
Fast Incremental Minimum-Cut Based Algorithm for Graph Clustering

Barna Saha Pabitra Mitra
Indian Institute of Technology, Kanpur Indian Institute of Technology, Kharagpur

barna@cse.iitk.ac.in pabitra@iitkgp.ac.in

Abstract

In this paper we introduce an incremental clustering al-
gorithm for undirected graphs. The algorithm can maintain
clusters efficiently in presence of insertion and deletion (up-
dation) of edges and vertices. The algorithm produces clus-
ters that satisfies the quality requirement, given by the bi-
criteria of [6]. To the best of our knowledge, this is the first
clustering algorithm, for dynamic graphs, providing strong
theoretical quality guarantee on clusters. The incremental
clustering algorithm, is motivated by the minimum-cut tree
based partitioning algorithm of [6] and [7]. It takesO(k3)
time for each updation, wherek is the maximum size of any
cluster. This is the worst case time complexity, and in gen-
eral time taken is much less. In presence of only insertion of
edges and vertices, or for graphs stored in secondary stor-
age, the algorithm takes,O(mk3) time for clustering, in
contrast toO(n3) time requirement of [6]. Herem and
n are respectively the number of edges and vertices of the
graph. Many real world graphs, have been found to have
low average degree, for whichn = Θ(m). For these classes
of graphs, even when the graph is stored, the proposed algo-
rithm performs far better than [6], in terms of computation
time. This has been validated by our experimental results on
several benchmark test graphs upto30 thousand nodes and
1 million edges, obtained from varied application areas. Fi-
nally, a comparison has been drawn between the proposed
algorithm and a recent multi-level kernel based algorithm
for fast graph clustering [5], and the effectiveness of our
algorithm is established.

1 Introduction

Clustering, or partitioning of data in natural groups, is
a fundamental problem in computer science, mathematics
and many applied areas. Good clustering, groups similar
items in a cluster, and data in different clusters exhibit dis-
similar properties. The objective of many clustering al-
gorithms is typically to optimize certain statistical mea-
sures. Algorithms in this category are—k-means, k-median,

minimum-sum, minimum-diameter etc.. A related and very
important class of clustering algorithms deal with graphs.
The goal is to create clusters that are heavily connected, in
addition to, assuring that inter-cluster connectivity is low. In
light of this, Kannan et al. [10] suggested a bi-criteria mea-
sure for good clustering, where clusters satisfy certain ex-
pansion or conductance (See section 2) measure and weight
of the edges across the cluster is upper bounded. A slight
variant of the above measures is given in [6], where instead
of inter-cluster edge weight, expansion across the clusters
is maintained below a threshold. In reality, both these mea-
sures perform well.

1.1 Previous Work on Graph Clustering

There exists a rich literature on graph clustering algo-
rithms. Among them one of the most popular methods is
spectral clustering. It deals with the matrix structure of
the graph and partitions the rows into few eigen-vectors
[10, 16], depending on their components. Graph cluster-
ing methods have also been proposed using random walks,
based on Markov chain [3]. The rapid mixing of Markov
chain is a necessary condition for producing good clusters
in this method. This requires that the second eigen-value
of the adjacency matrix be well-separated from the largest
eigen value one. In general there is no guaranteed bound on
the mixing time and hence the procedure is not suitable for
time-critical applications. Spectral-method though suffices
the condition of bounded polynomial time complexity, but
it requires processing of the entire graph together. So when
graphs are originated from real world applications, like
WWW, Internet, Mobile Networks, etc., the massive size
of these graphs makes the space-complexity of the spectral
algorithm prohibitive. A slight change in the edge-relations
necessitates re-processing of the entire graph structure. Re-
cently a fast algorithm for graph clustering has been sug-
gested in [5] on the line of multi-level partitioning scheme
of METIS [11]. The procedure involves repeated coarsen-
ing of the original graph to smaller size graph, partitioning
it and then remapping the partitions back. However it does
not say, how to modify the clusters under mobile scenario,

1

when edges and vertices may get added or deleted arbitrar-
ily. The algorithm cannot provide any theoretical guaran-
tee on the clustering quality. A new direction to graph-
clustering has been introduced by modeling the clustering
problem, using minimum-cut, maximum-flow problem of
the underlying graph. Work on this approach [15, 7] has
been used to identify web-communities, to segment images
etc.. Flake etal. has used this method to produce clusters
[6], with theoretical quality measure, that works remark-
ably in practice [6, 12]. In addition to its wide application
on clustering graphs, it has also been used as learning al-
gorithm [14]. However the algorithm requires processing
of the entire graph, everytime the graph structure undergoes
some change. Therefore the algorithm of [6] is not suitable
for clustering dynamic graphs.

1.2 Dynamic Graphs and Incremen-
tal Graph Clustering

The World Wide Web (WWW) can be viewed as a mas-
sive graph, where nodes are the pages and an edge between
two pages, represents a link between them. Finding web-
communities using link structure of the WWW is an impor-
tant problem [7]. However the highly dynamic nature of the
web renders all the above discussed methods for clustering
useless. We need clustering that can efficiently process, in-
sertion and deletion of nodes and links, without requiring to
recluster the entire graph at every alteration.

Consider Citeseer data base1 [6], where each research
publication can be modeled by a node and an edge from
publication1 to publication2 represents citation of publica-
tion 2 by publication1. Clustering over this citation graph
enables detecting research on related topics. However this
graph is continuously changing, with new publications be-
ing added at every instant and old out-of-date publications
being removed. Therefore we need clustering algorithms
that can dynamically adjust with this changing environment.

