejad (2011) present a positional

core based algorithm that assigns weights to each position dy-

amically, by looking at the data. However, if there are N items

n the set and the length of the longest list is L, then the method

eeds to solve N linear programming problems, each with O(N + L)

onstraints.

.1.2. Markov chain based methods

Several Markov chain based methods were used for rank aggre-

ation in Dwork et al. (2001). The items in the ranked lists were

onsidered as states. For each pair of items i1 and i2, the corre-

ponding state transition probability depends on what fraction of

he input rankers have ranked both the items, and also how many

ists have i1 before i2. Four such methods were proposed, namely,

C1, MC2, MC3, and MC4. The methods are different from each

ther in the ways the transition probabilities are calculated.

.1.3. Kemeny optimal aggregation

Methods belonging to this category try to optimize the average

endall-Tau distance or the Kemeny distance between the aggre-

ate list and the input lists. Kemeny distance between two ranked

ists is defined as the number of item pairs (i, j) for which the two

ists disagree on their relative ordering, i.e. one list places i above

, and the other has j above i.

Several researchers have posed the task of optimizing average

emeny distance as the minimum feedback arc set problem and

roposed algorithms for the task. There are weighted versions of

he problem as well, and people have tried to find efficient ap-

roximate algorithms for these versions (Ailon, Charikar, & New-

an, 2008; Coppersmith, Fleischer, & Rurda, 2010; Schalekamp &

an Zuylen, 2009; van Zuylen & Williamson, 2007).

.1.4. Condorcet procedure

This is a pairwise method and comes from the literature of vot-

ng theory. Condorcet winner for an election is the candidate who

ins over or ties with every other candidate in the election. Repet-

tive application of the Condorcet procedure produces the aggre-

ate ranking of the candidates (Condorcet, 1785).

For rank aggregation, the input rankings are viewed as the pref-

rence ordering of candidates as given by different voters. The ag-

regation is then performed in a number of steps, by selecting

ne Condorcet winner (which corresponds to an item from the

nput ranked lists) in each step. However, it is not necessary for

n election to always have a Condorcet winner. Variations of the

asic Condorcet procedure are suggested to address such situa-

ions. Montague and Aslam (2002) view the input lists as a pref-

rence graph over the candidates. It then partitions the graph into

trongly connected components (SCC). Items in a single SCC are

qually preferable. Edges between two SCCs denote the preference

f one SCC over the other. There is another rule called Black rule

Jean, 1961) that combines Borda and Condorcet policies for rank

ggregation. If there is a Condorcet winner, then Black rule selects

hat item. Otherwise Borda Count is used to determine the winner.
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.1.5. Linear aggregation

This scheme is often used when scores are available from the

nput rankers. Several data fusion approaches using linear aggrega-

ion of scores are suggested in literature for the Learning to Rank

ask. Weighted sum or its variations are used as aggregation oper-

tors (Farah & Vanderpooten, 2007; Lee, 1997; Shaw & Fox, 1994;

u, Li, Zeng, & Bi, 2014). Shaw and Fox (1994) introduced Comb-

UM, CombMIN, CombMAX, CombANZ, CombMNZ strategies for

ata fusion. CombSUM ranks items based on sum of scores they

ave obtained from the rankers. The next two strategies consider

or ranking the maximum and minimum scores respectively that

n item has obtained. Scores are often normalized to a bounded

ange to make them comparable across different rankers. Differ-

nt variants of these strategies are suggested in Farah and Vander-

ooten (2007) and Wu et al. (2014).

.1.6. Probabilistic models

Several research work in recent literature (Clémençon &

akubowicz, 2010; Klementiev et al., 2008; Klementiev, Roth, Small,

Titov, 2009) suggest the use of probabilistic models such as

he Mallows model on permutations to solve the problem of un-

upervised rank aggregation. Algorithms that use Mallows model

erform well, but have a complexity of O(n!). Reduction in com-

lexity is possible using sampling techniques (Klementiev et al.,

008). However, this affects the effectiveness of the model. Mal-

ows model has also been used to aggregate “typed rankings” com-

ng from domain-specific experts – where the type or domain of

he candidate items are known (Klementiev et al., 2009).

Clémençon and Jakubowicz (2010) apply Luce model for per-

orming rank aggregation, using generalized Kantorovich distances

etween rankings. The problem of measuring disagreement be-

ween rankings is cast as discrete mass transportation problem,

y embedding the set of permutations in a convex set of doubly

tochastic permutation matrices. Let the set of all doubly stochas-

ic matrices of size n × n be denoted as Kn. Each input ranking σ i

an be represented as an element Ai ∈ Kn. If there are m such in-

ut rankings, then any A∗ ∈ Kn having minimum average distance

rom A1, A2, ..., Am is called as the median ranking. The algorithm

rst finds one such A∗. It then builds the aggregate ranking sequen-

ially, by including one new item in each step. This part of build-

ng the list sequentially is governed by the Luce model, where the

robability of an item being included as the next item is computed

ased on the entries in the median matrix A∗ already chosen. Com-

lexity of the method is high. The step of distance computation

etween rankings takes O(n6) time in general. The complexity can

e reduced by using certain specific cost functions.

.2. Existing methods: supervised

The majority of the algorithms for the rank aggregation prob-

em are unsupervised in nature. However, recently, due to the

vailability of few rank aggregation datasets with supervised in-

ormation (Qin et al., 2009), people are discussing supervised algo-

ithms also for the task. Here we briefly review some of the super-

ised methods for the rank aggregation task.

