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Abstract. Lot of research has gone into understanding the composi-
tion and nature of proteins, still many things remain to be understood
satisfactorily. It is now generally believed that amino acid sequences of
proteins are not random, and thus the patterns of amino acids that we
observe in the protein sequences are also non-random. In this study, we
have attempted to decipher the nature of associations between different
amino acids that are present in a protein. This very basic analysis pro-
vides insights into the co-occurrence of certain amino acids in a protein.
Such association rules are desirable for enhancing our understanding of
protein composition and hold the potential to give clues regarding the
global interactions amongst some particular sets of amino acids occuring
in proteins. Presence of strong non-trivial associations suggests further
evidence for non-randomness of protein sequences. Knowledge of these
rules or constraints is highly desirable for the in-vitro synthesis of artifi-
cial proteins.

Keywords: Data mining, quantitative association rule mining, protein
composition.

1 Introduction

Proteins are important constituents of cellular machinery of any organism. Re-
combinant DNA technologies have provided tools for the rapid determination
of DNA sequences and, by inference, the amino acid sequences of proteins from
structural genes [I]. The proteins are sequences made up of 20 types of amino
acids. Each amino acid is represented by a single letter alphabet, see Table [Il
Each protein adopts a unique 3-dimensional structure, which is decided com-
pletely by its amino-acid sequence. A slight change in the sequence might com-
pletely change the functioning of the protein.

The heavy dependence of protein functioning on its amino acid sequence has
been a subject of great anxiety. Research has been done to determine the infor-
mation content per amino acid in proteins by Yockey [2] and Strait & Dewey [3].
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Table 1. Single letter codes of amino acids

|S.No. |AA Code| Full-Name

1 A Alanine

2 C Cysteine

3 D Aspartic Acid
4 E Glutamic Acid
5 F Phenylalanine
6 G Glycine

7 H Histidine

8 I Isoleucine

9 K Lysine

10 L Leucine

11 M Methionine
12 N Asparagine
13 P Proline

14 Q Glutamine
15 R Arginine

16 S Serine

17 T Threonine
18 \% Valine

19 W Tryptophan
20 Y Tyrosine

There has been a continuing debate on whether the amino acid seqeunces of
proteins are random or have statistically significant deviations from random se-
quences. White & Jacobs [B] have shown that any sequence chosen randomly
from a large collection of nonhomologous proteins has a 90% or better chance
of having a lengthwise distribution of amino acids that is indistinguishable from
the random expectation regardless of amino acid type. They claimed that pro-
teins have evolved from random sequences but have developed significant devi-
ations from randomness during the process of evolution. Pande et al [4] mapped
protein sequences to random walks to detect differences in the trajectories of
a Brownian particle. They found pronounced deviations from pure random-
ness which seem to be directed towards the minimization of energy in the 3D
structure.

In this study, we take a further step in this direction by trying to predict if
there are any co-occurrence patterns among the 20 amino-acids. We have at-
tempted to find out rules that can tell that occurrence of one amino-acid is
more likely when another amino-acid is present or absent. Such rules are called
“association rules”, and the corresponding technique is called “association rule
mining” (ARM). In ARM terminology, the amino- acids may be considered as
items, and the protein sequences as “baskets” containing items. See the next
section for a introduction to association rule mining. Proteins are polymers of
length usually in hundreds. Since the length is much larger, all the 20 amino
acids are present in majority of proteins, and thus we will not be able de-
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duce any significant rule just based on presence or absence. To obtain more
meaningful association rules in this context, we have incorporated the normal-
ized frequencies of amino-acids observed in each protein, and also discovered
“quantitative association rules”, which tell that if one amino-acid A is present
with a f; frequency, another amino-acid B is likely to be present with fy fre-
quency. Our quantitative association rule mining procedure [8] enables us to find
these numbers f; and fs.