Clustering nodes in ad hoc sensor networks [2] has also
been very useful for improving network lifetime, scalabil-
ity, load-balancing. Routing in mobile networks can be
made more efficient using clustering information. The ba-
sic objective is to select a node from each cluster to act as
cluster-head. The cluster head is responsible for coordina-
tion among nodes within the cluster and for communica-
tion across the clusters. However all these networks are
highly mobile, and hence the traditional static graph clus-
tering algorithms cannot be applied here. Some clustering
schemes have been specifically devised to suit these appli-
cations. Recent research in this area include HEED [1],
LEACH [1], ACE [4], DCE [2]. But in all these algorithms,
cluster-heads remain static. Any alteration in cluster-heads
triggers clustering of the whole graph afresh. The quality of

1www.citeseer.com

clusters is experimentally verified, without any theoretical
guarantee. The algorithms do not meet the quality require-
ment of either [10] or [6]. In addition, HEED and LEACH
requireO(n) (n is the number of nodes) processing time
for each node.

Clustering is also useful for resource allocation in mo-
bile network. It provides spatial reuse of bandwidth due
to node clustering. Bandwidth can be effectively handled
and shared within each cluster. However we need cluster-
ing algorithm that is robust over topological changes due
to node movement, node failure, node insertion and dele-
tion. [13, 9] describe clustering algorithms for mobile radio
network. However the algorithms do not give theoretical
guarantee on clustering quality, neither they experimentally
verify quality requirements given by the bi-criteria of [10]
or [6].

The importance of developing incremental clustering al-
gorithms, for dynamic networks, that can be deployed in
these diverse application fields, that is theoretically strong
and experimentally verified, is therefore unquestionable.
The algorithm should process each update, in the form of
addition and removal of nodes or links, in time and space
much less thann. At any instant of time, the existing clus-
ters can be obtained easily. The clusters must satisfy the-
oretical quality guarantee and should be verified to work
well in practice. In this paper we develop a fast incremental
graph clustering algorithm, satisfying the above criterias.

1.3 Contribution

Our contributions are as follows:

• We develop an incremental graph clustering algorithm
that can handle insertion and deletion of edges, while
clustering is on progress. Each update operation re-
quires timeO(k3) (worst case). This can be reduced
to O(k2), using a heuristic. Herek is the maximum
size of any cluster, which is much less than the total
size of the network, generally logarithmic of the to-
tal size. Vertex addition and deletion can also be han-
dled efficiently. At any instant, the algorithm main-
tains the clusters of the existing graph. If links and
nodes can only be added, the clustering can be per-
formed in timeO(mk3). If k is logarithmic ofn, then
since most of the real-world networks have constant
average degree [6], the time taken to perform cluster-
ing isO(n(log n)3).

• A detailed theoretical analysis of the clustering quality
is provided.

• The effectiveness of the algorithm is established
through experimentation on several benchmark graphs,
upto30 thousand nodes and1 million edges. Compari-
son results with the algorithm of [6] and a cutting-edge

multilevel algorithm of [5] clearly demonstrates the su-
periority of our incremental algorithm.

1.4 Organization

The rest of the paper is organized as follows. Section 2
delineates the clustering algorithm based on minimum-cut
tree developed in [6]. This algorithm serves as the basis
for our incremental algorithm. Section 3 describes our pro-
posed incremental graph clustering algorithm and gives de-
tailed proof of its quality guarantee. Section 4 shows the
efficacy of our method with detailed experimentation . Fi-
nally we conclude in Section 5.

2 Clustering Using Mincut Tree

2.1 Preliminaries

Let G = (V,E), denote a weighted undirected graph
with n = |V | nodes or vertices andm = |E| links or
edges. Each edgee = (u, v), u, v ∈ V has an associ-
ated weightw(u, v) > 0. The adjacency matrixA of G
is ann× n matrix in whichA(i, j) = w(i, j) if (i, j) ∈ E,
elseA(i, j) = 0. The corresponding adjacency list struc-
ture maintains for everyi ∈ V only thosej’s, for which
w(i, j) > 0. Thew(i, j) values are also retained.

Let s and t be two nodes inG(V,E), designated as
source and destination respectively. The minimum cut of
G with respect tos andt is a partition ofV , namely,S and
V/S, such thats ∈ S, t ∈ V/S and total weight of the
edges linking vertices in two partitions is minimum. The
sum of the edge-weights acrossS andV/S, is denoted by
the cut-value,c(S, V/S). S is called the community ofs.
The minimum cut tree,TG of G, defined in [8], is a tree on
V , such that inspecting the path betweens andt in TG, the
minimum-cut ofG with respect tos andt can be obtained.
Removal of the minimum weight edge in the path yields the
two partitions and the weight of the corresponding edge,
gives the cut-value.

2.2 Clustering Algorithm

[6] defines clustering based on the minimum-cut tree. An
artificial sink, t, is added in the graph and is connected to
all the vertices. Each edge(t, v), v ∈ V has the associ-
ated weightα > 0. The value ofα is critical in deter-
mining the quality of the clusters. The minimum-cut tree
is then computed on this new graph. The disjoint compo-
nents obtained after removal oft from the minimum-cut tree
are the required clusters. The algorithm is named as “Cut-
Clustering algorithm”. Figure 1 shows the communities of
the minimum-cut tree after addition of the artificial sinkt.
Fig 2 gives the basic “Cut-Clustering algorithm”.

Figure 1. Communities of the Minimum-Cut
Tree

—————————————————————————
Cut-Clustering(G(V,E),α)
begin

Let V := V ∪ t
For all verticesv in G

Connectt to v with edge of weightα
Let G′(V ′, E′) be the new graph after connectingt to V
Calculate the minimum-cut treeT ′ of G′

Removet from T
Return all connected components as the clusters ofG

end

—————————————————————————–

Figure 2. Cut Clustering Algorithm of [6]

2.3 Clustering Quality

The quality of the clusters produced using “Cut-
Clustering” algorithm, is measured using expansion like cri-
teria. Let(S, S̄) be a cut inG. The expansion of this cut is
defined as

Ψ(S) =

∑
i∈S,j∈S̄ w(i, j)

min{|S|, |S̄|}

=
c(S, S̄)

min{|S|, |S̄|}

The expansion of a (sub)graph is the minimum expansion
over all the cuts of the (sub)graph. Higher the expansion of
a cluster, better is its quality.