.2.1. Probabilistic models

A supervised Probabilistic Fusion method for rank aggregation

s presented in Lillis et al. (2006). The approach is based on the

ssumption that a ranker that does well on past queries, will do

ell for future queries also. Scores are treated as probabilities of

elevance. The rank positions are divided into k segments. Given a

anker and a segment, the probability that the ranker has placed a

elevant item in that segment is calculated from the training data.

core for a test item is calculated based on this probability as well

s the scores given to the test item by the different rankers.
A probabilistic model for supervised rank aggregation by using

combination of Mallows and Luce models is suggested in Qin,

eng, and Liu (2010a). A coset-permutation distance based stage-

ise (CPS) model is used for this purpose. Specifically, the final

ermutation π of n objects is generated in n sequential stages. At

he kth stage, the task is to select the kth object in the permuta-

ion π . The probability of this selection is defined using the coset-

ermutation distance between the right coset Sn−kπ and the input

ankings σ , where Sn is the symmetric group of order n. The ag-

regated list can be computed in O(mn4) time if there are m input

ankings. However, the authors mention that the runtime complex-

ty can be brought down to O(mn2) by using efficient implementa-

ion techniques.

.2.2. Machine learning based methods

An online learning based method for combining ranking “ex-

erts” is given in Cohen et al. (1998), which gives weights to each

anker. For each query in the training set, weights of the rankers

hat performed poorly for that query were reduced. When the

ext query comes, the algorithm starts with the current value of

eights, and the process goes on. Clicklog data or document rele-

ance information is used to measure the performance of a ranker

or a query. In Liu et al. (2007), supervised versions of Markov

hain based approaches (Dwork et al., 2001) were proposed. Wang

t al. (2013) take the differences among queries into consideration

nd proposes a query similarity based supervised rank aggregation

ramework. First, the framework sets up a number of base rankers

or each query. Next, the base rankers are aggregated to get the fi-

al ranked lists. A supervised approach is used to tune the weights

f these base rankers. Semisupervised rank aggregation is proposed

n Chen et al. (2008).

.3. Learning to Rank

The Learning to Rank task has as input scores given to differ-

nt query–document pairs by different ranking features (Chapelle

Chang, 2011; Li, 2011). Given a collection of such scores and

lso the relevance labels for different query–document pairs, rank-

ng functions are learned. Given a new query, feature scores for

ocuments are first determined. Then the learned ranking func-

ions are applied on these feature scores to determine the final

anking. Different methods have been proposed for the task. The

ethods differ from each other in the (a) family of functions con-

idered for ranking like feature-weighted linear aggregation (Cao

t al., 2006), boosting trees (Chen, Bai, & Zheng, 2011), (b) family

f loss functions used (Acharyya, Koyejo, & Ghosh, 2012; Burges,

agno, & Le, 2006; Weston, Yee, & Weiss, 2013), (c) instances con-

idered for training the ranking function – pointwise (Li, Burges, &

u, 2008), pairwise (Sculley, 2009), listwise (Cao, Qin, Liu, Tsai, &

i, 2007), etc., (d) comparing different ways of supervision infor-

ation (Chen & Hofmann, 2015), etc. Also, there are works that

se the feature scores to generate additional intermediate fea-

ures and use them for a two-stage learning of the ranking func-

ion (Keyhanipour, Moshiri, & Rahgozar, 2015). Semi-supervised ap-

roaches for the task by using both labeled and unlabeled data for

raining are also proposed (Pan, Luo, Qi, & Tang, 2011). It should be

oted that, for the rank aggregation problem, the feature scores are

ot available as input. Only the relative orderings of documents are

vailable. Still, one can assume the different features as rankers,

nduce rankings based on the feature scores, and combine these

ankings using rank aggregation techniques.

As described in this section, both supervised and unsupervised

lgorithms exist for rank aggregation. In this paper, our focus is

o develop unsupervised rank aggregation algorithm that is suit-

ble for a real time application like metasearch. As input, we have

nly rankings obtained from different sources and not the scores
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Fig. 1. Converting a ranking to a preference graph. d1, . . .d4 are the documents.

D1, . . .D4 are the corresponding nodes in the preference graph. Edges denote pref-

erence relations.
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given to the items by the different rankers. Hence, aggregation al-

gorithms that combine scores for the different items in the rank-

ings cannot be used for the task at hand. Also, majority of the

rank aggregation algorithms discussed in literature consider each

input ranking to be equally good. Due to various reasons as men-

tioned in Section 1, the input rankings for metasearch may not be

equally good. There are rank aggregation algorithms that rely on

supervised data for determining the weights of the input rankers.

However, our focus is to estimate the goodness of the input rank-

ings without using any supervised data and use that information

for determining the aggregate ranking. We now give a formal def-

inition of the rank aggregation problem and explain our solution

for approaching the problem.

3. Rank aggregation: problem formulation

Before describing our proposed algorithm for solving the prob-

lem, we formally introduce the task of rank aggregation.

Rank aggregation: Let I be a set of items. A ranked list or rank-

ing RI w.r.t. I is a permutation of the items from a set S⊆I.

In other words, RI = 〈x1, x2, · · · , xd〉, where each xi ∈ S. If xi

appears before xj in RI, it is said that xi is ranked above xj in

RI. Given N such ranked lists RI
1
, RI

2
, · · · RI

N
, the rank aggrega-

tion problem attempts to find an aggregate ranking RI
A

over

the same item set I.

4. The rationale behind using preference relations

We wish to consider the relative ordering between items appear-

ing in the input rankings for solving the rank aggregation task. If

item i appears above item j in a ranking, we consider that i is more

preferable to j in the ranking. This is intuitive, as several applica-

tions put better items at the top of the list. We use this relative

ordering or preference relations between items for producing the ag-

gregate ranking.

The inputs from human experts or algorithms about a set of

items may come in different forms: (a) scores for all the items,

(b) rankings of items and (c) pairwise preference relations. Inputs

represented as scores or rankings can be easily converted to pref-

erence relations. Also, there can be cases where giving opinions

in the form of preference relations might be easier. For example,

if there is a set of movies to be ranked by a user, giving a set

of preference relations might be less confusing than giving abso-

lute scores to the movies or ranking the movies in order of user

satisfaction. Different algorithms also may find it easier to provide

relative ordering between items (possible translations for machine

translators, pairs of matching texts for plagiarism detection, etc.).

Hence, it is imperative to look at preference relations based algo-

rithms for such aggregation tasks.

5. A data structure for storing the preference relations

We use a data structure called preference graph for storing the

preference relations. Our algorithm views each ranked list as a col-

lection of preference relations, and hence as a preference graph

over the items present in that list.

Representing a ranking as a preference graph: A preference graph

is a data structure where there is one directed edge between

each pair of nodes. The edge denotes the preference relation

between the items it connects. In our representation, the

nodes in the preference graph represent the items present

in the ranked list. If the list contains item i above item j,

then the graph contains a preference edge (a directed edge)

from node j to node i. The weight of this edge is set to one.
As the input is a ranking where there is no tie, there can be

exactly one edge between every node pair in this preference

graph. Fig. 1 gives an example of representing a ranking as

a preference graph.

. A preference relations based unsupervised rank aggregation

lgorithm

We now describe the proposed rank aggregation algorithm. The

lgorithm works in two phases. The first phase views the input

ankings as preference graphs. It then assigns weights to the in-

ut rankings (or the corresponding preference graphs) based on

heir qualities. A weighted combination of these preference graphs

s performed to construct an aggregate graph. The second phase in-

uces a ranking from the aggregate graph. This ranking is the out-

ut of the rank aggregation algorithm. These steps are described in

etail in the next subsections.

.1. Creating an aggregate graph from the input rankings

The first phase of the proposed algorithm creates an aggregate

raph. For this, first the input rankings are viewed as preference

raphs. All the input rankings (equivalently, the input preference

raphs) may not be equally good in terms of representing the ac-

ual (ground truth) preference relations between items. If we can

dentify the rankings that are good and the ones that are bad, we

ay give higher importance to the better rankings during the ag-

regation process. We keep a weight vector on the input rankings.

he weight of a ranking is indicative of the confidence that the al-

orithm has on that ranking. So, we expect the better rankings to

ave higher weights. This phase first computes the quality weights

or the rankings, and uses these weights to produce the aggregate

reference graph.

Identification of better rankings can be easily done if supervised

nformation is available in the form of document relevance scores

r clicklogs. In absence of supervised information, one can consider

he majority opinion to be indicative of the supervised label for the

elative importance between a pair of items. i.e., if more than half

f the rankings say that i is better than j, then i is considered bet-

er than j in the ground truth setting. This is common for voting

pplications.

However, this may not be a good choice for metasearch. If there

re 20 rankers and 9 say that i is better than j, it is difficult to

ay whether i is actually better than j. Again, if 5 rankers say that

is better and the remaining say otherwise, then the metasearch

ngine may assume that i is indeed better than j. In other words, if

webpage is preferred over another by many ranked lists, chances

re high that the user will have more satisfaction for that page.

o model this scenario, we consider the opinion of a ranker to be
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ncorrect if it fails to agree with a fraction α of rankers that rank

oth the items. In this context, we first define what we mean by

isagreement with α-majority.

Definition: disagreement of a ranking withα-majority: Suppose

here are N rankings. α and β are two constants such that 0 ≤
≤ 0.5 and 0 ≤ β ≤ 1. For each item pair (i, j), the rankings may

ive their opinions. The set of possible opinions is X = {0, 1}. Also,

here can be rankings that do not provide any opinion about the

tem pair. For the pair (i, j), let the number of rankings which give

he opinion x ∈ X is denoted as nx.

Suppose the opinion by a ranking k is x(k) ∈ X. We say that

anking k has disagreed with the α-majority if and only if both

he following conditions are satisfied.

0 + n1 ≥ 	βN
 (1)

x(k) < α(n0 + n1). (2)

nequality (1) signifies that if a minimum number of opinions is

ot available for the item pair, no ranking is marked as incorrect.

nequality (2) indicates that a ranker failing to agree with at least

fraction of available opinions for the same pair is marked as in-

orrect (in disagreement with α-majority).

An example:We now explain the above definition using exam-

les. Suppose the number of rankings is N = 20. Also assume α =
.3 and β = 0.5.

� Case 1: 12 rankings say that i is better than j (consider this as

opinion 0). 5 rankings say that j is better than i (consider this

as opinion 1). So, n0 = 12 and n1 = 5.

n0 + n1 = 17, 	βN
 = 	0.5 × 20
 = 10.

So, Eq. (1) is satisfied.

Now, α(n0 + n1) = 0.3 × (12 + 5) = 5.1

As n1 = 5 < α(n0 + n1), Eq. (2) is satisfied for x = 1.

Hence, according to Definition, all the rankings which say j is

better than i are in disagreement with the α-majority for the

pair (i, j).

� Case 2: 5 rankings say that i is better than j. 10 rankings say

that j is better than i. So, n0 = 5 and n1 = 10.

n0 + n1 = 15, 	βN
 = 	0.5 × 20
 = 10.

So, Eq. (1) is satisfied.

Now, α(n0 + n1) = 0.3 × (5 + 10) = 4.5

As n0 = 5 > α(n0 + n1) and n1 = 10 > α(n0 + n1), Eq. (2) is sat-

isfied for neither x = 0 nor x = 1.

Hence, according to the definition none of the rankings are in

disagreement with the α-majority.

Based on this definition, we now design a weight assignment

ule for the input rankings.

.1.1. Assigning quality scores to input rankings

Let R1 to RN be the input rankings. Also, let dijl denote the pref-

rence relation between items i and j as obtained from the rank-

ng Rl. As discussed in Section 5, preference relation between two

tems is determined by considering the relative positions of the

tems in the ranking. For each input ranking Rl, we also consider

hat all items that are present in Rl are preferred over all other

tems that are not in Rl. However, if both i and j are not present in

l, we cannot comment on the opinion of Rl on the preference rela-

ion involving this item pair. We define the disagreement of Rl with

nput rankings (R) as the number of item pairs for which Rl differs

rom α-majority opinion on the relative ordering of the items. We

efine the disagreement score for ranking Rl as:

l =
∑
(i, j)

∈S×S

δi jl . (3)
r

here

i jl =
{

0, if Rl does not disagree with α-majority for (i, j)
1, if Rl disagrees with α-majority for (i, j)
0.5, if both i and j are not ranked by Rl .