[6] assures that ifS is a cluster produced by the “Cut-
Clustering” algorithm, then the following conditions are

satisfied (See Fig 3):

Figure 3. Inter and Intra Cluster Cuts

1. c(P,Q)
min{|S|,|S̄|} ≥ α, for anyP,Q ⊂ S, such thatP∪Q =
S andP ∩Q = φ.

2. c(S,V −S)
|V −S| ≤ α.

Thereforeα serves as a lower bound for intra-cluster
expansion and an upper bound for inter-cluster expansion.
This clustering quality measure is not exactly same as the
bicriteria proposed by Kannan et.al [10], but closely similar
to it and has its own advantage.

3 Incremental Clustering with Min-Cut Tree

In this section we present our main contribution—an in-
cremental algorithm for graph-clustering. The clustering
technique is motivated by the “Cut-Clustering” algorithm
described in the previous section.

3.1 Intuition

Intuitively, it appeals that a small change in the edge re-
lationship of a graph should not disturb the existing clusters
immensely. The clusters of the new graph should be gen-
erated efficiently from the knowledge of the previous clus-
ters without reprocessing the graph in its entirety. Addition
of intra-cluster edges or deletion of inter-cluster edges im-
proves the connectivity within the existing clusters. Hence
under these conditions, it is quite natural for the new up-
dated graph to have the same clusters, unless the previ-
ously existing clusters were not satisfactory. On the con-
trary inter-cluster edge addition and intra-cluster edge dele-
tion degrades the quality of the existing clusters and the new
graph is likely to have different clusters. But it is very unlike
that all the clusters would be affected. Only those clusters
which have suffered changes in the form of edge addition or

deletion are likely to produce different clusters in the altered
scenario. Processing only these few clusters and keeping
the others unchanged should alone be sufficient to produce
quality clusters in the updated graph.

3.2 Algorithm

Our proposed algorithm maintains for every vertex, two
variables,In Cluster Weight (ICW)andOut Cluster Weight
(OCW). Let C1, C2, ..., Cs, s > 0 is an integer, be the clus-
ters ofG(V,E). ThenICW andOCWare defined as below.

Definition 1 In Cluster Weight (ICW).In Cluster Weight
or ICW of a vertexv ∈ V is defined as the total weight
of the edges linking the vertexv to all the vertices which
belong to the same cluster asv. That is, ifv ∈ Ci, 0 ≤ i ≤
s, thenICW (v) =

∑
u∈Ci

w(v, u).

Definition 2 Out Cluster Weight (OCW).Out Cluster
Weight or OCW of a vertexv ∈ V is defined as the total
weight of the edges linking the vertexv to all the vertices
which do not belong to the same cluster asv. That is, if
v ∈ Ci, 0 ≤ i ≤ s, thenOCW (v) =

∑
u∈Cj ,j 6=i w(v, u).

The main feature of our algorithm is that it builds part of
the minimum-cut tree as and when necessary. Minimum-cut
tree is computed only over a very small graph, created effi-
ciently from the original graph. This has a flavor of coarsen-
ing step of [5]. However no remapping or refinement step is
necessary. Clusters of the original graph can be directly ob-
tained from the coarsened graph. The algorithm is thus very
fast. At any instant, the set of clusters of the graph, seen so
far, can be obtained without any further processing. The
cluster quality is identical to the offline “Cut-Clustering”
algorithm (See Figure. 2).

The algorithm supports and maintains clusters over the
following four update operations.

1. Edge Insertion.

2. Edge Deletion.

3. Vertex Insertion.

4. Vertex Deletion.

Edge insertion and deletion involve edges, where end
vertices have already been seen.

Let C = {C1, C2, ..., Cs}, are the clusters of the graph
G(V,E), that has been seen so far. LetA be the adjacency
matrix of G. Below we give description of our algorithm
over the four update operations.

1. Edge Insertion.
Intra-Cluster Edge Insertion.
When an edge gets added, whose both end vertices be-

long to the same cluster, we simply update the adjacency

matrix andICW. The clusters remain unchanged. Figure 4
gives the algorithm forintra-cluster edge addition. The
time required isO(1).

—————————————————————————
Intra-Cluster Edge Addition((i, j),wi,j)
begin

Let i, j ∈ Cu

UpdateA(i, j)+ = w(i, j)
Update ICW (i)+ = w(i, j), ICW (j)+ = w(i, j)
Return C

end

—————————————————————————–

Figure 4. Intra-Cluster Edge Addition

Inter-Cluster Edge Addition. Addition of an edge,
whose end points belong to different clusters increases con-
nectivity across the clusters. Therefore as a result, the clus-
tering quality suffers. If the quality measure, given in Sub-
section 2.3, is not maintained, re-clustering becomes neces-
sary. To understand the algorithm in the case ofinter clus-
ter edge addition, we need to first look into two processes,
merging of clustersandcontraction of clusters.

—————————————————————————
MERGE(Cu,Cv)
begin

D = Cu ∪ Cv

For all u ∈ Cu

Update ICW (u)+ =
∑

v∈Cv
w(u, v)

UpdateOCW (u)− =
∑

v∈Cv
w(u, v)

For all v ∈ Cv

Update ICW (v)+ =
∑

u∈Cu
w(v, u)

UpdateOCW (v)− =
∑

u∈Cu
w(v, u)

Return D
end

—————————————————————————–

Figure 5. Merging of Two Clusters

Merging of Clusters.Merging of two clustersCu and
Cv is described in Figure 5. By merging, a single clus-
ter is formed containing the vertices ofCu andCv. ICW
andOCW can easily be updated using the adjacency ma-
trix of the graphG. The time complexity for merging is
Θ(|(|Cu) + |Cv|) = Θ(|Cu + Cv|).