(4)

ere S is the set of distinct items that appear in the input rankings.

isagreements with α-majority are determined using the condi-

ions described in the previous section. α and β are parameters of

he algorithm. Their values remain same for all input cases. Weight

f the ranking Rl is then set as

l = 1 − �l(|S|
2

) . (5)

l denotes the fraction of item pairs for which Rl agrees with α-

ajority. Rankings which agree with α-majority for more number

f item pairs get high weights according to this scheme.

.1.2. Weighted aggregation of input preference graphs

Once the weights of the input rankings are determined, an ag-

regate graph (GA) can be constructed by taking a weighted com-

ination of the preference relations obtained from the rankings. GA
ontains as nodes all the items in S, i.e. the items appearing in at

east one of the input rankings. Weight of the edge from i to j in

A, denoted as ei jA, is computed as:

i jA =
∑

ei jk is in Gk

(
wkei jk

)
. (6)

In Eq. (6), the summation runs over the individual rankings that

rovide preference relations for the pair (i, j). wk is the weight of

he ranking Rk, and eijk denotes the weight of the preference edge

rom i to j in the preference graph corresponding to the input rank-

ng Rk. Similarly, weight for the directed edge from j to i in GA is

et to e jiA = ∑
e jik is in Gk

(
wke jik

)
.

It may be recalled from Section 5 that the weight of the edge

rom i to j is set to 1 in a preference graph if and only if the cor-

esponding ranking prefers j over i. Hence, from Eq. (6) it can be

aid that: the weight of directed edge (i, j) in GA represents the to-

al weighted votes in favor of the preference relation j is better than

as given by the input rankings. This weight is high if many of the

ood rankings place j above i in their orderings.

.2. Inducing linear order

The aggregate graph GA may not represent a total order. How-

ver, the output of rank aggregation has to be a total order. So, we

ave to induce a total order from the preference relations stored

n GA. This can be achieved in several ways. The different algo-

ithms suggested for the minimum feedback arc set problem try to

ose this as an optimization problem. Extended Markov chain pro-

edure explained in Dwork et al. (2001) also can be used for this

urpose.

However, methods that use the extended Markov chain or

inimize feedback arc set are of higher complexity. On the other

and, in metasearch, the aggregation is performed in runtime,

hen the user is waiting for the results. Hence, we wanted a fast

lgorithm that can be used for finding the total order. We use

heuristic based method for this purpose. It first computes the

eighted indegree of each node of GA. The weighted indegree of a

ode j is given by σ j = ∑
i∈S ei jA. From the way the values ei jA are

omputed, it can be seen σ j is high if many good rankers consider

tem j to be better than many other items. The heuristic sorts the

odes of the aggregate graph in decreasing order of their weighted

ndegrees. This sorted order of the nodes gives the final output of

he algorithm. The unweighted version of this algorithm, where all

ankers are given equal weights, was proposed in Copeland (1951).
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6.3. Complexity of the algorithm

We now analyze the complexity of the proposed rank aggrega-

tion algorithm.

• Aggregating preference graphs: In this phase, the algorithm finds

the α-majority opinion for each each item pair. The time com-

plexity for finding this information for an item pair is O(N)

where N is the number of input rankings. Once the majority

opinion is obtained, updating the disagreement count �l of the

N rankings requires O(N) time. If the total number of distinct

items is m, then there are O(m2) item pairs, and finding dis-

agreement counts of all rankings requires O(Nm2) time.

Once disagreement counts of all the rankings are computed,

computing the quality weights of the N rankings need O(N)

time. Hence the total complexity of this phase is O(Nm2 + N) =
O(Nm2). It can be noted that any pairwise method for rank ag-

gregation must have a complexity of �(Nm2), as it has to look

at all pairs in all the input rankings.
• Inducing linear order: This phase sorts the nodes in the graph by

their weighted indegrees. As there are m nodes in the graph,

computing the weighted indegrees takes O(m2) time. Sorting

can be done in O(mlog m) time. Hence, the complexity of this

phase is O(m2 + m log m) = O(m2).

Hence the complexity of the entire algorithm is O(Nm2). It is

worth mentioning that almost all of these operations involve

comparisons and additions. Moreover, careful examination of

the algorithm will indicate that the constants involved in the

order notations are also very small. As a result, the method is

very fast and suitable for real-time processing.

7. Experimental results

In this section, we compare the performance of the pro-

posed algorithm against existing unsupervised rank aggregation

algorithms.

7.1. Datasets used

We used Yahoo Learning to Rank Challenge (LTRC) dataset, Mi-

crosoft Learning to Rank (MSLR-WEB10K) dataset and LETOR 4.0

rank aggregation datasets (MQ2007-agg, MQ2008-agg) for our ex-

periments. The LETOR datasets are specifically for rank aggregation

and we use them directly.

The other two datasets viz. Yahoo-LTRC and MSLR-WEB10K

datasets contain scores given to different documents based on dif-

ferent features. We considered each feature as a ranker. For each

feature, we obtained the ranked list for a query by sorting the

documents in decreasing order of the scores. For MSLR-WEB10K

dataset, we considered the top 30 features according to the num-

ber of distinct scores assigned by the feature in the dataset. This

was to reduce the number of ties in the input rankings. Typically,

rankings received by metasearch engines do not have any ties.

Upon cross-referencing with the feature list given in Qin, Liu, Ding,

Xu, and Li (2010b), we found that these top 30 identified features

are (in order): (1) LMDIR.ABS for whole document, (2) BM25 score

for the whole document, (3) LMIR.DIR score for the whole docu-

ment, (4) LMDIR.JM score for the whole document, (5) LMIR.ABS

for the document body, (6) BM25 score for the document body,

(7) LMIR.DIR score for the document body, (8) LMIR.JM score for

the document body, (9) mean of tf∗idf for the whole document,

(10) sum of tf∗idf for the whole document, (11) mean of tf∗idf for

the document body, (12) sum of tf∗idf for the document body, (13)

variance of tf∗idf for the whole document, (14) variance of tf∗idf for

the document body, (15) vector space model score for the whole

document, (16) vector space model score for the document body,
17) PageRank score, (18) SiteRank score, (19) sum of stream length

ormalized term frequency for the whole document, (20) max of

f∗idf for the whole document, (21) LMIR.ABS score for the docu-

ent title, (22) sum of stream length normalized term frequency

or the document title, (23) max of tf∗idf for the document body,

24) mean of stream length normalized term frequency for the

hole document, (25) LMDIR.DIR score for the document title, (26)

ean of stream length normalized term frequency for the docu-

ent body, (27) BM25 score of the title, (28) max of stream length

ormalized term frequency for the whole document, (29) LMIR.JM

core for the document title and (30) max of stream length nor-

alized term frequency for the document body. It can be noted

hat, intuitively, all the features mentioned above are good indica-

ors of a document’s relevance for a given query. Hence we decided

o use these features as rankers.

We also changed each relevance label from rel to
⌊

rel
2

⌋
. This

as done for two reasons: (a) as there are 5 relevance labels (0–4),

aving a document with relevance label 1 in the original data

ould increase the precision, whereas there are other documents

hat are much more relevant than this. We wanted to have those

n the top results. (b) If a document with relevance label 4 appears

t the top, then it influences the NDCG a lot. Changes in ordering

t remaining places may get unnoticed as a result. We performed

xperiments with original values of the relevance labels also.

rdering of the algorithms in terms of performance metrics were

he same as the ordering that we obtained using the modified

abels. Here we report the results obtained using the modified

elevance labels.

The Yahoo-LTRC dataset also was used in a similar way. We con-

idered top 45 features according to the number of distinct scores.

owever, names of the exact features are not available for this

ataset.

.2. Algorithms used for comparison

We compare the proposed algorithm with several other unsu-

ervised rank aggregation algorithms, namely, BORDA (uses po-

itional score) (de Borda, 1781), MC4 (uses Markov chain based

ethod) (Dwork et al., 2001), QSORT (optimizes Kendall-Tau

core), (Schalekamp & van Zuylen, 2009) LUCE-R (uses probabilistic

odel) (Clémençon & Jakubowicz, 2010). We refer to our algorithm

s WT-INDEG. We implemented another algorithm, EQ-INDEG, as a

aseline for our algorithm. EQ-INDEG gives equal weight to each

anking. EQ-INDEG was used as a baseline in Schalekamp and van

uylen (2009) and is a variant of the Copeland method (Copeland,

951). We did not implement LUCE-R due to complexity issues. For

UCE-R, we only compare the NDCG values reported in Clémençon

nd Jakubowicz (2010).

We also include for comparison performances of two super-

ised rank aggregation algorithms. The first algorithm is based

n Coset Permutation Distance (Qin et al., 2010a). We denote

his method as CPS(sup). For CPS(sup), the values for the super-

ised evaluation measures on the MQ2007-agg and MQ2008-agg

atasets are available at Qin et al. (2009). We use these values

n our comparisons. The other supervised algorithm that we com-

are with is a tree adaptation based supervised algorithm (Chen

t al., 2011). We denote the algorithm by TRADA(sup). For train-

ng, TRADA(sup) uses feature scores for the query–document pairs.

uch scores are not available in the LETOR datasets. Hence we

o not have metric values of TRADA(sup) for MQ2007-agg and

Q2008-agg datasets. We report the results of this algorithm for

he Yahoo dataset only.

For CPS(sup) and TRADA(sup), the word “sup” indicates that

he algorithms are supervised. Comparisons with supervised algo-

ithms should only be used as reference. Supervised algorithms are
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Table 1

Effect of parameter β on the MQ2007-agg dataset.

β 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Mean NDCG 0.359 0.359 0.359 0.360 0.360 0.359 0.359 0.357 0.356 0.355 0.314

MAP 0.350 0.351 0.351 0.351 0.351 0.351 0.351 0.349 0.348 0.346 0.309

KT 0.408 0.409 0.409 0.409 0.409 0.409 0.409 0.408 0.407 0.407 0.509

ERR 0.204 0.204 0.204 0.204 0.205 0.204 0.204 0.203 0.202 0.201 0.162

Table 2

Effect of parameter β on the MQ2008-agg dataset.

β 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Mean NDCG 0.450 0.450 0.448 0.445 0.438 0.435 0.418 0.401 0.307 0.297 0.307

MAP 0.437 0.437 0.434 0.430 0.425 0.423 0.407 0.391 0.310 0.295 0.301

KT 0.403 0.403 0.405 0.405 0.404 0.403 0.398 0.393 0.385 0.291 0.396

ERR 0.266 0.266 0.266 0.264 0.261 0.261 0.253 0.243 0.175 0.168 0.175

Table 3

Effect of parameter β on the Yahoo dataset.

β 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Mean NDCG 0.486 0.487 0.487 0.489 0.489 0.489 0.490 0.493 0.452 0.406 0.355

MAP 0.459 0.459 0.459 0.461 0.461 0.461 0.462 0.463 0.434 0.400 0.364

KT 0.345 0.345 0.346 0.346 0.346 0.346 0.347 0.347 0.362 0.391 0.435

ERR 0.280 0.280 0.280 0.282 0.282 0.282 0.282 0.286 0.259 0.226 0.191

Table 4

Effect of parameter β on the MSLR-WEB10K dataset.

β 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

mNDCG 0.389 0.389 0.389 0.389 0.389 0.389 0.389 0.389 0.390 0.382 0.251

MAP 0.277 0.276 0.276 0.276 0.276 0.277 0.277 0.276 0.276 0.267 0.170

KT 0.172 0.171 0.171 0.171 0.171 0.172 0.172 0.171 0.172 0.171 0.084

ERR 0.235 0.237 0.237 0.237 0.237 0.237 0.238 0.239 0.243 0.272 0.449

e

l

7

e

t

(

q

7

p

r

w

(

t

m

v

m

t

o

d

t

t

u

t

c

w

n

a

a

i

e

t

M

T

t

t

u

r

v

r

r

o

t

v

h

e

d

d

a

t

b

w

t

e

a

p

i

xpected to perform better than unsupervised algorithms as they

ook at additional ground truth data for training.