Contraction of Clusters.Contraction ofA ⊂ V in G is
performed by replacingA with a single nodex. Self loops,
resulting from the edges connecting vertices inA, are re-
moved. Parallel edges are replaced by a single edge, having

weight equal to the sum of the weights of the parallel edges.
While contracting clusters,A represent a single or multiple
clusters. The process to contract clusters is described in
Figure 6. The contracted graph can be obtained from the
adjacency matrix of the original graph along withICW and
OCW in timeΘ(|A|2).

—————————————————————————
CONTRACT(G(V,E),S)
Comment. S is a set of clusters
begin

Let A′ denote the adjacency matrix of the contracted graph
V ′ = {V − S, x}, n′ = |V ′|
Copy the entries ofA, involving both the vertices
from V − S, to A′

A′(i, n) = ICW (i) + OCW (i)−
∑n−1

j=1 A′(i, j)
Comment. E′ can be obtained fromA′

Return G′(V ′, E′)
end

—————————————————————————–

Figure 6. Creating Contracted Graph

Now we are ready to describe our algorithm forinter-
cluster edge addition(Figure 7). If the addition of edge does
not deteriorate the clustering quality (Condition 1), then the
same clusters are maintained. Else if, Condition 2 is satis-
fied, then the two clusters,Cu andCv, containing the end-
vertices of the inserted edge, are merged. Otherwise (Con-
dition 3), we create a coarsened graph, by contracting all
the clusters exceptCu andCv to x. The resulting graph has
only |Cu + Cv|+ 1 vertex entries and significantly smaller
than the original graph. Similar to “Cut-Clustering” algo-
rithm, we add an artificial sinkt and add edges connect-
ing t to all vertices in the coarsened graph. However, the
weight of the edge linkingt to x is |V − Cu − Cv|α. All
other edges witht as one end-point, have weight ofα. The
minimum-cut tree is computed over this graph. The con-
nected components are computed from this tree, after re-
movingt. Those components containing vertices ofCu and
Cv along with the clustersC − {Cu, Cv} are returned as
the clusters of the original graph. The entire process takes
timeΘ(|Cu + Cv|3). Using a heuristic (Subsection 3.5) the
processing time can be reduced toΘ(|Cu + Cv|2).

2. Edge Deletion
Intra-Cluster Edge Deletion. When an edge gets

deleted inside a cluster, the connectivity within cluster de-
teriorates, arising the need of reclustering. The case is han-
dled in a similar fashion as ininter-cluster edge addition
for Condition 3. Here the end vertices of the edge deleted,
belongs to the same clusterCu. So exceptCu, all the other
clusters are contracted to form the coarsened graph. The

—————————————————————————
Inter-Cluster Edge Addition((i, j),w(i, j),α)
begin

Let i ∈ Cu andj ∈ Cv

If
∑

u∈Cu
OCW(u)+w(i,j)

|V −Cu| ≤ α and∑
v∈Cv

OCW(v)+w(i,j)

|V −Cv| ≤ α (CONDITION 1)
Then

UpdateA(i, j)+ = w(i, j)
UpdateOCW (i)+ = w(i, j), OCW (j)+ = w(i, j)
Return C

Else
If 2c(Cu,Cv)

V ≥ α (CONDITION 2)
Then

D=MERGE(Cu, Cv)
Return C + D − {Cu, Cv}
Else{(CONDITION 3)}

G′(V ′, E′) =CONTRACT(G(V,E),V − Cu − Cv)
Connectt to v, ∀v ∈ Cu, Cv with edge of weight
α
Connectt to V ′ − {Cu, Cv} with edge of weight
α|V − Cu − Cv|
Let G′′(V ′′, E′′) is the resulting graph
Calculate MINIMUM-CUT TreeT ′′ of G′′(V ′′, E′′)
Removet
Let{D1, D2, .., Dk}, k > 0, are the connected
components ofT ′′ after removingt, containing
vertices ofCu andCv.
C = {D1, D2, .., Dk, C1, C2, .., Cs} − {Cu, Cv}
Return C

end

—————————————————————————–

Figure 7. Inter-Cluster Edge Addition

time complexity to process the update isΘ(|Cu|3), which
can be reduced toΘ(|Cu|2) using the heuristic (Subsec-
tion 3.5). The detailed algorithm is given in Figure 8.

Inter Cluster Edge deletion. When an edge with end
points in two different clusters, gets deleted, the connectiv-
ity across the clusters becomes less. As a result, the clusters
become more well-connected. Hence in this case, we return
the existing clusters after updating the adjacency matrix of
the graph andOCW (See Figure 9). The time taken by the
process isO(1).

3. Vertex Addition. Addition of new vertices is handled
efficiently as below:

• If an isolated vertex gets added, it is kept as a separate
cluster.

• If an edge(i, j) arrives, where the vertexi has ap-

————————————————————–
Intra-Cluster Edge Deletion((i, j),w(i, j))
begin

A(i, j)− = w(i, j)
Let i, j ∈ Cu

G′(V ′, E′) =CONTRACT(G(V,E),V − Cu)
Connectt to v, ∀v ∈ Cu with edge of weight
α
Connectt to V ′ − Cu with edge of weight
α|V − Cu|
Let G′′(V ′′, E′′) be the resulting graph
Calculate MINIMUM-CUT TreeT ′′ of
G′′(V ′′, E′′)
Removet
Let{D1, D2, .., Dk}, k > 0, are the connected
components ofT ′′ after removingt, containing
vertices ofCu

C = {D1, D2, .., Dk, C1, C2, .., Cs} − {Cu}
Return C

End
————————————————————–

Figure 8. Intra Cluster Edge Deletion

peared earlier but the vertexj is new. Thenj is treated
as a separate cluster and the algorithm processes the
edge as an instance of aninter cluster edge addition.