.3. Evaluation metrics

We have used one unsupervised evaluation metric, namely, av-

rage Kendall-Tau (KT) distance and several supervised evalua-

ion metrics such as Precision, NDCG, MAP, mean NDCG and ERR

Chapelle, Metlzer, Zhang, & Grinspan, 2009) for determining the

ualities of the aggregate rankings.

.4. Parameter values for the proposed algorithm

As explained in Section 6.1, the proposed algorithm uses two

arameters α and β for determining the quality weights of the

ankers. We set α to 0.5 for all the datasets to indicate that we

ant the opinions given by the rankers to agree with majority

50% of the rankers). We used a small set of validation data to de-

ermine the value of β , that indicates the number of rankers that

ust have provided opinion for a document pair.

Ideally, high value of β indicates we want many rankers to pro-

ide relative orderings for each document pair. If β is set to 0, that

eans, we are not bothered about how many rankers provide rela-

ive rankings for the document pairs. Among the ones that provide

pinion for the pair, we compute the majority opinion and adjust

isagreement count accordingly. On the other hand, if β is set to

he maximum value 1.0, then it means that we want all the rankers

o provide opinions about the document pairs. In metasearch, it is

nlikely that all the rankers provide relative ranking opinion for

he document pairs. As a result, in this case, the disagreement

ount for all the rankings would remain as 0. Hence, all rankings

ould have equal weight, which, as explained in Section 6.1, may

ot be desired. It appears that β should be set to some moder-
te value. To determine that value, we used a subset of the data

s validation set. In our experiments with validation data, we var-

ed β from 0.0 to 1.0 in steps of 0.1. Based on the results of this

xperiment, we selected β = 0.3 for MQ2008-agg and β = 0.5 for

he other datasets. Effect of different β on complete MQ2007-agg,

Q2008-agg, Yahoo and MSLR-WEB10K datasets are mentioned in

ables 1, 2, 3 and 4, respectively.

It can be seen that, for MQ2007-agg and Yahoo as β increases,

he metric values do not change initially. However, after some

ime, (β = 0.9 for MQ2007-agg and β = 0.7 for Yahoo), the val-

es start degrading. This behavior is expected, as high value of β
esults in less number of document pairs for which disagreement

alues can be updated. As a result, weights assigned to different

ankers become almost similar, and the performance of the algo-

ithm degrades. For MSLR-WEB10K data, the values were affected

nly when β was set to 1.0.

The behavior is quite different for MQ2008-agg. The degrada-

ion in performance starts much earlier. After β = 0.5, the metric

alues start degrading quickly. We tried to analyze the reason be-

ind this difference in behavior. To do so, we calculated the av-

rage number of opinions for each document pair in the three

atasets. This value for MQ2007-agg, Yahoo and MSLR-WEB10K

atasets were 0.5, 0.7 and 0.9 respectively. Whereas, for MQ2008-

gg, the value was only 0.18. As a result, even when β was set

o a moderate value of 0.5, it was difficult to get sufficient num-

er of opinions for the document pairs. Based on the observations,

e recommend the following heuristic for setting the value of β . If

here are N rankers and the average number of opinions available for

ach document pair is more than 50% of N, then set the value of beta

s 0.5. Otherwise set the value of β to 0.3.

In the following section, we compare the performance of the

roposed algorithm WT-INDEG with other algorithms mentioned

n Section 7.2. In the rest of the paper, metric values reported for
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Table 5

Comparing average KT distances.

Dataset → Yahoo MQ2007-agg MQ2008-agg MSLR-WEB10K

WT-INDEG 0.346 0.409 0.405 0.237

EQ-INDEG 0.311 0.379 0.357 0.216

BORDA 0.307 0.330 0.275 0.218

MC4 0.306 0.345 0.287 0.217

QSORT 0.151 0.307 0.244 0.214

TRADA(sup) – – 0.349 –

W

Table 6

NDCG comparison for MQ2007-agg dataset. Perfor-

mance of CPS(sup) is used as a reference.

Algorithm Rank positions

Name 2 4 6 8

WT-INDEG 0.234 0.250 0.265 0.279

EQ-INDEG 0.210 0.225 0.237 0.250

BORDA 0.201 0.213 0.225 0.238

MC4 0.179 0.195 0.206 0.218

QSORT 0.122 0.145 0.159 0.172

LUCE-R 0.233 0.245 0.258 0.268

CPS(sup) 0.332 0.341 0.352 0.362

Table 7

NDCG comparison for MQ2008-agg dataset. Perfor-

mance of CPS(sup) is used as a reference.

Algorithm Rank positions

Name 2 4 6 8

WT-INDEG 0.346 0.398 0.438 0.464

EQ-INDEG 0.308 0.370 0.416 0.441

BORDA 0.280 0.343 0.389 0.372

MC4 0.241 0.310 0.363 0.389

QSORT 0.155 0.228 0.283 0.325

LUCE-R 0.273 0.328 0.369 0.358

CPS(sup) 0.314 0.376 0.419 0.398

Table 8

NDCG comparison for Yahoo dataset. Performance of

TRADA(sup) is used as a reference. Results of LUCE-R

and CPS(sup) are not available for this dataset.

Algorithm Rank positions

Name 2 4 6 8

WT-INDEG 0.416 0.425 0.438 0.451

EQ-INDEG 0.347 0.373 0.389 0.404

BORDA 0.350 0.370 0.386 0.400

MC4 0.333 0.357 0.374 0.392

QSORT 0.341 0.361 0.376 0.394

TRADA(sup) 0.477 0.479 0.487 0.499

Table 9

NDCG comparison for MSLR-WEB10K dataset. Re-

sults of LUCE-R and CPS(sup) are not available for

this dataset.

Algorithm Rank positions

Name 2 4 6 8

WT-INDEG 0.249 0.251 0.260 0.265

EQ-INDEG 0.236 0.240 0.247 0.252

BORDA 0.233 0.239 0.244 0.249

MC4 0.213 0.223 0.231 0.238

QSORT 0.211 0.218 0.222 0.231
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P
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our algorithms correspond to α = 0.5 and β = 0.5 for MQ2007-agg,

Yahoo and MSLR-WEB10K datasets, and α = 0.5 and β = 0.3 for

MQ2008-agg. However, it can be noted that, for any dataset and

any evaluation metric (except KT distance), the proposed method

produces better result than the competitor algorithms for moder-

ate values (e.g. 0 ≤ β ≤ 0.5) of the parameter β .

7.5. The results

7.5.1. Comparing average Kendall-Tau (KT) distance

The KT value for LUCE-R is not mentioned in the correspond-

ing paper. The KT scores obtained by the other unsupervised al-

gorithms are shown in Table 5. Kendall-Tau distance between two

rankings is computed by counting the number of item pairs (i, j)

such that i is placed above j in one ranking and below j in an-

other. Average KT distance for the aggregate ranking is the aver-

age of the Kendall-Tau distances of the aggregate ranking with all

the input rankings. For this measure, lesser value indicates better

performance. It is clear from the table that QSORT is the best al-

gorithm for this evaluation metric. In fact QSORT is designed to

optimize the average KT distance of the aggregate ranking from

the input rankings. On the other hand, our algorithm WT-INDEG

performs poorly according to this metric. It obtains very high KT

scores for all the datasets.

This can be attributed to the following facts: (a) the proposed

method is a modification of EQ-INDEG which itself does not per-

form well according to the measure, and (b) we do not give equal

importance to all the rankers during the aggregation process. We

give lesser importance weights to the poor rankers to keep the ag-

gregate ranking far from them. This increases the average distance

of the aggregate ranking from the input rankings, which increases

the average Kendall-Tau distance. It has been pointed out in Yilmaz

et al. (2008), Carterette (2009) and Desarkar, Joshi, and Sarkar

(2011) that Kendall-Tau distance may not be suitable for evaluat-

ing of rank aggregation algorithms. Moreover, as the datasets used

for experimentation contain ground truth information in the form

of document relevance, supervised evaluation metrics can be used

to measure the performances of the algorithms. So we did not try

to modify our algorithm to obtain better KT score, but wanted to

see how it works according to the supervised evaluation metrics.

7.5.2. Comparing NDCG and Precision

We now compare the performances of the algorithms based

on the supervised evaluation metrics. We first consider NDCG and

Precision. For both these measures, higher values indicate bet-

ter performance. A comparison of NDCG values of the different

algorithms for the MQ2007-agg, MQ2008-agg, Yahoo and MSLR-

EB10K datasets are shown in Tables 6, 7, 8 and 9, respectively.

Compared to the other unsupervised algorithms, our method WT-

INDEG obtains better NDCG scores for all four datasets.

Performances of CPS(sup) and TRADA(sup), wherever available,

are provided for reference. Supervised algorithms are expected to

perform better than unsupervised algorithms. However, it is inter-

esting to note that WT-INDEG performs better than CPS(sup) for
Q2008-agg. Trada(sup) performs better than all other algorithms

or the Yahoo dataset.

The Precision values of the algorithms are compared in Fig. 2.

omparison with LUCE-R is not shown as Precision values are not

eported in the corresponding paper. From the figures it is clear

hat WT-INDEG is the best unsupervised algorithm according to

recision for all the four datasets.

.5.3. Comparing MAP and mean NDCG

For MAP and meanNDCG measures, higher value indicates bet-

er performance. The comparison of MAP values is shown in

able 10. WT-INDEG obtains the best MAP value among the un-

upervised algorithms for all the datasets. For all these datasets,
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Fig. 2. Comparison of Precision values of different unsupervised algorithms.

Table 10

Comparing MAP values. The results for CPS(sup) and TRADA(sup), wherever

available, are shown as a reference.

Dataset

MQ2007-agg MQ2008-agg Yahoo MSLR-WEB10K

WT-INDEG 0.351 0.430 0.461 0.277

EQ-INDEG 0.335 0.419 0.438 0.271

BORDA 0.325 0.394 0.436 0.269

MC4 0.316 0.369 0.430 0.263

QSORT 0.276 0.301 0.433 0.259

CPS(sup) 0.407 0.410 – –

TRADA(sup) – – 0.486 –
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T

Table 11

Comparing mean NDCG. Results for CPS(sup) and TRADA(sup), wherever avail-

able, are shown as reference.

Dataset

MQ2007-agg MQ2008-agg Yahoo MSLR-WEB10K

WT-INDEG 0.360 0.445 0.489 0.389

EQ-INDEG 0.335 0.425 0.444 0.381

BORDA 0.322 0.390 0.442 0.378

MC4 0.309 0.372 0.430 0.372

QSORT 0.256 0.294 0.433 0.367

CPS(sup) 0.433 0.413 – –

TRADA(sup) – – 0.526 –

t

t

e

a

p

s

d

Q-INDEG appears as the second best unsupervised algorithm ac-

ording to MAP. For MQ2007-agg, WT-INDEG achieves a 4.8% im-

rovement over the closest baseline. For MQ2008-agg and Ya-

oo datasets, performance improvement by the proposed method

re 2.6% and 5.2%, respectively. This improvement is 2.2% for the

SLR-WEB10K dataset.

The comparison of mean NDCG values is shown in Table 11.

he results indicate that WT-INDEG performs the best among
he unsupervised algorithms used for comparison according to

his evaluation metric also. For all the four datasets, EQ-INDEG

merged as the second best unsupervised algorithm. For MQ2007-

gg, MQ2008-agg and Yahoo datasets, the improvements by the

roposed methods can be computed to be 7.5%, 4.7% and 10.1% re-

pectively. The improvement is small (2.1%) for the MSLR-WEB10K

ataset.
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Table 12

Comparing ERR values. Value of TRADA(sup) for the Yahoo dataset is shown

as a reference.