• If both i andj have not appeared before, then depend-
ing upon the weight,w(i, j), the edge is processed. If
w(i, j) ≥ α, a new cluster is formed containing only
i andj. Else two new clusters are created containing
singleton verticesi andj respectively.

4. Vertex Deletion.

• If an isolated vertex gets deleted, then that vertex entry
is removed from the adjacency matrix and nothing else
is done.

————————————————————–
Inter-Cluster Edge Deletion((i, j),wi,j)
begin

Let i ∈ Cu andj ∈ Cv, u 6= v
UpdateA(i, j)− = w(i, j)
UpdateOCW (i)− = w(i, j),

OCW (j)− = w(i, j)
Return C

end
————————————————————–

Figure 9. Inter-Cluster Edge Deletion

• Else, let the cluster which contains the vertexv to be
deleted, beCv. All edges,(u, v), whereu /∈ Cv are
deleted and the adjacency matrix along withICW and
OCW are updated similar toInter Cluster Edge Dele-
tion. Rest of the edges emanating fromv are removed
and the resulting graph is processed, following the pro-
cedure ofIntra Cluster Edge Deletion. Finally v is re-
moved fromCv and its entry from the adjacency ma-
trix is discarded.

3.3 Time Complexity

Let k = maxs
u=1{|Cu|}. Then the time complexity for

insertion of inter-cluster edge and deletion of intra-cluster
edge isO(k3). Processing intra-cluster edge addition and
inter-cluster edge deletion, requireO(1) time. Vertex ad-
dition and deletion can both be handled inO(k3) time.
Therefore update-processing time isO(k3). In contrast,
the offline ”Cut-Clustering algorithm” has no mechanism
to maintain clusters over dynamic graphs. It requires time
O(n3) for each update processing. If a graph is stored in
secondary memory, we can start from empty clusters and
process each edge of the graph sequentially. Time required
to process the entire graph isO(mk3) (actually much less
than this). Generally the clusters are small, compared to
the total number of vertices. Therefore ifk = O(log n),
we have anO(m(logn)3) algorithm. Most of the massive
graphs that occur in real life have very low average degree.
For example, citeseer citation graph has an average degree
of 3.5 [6]. So for these classes of graphs,n = Θ(m) and
we have anO(n polylog(n)) algorithm to obtain cluster-
ing, which is much better than theO(n3) time requirement
of the offline “Cut-Clustering” algorithm.

3.4 Proof of Clustering Quality

In this section, we show that the clusters obtained by our
incremental algorithm, has the same quality guarantee of
the offline clustering algorithm of [6]. Precisely we show,

1. c(P,Q)
min{|S|,|S̄|} ≥ α, for anyP,Q ⊂ S, such thatP∪Q =
S andP ∩Q = φ.

2. c(S,V −S)
|V −S| ≤ α.

We show that the two above criteria are satisfied over all
the updates. Since we start clustering with an empty graph
and at every update maintain these criteria, by induction the
proof follows.

1. Edge Addition.
Intra-Cluster Edge Addition.
Let the edge added be(i, j), i, j ∈ Cu. c(Cu,V −Cu)

V −Cu
≤ α

because,c(Cu, V − Cu), remains unaltered . Offcourse,
for P,Q ⊂ Cv, v 6= u, C(P,Q)

min{|P |,|Q|} , cannot change. For

P,Q ⊂ Cu, if i, j ∈ P or i, j ∈ Q, c(P,Q) remains un-
changed. Consider among those partitionsP,Q of Cu, in
which i ∈ P andj ∈ Q and for which c(P,Q)

min{|P |,|Q|} is min-
imum. This value is greater thanα. Addition of the edge,
(i, j), increasesc(P,Q) to c(P,Q) + w(i, j). Hence the ra-
tio c(P,Q)

min{|P |,|Q|} increases, improving the clustering quality.

Inter-Cluster Edge Addition.
CONDITION 1. Note that,

∑
u∈Cu

OCW(u) =
C(Cu, V − Cu). Therefore if CONDITION 1 is satisfied,
then for allu, C(Cu,V −Cu)

V −Cu
≤ α. Under this condition, the

previous clusters are returned by the algorithm. Therefore
by quality guarantee of the existing clusters,C(P,Q)

min|P |,|Q| ≥
α.

CONDITION 2.Lemma 1 is obtained from the property
of the minimum-cut tree. Lemma 2 establishes the qual-
ity guarantee of our algorithm under CONDITION2, using
Lemma 1.

Lemma 1 Let T be the minimum-cut tree ofG, after ad-
dition of the artificial sinkt. If P ,Q, P 6= φ, be any cut
of a connected component,S, of T after removingt, then
c(x, Q) ≤ c(P,Q), wherex is obtained by contractingt∪X
in T .

Proof. See Lemma 3.2 of [6].

Lemma 2 If 2c(Cu,Cv)
|V | ≥ α then merging ofCu and Cv,

maintains the clustering quality.

Proof. Let D = Cu∪Cv. For alli 6= u, v, c(Ci, V −Ci)
remains unchanged. We see

c(D,V −D)
= c(Cu, V − Cu) + c(Cv, V − Cv)− 2c(Cu, Cv)
≤ α(|V − Cu|) + α(|V − Cv|)− 2c(Cu, Cv)
= α(|V − Cu + Cv|) + α|V | − 2c(Cu, Cv)

If α|V | ≤ 2c(Cu, Cv), orα ≤ 2c(Cu,Cv)
|V | , thenc(D,V −D)

|V −D| ≤
α.