Dataset

MQ2007-agg MQ2008-agg Yahoo MSLR-WEB10K

WT-INDEG 0.204 0.264 0.282 0.172

EQ-INDEG 0.184 0.249 0.246 0.159

BORDA 0.166 0.198 0.244 0.158

MC4 0.163 0.203 0.232 0.153

QSORT 0.123 0.161 0.227 0.147

TRADA(sup) – – 0.326 –
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7.5.4. Comparing expected reciprocal rank (ERR)

For ERR, higher value indicates better performance. To obtain

high ERR value, an algorithm has to put the first relevant doc-

ument near the top of the list. The comparisons are shown in

Table 12. It can be seen from the table that the proposed method

WT-INDEG obtains highest ERR score among the methods we com-

pared. For MQ2007-agg, MQ2008-agg, Yahoo and MSLR-WEB10K

datasets, the improvements in ERR by WT-INDEG can be computed

to be 11%, 6%, 14.6% and 8.2%, respectively. High ERR score ob-

tained by the proposed method suggests that in most of the cases,

the method is able to put a relevant document near the top of the

aggregate ranking.

7.6. Discussions

Unsupervised rank aggregation algorithms are generally com-

pared against Kendall-Tau distance metric. However, as discussed

in Section 7.5.1, it is better to evaluate rank aggregation algorithms

against supervised evaluation measures. The proposed method

WT-INDEG performed poorly according to Kendall-Tau and the ex-

planation is given in Section 7.5.1. However, detailed evaluations

using various supervised measures such as Precision, NDCG, MAP,

mean NDCG and ERR indicate the efficacy of the proposed method.

WT-INDEG consistently outperformed all other unsupervised al-

gorithms for all the supervised evaluation metrics across all the

datasets that we used for experimentation. Difference between the

proposed method and other baselines were quite large for the

MQ2007-agg, MQ2008-agg and Yahoo datasets. For MSLR-WEB10K

dataset, although WT-INDEG was the best performer, all algorithms

performed reasonably well. This is because the features used as

rankers all are individually good and intuitively, they individually

are strong signals for the relevance of a document for a query. As

a consequence, the rankings induced from the individual features

were quite similar. In other words, there were not too much dis-

agreement between the rankings. Hence the performance of WT-

INDEG was close to the performance of EQ-INDEG, which was the

closest competitor for this dataset as well.

The experimental results provide a concrete evidence that

Kendall-Tau distance may not be the best metric for metasearch.

Average Kendall-Tau distance measures the distance of the aggre-

gate ranking from the input rankings in terms of pairwise disagree-

ments. On the other hand, Precision, NDCG, ERR measure the qual-

ity of the ordering in the complete aggregated ranking (including

the position information), which is more important for metasearch

application. The supervised metrics take into consideration the rel-

evance labels of the document and hence aim to measure the user

satisfaction for the aggregate ranking. A list that is good according

to the Kendall-Tau measure may not be able to provide high user

satisfaction. QSORT is the best algorithm according to Kendall-Tau

distance for all the datasets, however it obtains poor scores for the

supervised measures. In fact, QSORT is designed to optimize the

Kendall-Tau measure. On the other hand, WT-INDEG gets the worst

score according to Kendall-Tau distance. However, it appears as the
est algorithm across all the datasets according to the supervised

etrics. All other unsupervised methods used for experimentation

chieve moderate Kendall-Tau scores but perform much better than

SORT on the supervised measures.

. Conclusions

In this work, we propose a fast, simple, easy to implement

nd efficient algorithm for unsupervised rank aggregation. The al-

orithm has been designed keeping in mind the specific require-

ents for metasearch application. It assigns varying weights to the

nput graphs to reduce the influence of the bad rankers on the ag-

regation process. Detailed experimental comparisons against ex-

sting unsupervised rank aggregation algorithms were performed

n several benchmark datasets related to web search. The pro-

osed method consistently performed better than the other un-

upervised methods used for experimentation. From complexity

oint of view, the proposed method runs in O(Nm2) time, where

is the number of input rankings and m is the total number of

istinct items appearing in the lists. The algorithm mostly involves

ow cost operations such as comparison and addition. This makes

he algorithm fast and suitable for applications such as metasearch

hich require low response time. Involvement of low cost opera-

ions in the process allows the algorithm to recompute the quality

eights afresh for each query. Poor quality results produced by a

anker for a query does not affect the quality weight assigned to

he ranker for other queries. This may be desirable in metasearch,

ince quality of results given by a single search engine may vary

ith queries.

Also, our experiments provide concrete evidence that Kendall-

au distance metric is not a suitable metric for evaluating

etasearch algorithms. If supervised information like relevance la-

els of the documents for different queries is available, then it is

etter to use supervised metrics for evaluating the algorithms. The

roposed algorithm can also be used in other expert and intelligent

ystems where input rankings need to be combined, but it is not

ecessary to give equal importance to the input rankers. Examples

f such applications are multi-criteria document selection, feature

dentification for data mining tasks, group recommendation, etc.

owever, it is necessary to evaluate the algorithm on benchmark

ata for these applications to understand the algorithm’s perfor-

ance on these tasks.

Though WT-INDEG shows good performance on real world

enchmark datasets, few limitations of the work should be pointed

ut to complete the discussion. WT-INDEG algorithm uses two pa-

ameters to determine the qualities of the input rankings. Deter-

ining the values of these parameters in an unsupervised manner

ay be a challenge. It may be better to use properties or composi-

ions of the input rankings to determine the qualities of the rank-

ngs, without needing to set up the parameter values explicitly.

As future work, we plan to improve the quality weight as-

ignment method, with special attention to outlier detection. We

ould like to investigate what happens if we can detect the in-

ut rankings which are outliers, and whether ignoring the outlier

ankers improves the quality of the aggregate ranking. Another in-

eresting approach will be to have the pairwise preference rela-

ions labeled with the strength of the relation. For example, one

an assign higher weights to a preference edge if the correspond-

ng nodes are placed far apart in the ranking. In the paper, we

emonstrated the efficacy of the proposed algorithm using detailed

mpirical evaluation on multiple benchmark datasets. It might be

nteresting to see whether the algorithm has any theoretical prop-

rties, using which it is also possible to theoretically establish the

uperiority of the algorithm. Since Kendall-Tau distance was shown

o be not perfect for evaluating metasearch algorithm, designing of
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