Now,

c(Cu, Cv)
min |Cu|, |Cv|

≥ 2c(Cu, Cv)
|V |

≥ α

Let P,Q ⊂ D, P ∪ Q = D andP ∩ Q = φ. Let P =
Pu + Pv andQ = Qu + Qv, wherePu, Qu ⊆ Cu and
Pv, Qv ⊆ Cv. We only consider the case when,(P,Q) 6=
(Cu, Cv). Therefore ifPu = φ or Pv = φ, thenQu 6= φ
andQv 6= φ and vice versa. Without loss of generality, let

us assumePu andPv 6= φ. We get,

c(P,Q) = c(Pu + Pv, Qu + Qv)
= c(Pu, Qu) + c(Pu, Qv)

+c(Pv, Qu) + c(Pv, Qv)
≥ c(Pu, Qu) + c(Pv, Qv)
≥ c(x,Qu) + c(x, Qv) ,By Lemma 1

≥ α|Qu|+ α|Qv| ,By construction

≥ α|Q| ≥ α min{|P |, |Q|}

Hence the proof of the lemma follows.
CONDITION 3.To prove the claim of our algorithm un-

der CONDITION3, we first state an important lemma form
[6]. This is obtained directly by the way min-cut tree is
produced in [8].

Lemma 3 Let T be the (unique) min-cut tree of an undi-
rected graphG, and letA be a subtree ofT . LetG′ be the
graph that results after contractingA in G, and letT ′ be
the min-cut tree ofG′. LetT ′′ be the tree that results after
contractingA in T . ThenT ′ andT ′′ are identical.

The following lemma 4 is derived using Lemma 3.

Lemma 4 Let Cu and Cv be two connected components
obtained, after removing the artificial sinkt from the cre-
ated min-cut treeT of G. If there are some insertion and
deletion of edges across and within the clustersCu andCv,
then exceptCu andCv, all other clusters remain unaffected.

Proof. Let G be the original graph and let us denote the
graph after edge insertion and deletion asG′. ContractCu

andCv in G andG′, and call the contracted graphsH and
H ′ respectively. Since all the edge insertions and deletions
are withinCu andCv, H = H ′. Min-cut tree ofH andH ′

are therefore identical and is same as the min-cut treeT of
G after contractingCu andCv in T (by Lemma 3). Since
contraction ofCu andCv in T , does not affect the other
communities, the proof follows.

Observe that, addingt in G, as in basic ”Cut-Clustering
algorithm”, and contractingV − S, has the same effect as
contractingV − S first in x and then adding an edge(t, x),
of weight α|VS | in the contracted graph. Also in the con-
tracted graph, the contracted clusters,x, form a singleton
cluster (follows directly from Lemma 4). With these ob-
servations, the claim of the algorithm under CONDITION
3 now follows from Lemma 4 and the correctness proof of
the “Cut-Clustering algorithm” of [6].

2. Edge Deletion.The proofs of maintenance of cluster-
ing quality over intra-cluster and inter-cluster edge deletion
are similar to inter-cluster and intra-cluster edge addition,
respectively and are omitted for brevity.

3-4. Vertex Addition and Deletion. The addition and
deletion of vertices can be viewed as a sequence of edge

additions and deletions. Thereby the quality guarantee of
the clusters over these update operations follows from the
analysis of the previous cases.

3.5 Heuristic to Improve Time Complex-
ity

Consider our incremental algorithm for inter-cluster
edge insertion or intra-cluster edge deletion. For these
cases, we need to compute minimum cut tree over a coars-
ened graph of sizeO(k). This is equivalent to computing
O(k) maximum flow computations. To reduce the num-
ber of maximum flow computations, we use a heuristic,
slightly modified from the one used in [6]. The heuristic
of [6] is based upon the fact, that if the minimum cuts pro-
duced using verticesv1 andv2 as sources areC1, V/C1 and
C2, V/C2, respectively, wherev1 ∈ C1 andv2 ∈ C2, then
eitherC1 andC2 are disjoint or one is a subset of another.
On view of this, [6] sorts vertices in ascending order of the
total wieght of the adjacent edges. Maximum flows for the
vertices (as source) are computed according to the sorted
order. However since maximum flow is same as minimum
cut, while computing flow from vertexv1, if v2 belongs to
the same cut asv1, v2 is marked to be in the same cluster as
v1. Maximum flow fromv2 is never computed. In practice
this reduces the maximum flow computation to the number
of clusters produced.

In our algorithm, we want to recluster one (for intra-
cluster edge deletion) or two (for inter-cluster edge addi-
tion) clusters, at a time. Using this heuristic, the number of
maximum flow computation will be reduced toO(1). How-
ever we use a slight variation of the above heuristic. For
each present cluster,Ci, 1 ≤ i ≤ s, we mark one vertex,xi,
inside the cluster to be the prime vertex. We first compute
the maximum flow from the prime vertex of any cluster. If
the cut corresponding to the prime vertex does not include
all the vertices, we then follow the above heuristic of [6].

If the cluster is a singleton, then the isolated vertex is
marked as prime. Otherwise while updating the clusters for
inter-cluster edge addition, under CONDITION 3, or intra-
cluster edge deletion, we compute the minimum-cut tree
over the coarsened graph. For each cluster over the coars-
ened graph, there exists a vertex, whose community covers
the entire cluster. These vertices are marked as prime for
each of these clusters, that contain vertices (uncontracted)
of the original graph.

4 Experimental Results

In this section, we present the results of a preliminary ex-
perimental study on our incremental clustering algorithm.
The results clearly demonstrate the superiority of our algo-
rithm in terms of cluster quality and computation time. We

Graph # vertex # edge Description
finite element

DATA 2851 15093 mesh
finite element

3ELT 4720 13722 mesh
finite element

UK 4824 6837 mesh
ADD32 4960 9462 32 bit Adder

finite element
WHILAKER3 9800 28989 mesh

finite element
CRACK 10240 30380 mesh

finite element
FE-4ELT2 11143 32818 mesh
MEMPLUS 17758 54196 memory circuit

BCSSTK30 28294 1007284 stiffness matrix

Table 1. Banchmark Graphs for Testing

present comparison analysis of our algorithm with theCut
Clustering Algorithm(Section 2) [6] and the recent multi-
level algorithm of [5] (MLKM), which has been shown to
outperform cutting edge spectral algorithms [16] as well as
METIS [11]. To speed up the computation of our incremen-
tal algorithm, we use the heuristics described in Section 3.5.

4.1 Data Set

We use9 test graphs2, listed in Table 1, as inputs in
our experiments. They are obtained from various applica-
tion domains and have been used as benchmark for test-
ing MLKM algorithm [5] and METIS [11]. From each of
these graphs, we create an edge-stream, by choosing edges
randomly. The stream of edges is then presented sequen-
tially to our incremental algorithm. Operations involving
inter(intra)-cluster edge-deletion is similar to intra(inter)-
cluster edge insertion. Hence testing our algorithm for
insert-only edge stream suffices to prove its effectiveness.

4.2 Results

1. Comparison Results with ”Cut Clustering Algo-
rithm”.

We compare the running time of our incremental algo-
rithm with the Cut Clustering Algorithm(Section 2), using
the benchmark graphs (Table 1). Both the algorithms are
run 10 times, using different values ofα and average com-
putation time over these runs are used for comparison. Fig-
ure 10 shows the relative performance of theCut Clustering
Algorithmwith our incremental algorithm. We plot the ratio
of computation time taken by theCut Clustering Algorithm
to that of the incremental algorithm. For all the benchmark

2http://staffweb.cms.gre.ac.uk/˜ cwalshaw/partition

Figure 10. Computation Time of our Incre-
mental Algorithm compared with Cut Cluster-
ing Algorithm. The Y-axis plots the ratio of the
computation time of Cut Clustering Algorithmto
that of our incremental algorithm. The bar
above height 1 for Cut Clustering Algorithmin-
dicates that our algorithm performs better.

graphs taken, this ratio is much higher than1. This validates
the fast running time of our algorithm. It also shows that the
advantage is much more for sprase graphs, than the dense
ones.

The advantage is highest for MEMPLUS, on which our
algorithm performs60 times faster than theCut Clustering
Algorithm. For most of the graphs, the speed advantage,
is more than20 times. The advantage is the least for BC-
STTK30 and DATA which are well dense. They run respec-
tively 8 and 6 times faster than theCut Clustering Algo-
rithm. For same value ofα, the clustering quality is nearly
identical for both the algorithms and hence, we do not show
comparison plot for clustering quality of these two algo-
rithms.
2. Comparison Results with the Fast Multilevel Algo-
rithm [5].

We compare the computation time as well as clustering
quality produced by the fast multi-level algorithm (MLKM)
of [5]3 with our incremental algorithm.

We use relative performance measure for our compari-
son analysis. That is, for comparing running time, we plot
the ratio of the computation time taken by the MLKM and
our incremental algorithm. For comparing clustering qual-
ity, we similarly take the ratio of values obtained, by the
two algorithms, using ratio-association and normalized cut

3Code downloaded from http://www.cs.utexas.edu/users/dml/Software

Figure 11. Computation Time of our Incre-
mental Algorithm compared with MLKM algo-
rithm. The Y-axis plots the ratio of the com-
putation time of MLKM to that of our incre-
mental algorithm. The X-axis plots the num-
ber of clusters. The value above 1 for MLKM
indicates that our algorithm performs better.

as measures (defined in [5]). Figure 11 presents the plot of
relative computation time measured versus number of clus-
ters, for three benchmark graphs-ADD32, MEMPLUS and
BCSSTK30. It is clearly visible from the plot, that with
increase in number of clusters, our incremental algorithm
starts performing better than the MLKM algorithm of [5].
For BCSSTK30, which has more than28 thousand ver-
tices and10 million edges, when the number of clusters be-
comes more than630, our algorithm outperforms MLKM.
For ADD32 and MEMPLUS, when the number of clus-
ters produced is more than150 and250 respectively, our
algorithm performs better. For comparing clustering qual-
ity, we use the measure of ratio-association value (RAV)
and normalized-cut value (NCV) defined in [5]. They are
closely related to the bicriteria, mentioned in Subsection
2.3. The goal is to obtain clusters that maximize ratio-
association and minimize normalized cut. Figure 12 and
13 show the plot of relative RAV and NCV values for the
benchmark graphs. The number of clusters taken is ap-
proximately 300. The plots indicate that the quality of
clusters produced are nearly identical for both of the algo-
rithms. However for60% of the cases our algorithm per-
forms marginally better than MLKM.

For ADD32, when the number of clusters is below150,
RAV is less than500 for MLKM. This indicates at this stage
the clusters are not well-formed. If the number of clusters is

Figure 12. Ratio Association Value of our In-
cremental Algorithm compared with MLKM
algorithm. The Y-axis plots the ratio of the ra-
tio association value of MLKM to that of our
incremental algorithm for 300 (nearly) clus-
ters. Note that bars below height 1 for MLKM
correspond to the cases where our algorithm
performs better.

raised to400, RAV crosses1000 and still NCV is less than
100. This is an ideal situation for obtaining clusters. At
this stage our incremental algorithm runs5 times faster than
MLKM. For MEMPLUS, which has more than 17 thousand
vertices, RAV is556, 720 and897, when number of clusters
is 150, 200 and250, respectively. As the number of clusters
grows to300 and then to500, RAV reaches1059 and1737
mark consequtively. However NCV value is only95.5 and
169.9, respectively. These measures for MLKM indicates
that, with number of clusters less than300, clustering qual-
ity is not good. In this region, our algorithm performs again
4-5 times better than MLKM. Same applies for the other
benchmark graphs. This shows the advantage of using our
incremental algorithm over MLKM, clearly.

Therefore, our experiments demonstrate that when ap-
plied to stored graphs, our algorithm performs much better
than both MLKM andCut Clusterin Algorithm, in most of
the practical scenarios. In addition to this, we know, our
incremental algorithm is the only recourse when the edge
relationship of the underlying graph evolves over time and
clustering has to be performed efficiently in this dynamic
environment. Neither MLKM norCut Clustering Algorithm
can maintain clusters, without processing the entire graph
afresh, when the underlying graph structure is changing.

Figure 13. Normalized Cut Value of our Incre-
mental Algorithm compared with MLKM algo-
rithm. The Y-axis plots the ratio of the nor-
malized cut value of MLKM to that of our in-
cremental algorithm for 300 (nearly) clusters.
Note that bars above height 1 for MLKM cor-
respond to the cases where our algorithm
performs better.

5 Conclusion

We present an incremental algorithm for graph cluster-
ing, using minimum cut tree. To the best of our knowl-
edge, no other incremental clustering algorithm is known
for graphs, using the bicriteria of [6]. Our algorithm ef-
ficiently maintains clusters over highly dynamic graphs,
where edges and vertices are being added and removed con-
stantly. We give detailed theoretical analysis of the quality
of clusters obtained by our algorithm. The clustering qual-
ity is identical to that of [6]. However [6] requires reclus-
tering of the entire graph, in face of edge(vertex) insertions
and deletions. Even for stored graph, when edges are pre-
sented in a streaming fashion to our incremental algorithm,
computation time for it is much better than that of [6]. This
is verified by testing both the algorithms over9 benchmark
graphs, obtained from different applications.

Recently a multilevel kernel based algorithm has been
proposed in [5]. The algorithm has been shown to outper-
form the cutting edge spectral algorithms, which has been
the most popular tools for graph clustering over decades.
Using the same benchmark graphs of ours, the algorithm in
[5] has been showns to be much faster and producing better
cluster quality than spectral algorithms. Our experimental
results demonstrate that when number of clusters are not

too low, our algorithm runs even faster than the algorithm
in [5]. The clustering quality of both the methods are com-
parable, with our algorithm perfoming better in60% of the
benchmark graphs tested. Therefore our algorithm opens
the possibility of obtaining high quality clusters over highly
dynamic graphs and gives a better alternative for the fastest
algorithm for graph clustering known so far, in most of the
practical scenarios.

The time complexity of cluster maintenance over edge
and vertex updates, depends superlinearly on the cluster
size. Obtaining a graph clustering algorithm, that processes
updates in time sublinear of the cluster size or independent
of it, is still open.

References

[1] Heed: A hybrid, energy-efficient, distributed cluster-
ing approach for ad hoc sensor networks.IEEE Trans-
actions on Mobile Computing, 3(4):366–379, 2004.
Ossama Younis and Sonia Fahmy.

[2] Stefano Basagni. Distributed clustering for ad hoc net-
works. In ISPAN ’99: Proceedings of the 1999 Inter-
national Symposium on Parallel Architectures, Algo-
rithms and Networks (ISPAN ’99), page 310, 1999.

[3] Ulrik Brandes, Marco Gaertler, and Dorothea Wagner.
Experiments on graph clustering. InProceedings of
the 11th Annual European Symposium on Algorithms
(ESA’03), volume 2832, pages 568–579, 2003.

[4] H. Chan and A. Perrig. ACE: An emergent algorithm
for highly uniform cluster formation. InProceedings
of the First European Workshop on Sensor Networks
(EWSN’04), Jan 2004.

[5] Inderjit S. Dhillon, Yuqiang Guan, and Brian Kulis. A
fast kernel-based multilevel algorithm for graph clus-
tering. InKDD, pages 629–634, 2005.

[6] G. W. Flake, R. E. Tarjan, and K. Tsioutsioulik-
lis. Graph clustering and minimum cut trees, Internet
Mathematics, 1(3), 355-378, 2004.

[7] Gary William Flake, Steve Lawrence, and C. Lee
Giles. Efficient identification of web communities. In
KDD ’00: Proceedings of the sixth ACM SIGKDD in-
ternational conference on Knowledge discovery and
data mining, pages 150–160, 2000.

[8] R. E. Gomory and T. C. Hu. Multi-terminal network
flows. J-SIAM, 9(4):551–570, December 1961.

[9] Ekram Hossain, Rajesh Palit, and Parimala Thulasira-
man. Clustering in mobile wireless ad hoc networks:
issues and approaches. pages Wireless communica-
tions systems and networks, 383–424, 2004.

[10] R. Kannan, S. Vempala, and A. Veta. On clusterings-
good, bad and spectral. InFOCS ’00: Proceedings of
the 41st Annual Symposium on Foundations of Com-
puter Science, page 367, 2000.

[11] G. Karypis and V. Kumar. A Fast and High Quality
Multilevel Scheme for Partitioning Irregular Graphs.
Technical Report 95-035, University of Minnesota,
june 1995.

[12] R. Kellogg, A. Heath, and L. Kavraki. Cluster-
ing Metabolic Networks Using Minimum Cut Trees,
http://cohesion.rice.edu/engineering/Computer
Science/emplibrary/AHeath.ppt , 2004.

[13] Chunhung Richard Lin and Mario Gerla. Adaptive
clustering for mobile wireless networks.IEEE Journal
of Selected Areas in Communications, 15(7):1265–
1275, 1997.

[14] B. Pang and L. Lee. A sentimental education: Senti-
ment analysis using subjectivity summarization based
on minimum cuts. InProceedings of the ACL, Main
Volume, 2004, pages 271-278, Barcelona.

[15] Z. Wu and R. Leahy. An optimal graph theoretic ap-
proach to data clustering: Theory and its application to
image segmentation.IEEE Trans. Pattern Anal. Mach.
Intell., 15(11):1101–1113, 1993.

[16] Stella X. Yu and Jianbo Shi. Multiclass spectral clus-
tering. In ICCV ’03: Proceedings of the Ninth IEEE
International Conference on Computer Vision, page
313, 2003.