The organization of this paper is as follows; the next section gives an overview
of association rule mining. Section 3 describes how we have implemented asso-
ciation rule mining for finding quantitative rules in proteins. Section 4 shows
the rules that we have obtained. The next section discusses these results and
concludes the outcomes of this study, followed by future work describing how
this study can be extended.

2 Association Rule Mining

Before we begin with the description of our algorithm, it will be helpful to
review some of the key concepts of association rule mining. We use the same
notation as used in [9]. Let I = {i1,....,ix} be a set of k elements, called items.
Let B = {b1,....,b,} be a set of n subsets of I. We call each b; C I a basket
of items. For example, in the market basket application, the set I consists of
the items stocked by a retail outlet and each basket is the set of purchases
from one register transaction. Similarly, in the “document basket” application,
the set I contains all dictionary words and proper nouns, while each basket is
a single document in the corpus. Note that the concept of a basket does not
take into account the ordering or frequency of items that might be present. An
association rule is intended to capture a certain type of dependence among items
represented in the database B. Specifically, we say that i1 — 45 if the following
two hold

1. 41 and 42 occur together in at least s% of the n baskets (the support).
2. Of all the baskets containing i1, atleast ¢% also contain iz (the confidence).

This definition is also extended to I — J, where I and J are disjoint sets of
items instead of single items. Let us consider an example of a document basket
application. The baskets in this case are many short stories that are available
at our disposal, while the items within each basket are the words. A reader
might observe that stories which contain the word “sword” also frequently con-
tain the word “blood”. This information can be represented in the form of a
rule as:

sword — blood

[support = 5%, con fidence = 55%) (1)

Rule support and confidence are the two measures of rule interestingness
[10]. They respectively reflect the usefulness and certainty of discovered rules. A
support of 5% for an association rule means that 5% of stories under analysis
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show that “blood” and “sword” occur together. A confidence of 55% means
that 55% of the stories that contain the word “sword” also contain the word
“blood”. Typically, associations rules are considered interesting if they satisfy
both minimum support threshold and a minimum confidence threshold. Such
threshold can be set by users or domain experts. As pointed out in [9], it should
be noted that the symbol — is misleading since such a rule does not correspond
to real implications; clearly, the confidence measure is merely an estimate of the
conditional probability of is given ;.

2.1 The Apriori Algorithm

The most commonly used approach for finding association rules is based on
the Apriori algorithm [6]. Apriori employs an iterative approach known as a
level-wise search, where k-itemsets (sets containing k items) are used to explore
(k 4+ 1)-itemsets. First, the set of frequent (i.e. having more than the minimum
support) 1-itemsets is found. This set is used to find set of frequent 2-itemsets,
which is used to find the set of frequent 3-itemsets, and so on, until no more
frequent k-itemsets can be found. The efficiency of the level-wise generation of
frequent itemsets is improved by using the Apriori property which says that all
nonempty subsets of a frequent itemset must also be frequent. This is easy to
observe, because if an itemset I does not satisfy the minimum support threshold,
then the set I' = I'V {inew}, containing all elements of I and an extra element
Inew, cannot occur more frequently than I, and thus cannot satisfy the minimum
support threshold.

2.2 Quantitative Association Rules

While the association rule model described above suffices for many applications,
it is not adequate when the frequency of each item in the basket is variable and
cannot be ignored. For example, in the previously considered example, a user
might be interested in the rules of the form:

swordsg—zs N\ waris—1g — bloodsg—_s52 (2)

This rule represents that a story that contains between 30 to 35 occurrences of
“sword” and 14 to 16 occurrences of “war”, is also likely to contain 50 to 52
references of “blood”. Such rules are called quantitative association rules.

The ARCS system [11] for mining quantitative association rules is based on
rule clustering. Essentially this approach maps pairs of quantitative attributes
onto a multi-dimensional grid, with the number of dimensions equaling the num-
ber of quantitative attributes considered. The grid is then searched for clusters
of points, from which the association rules are generated. Techniques for mining
quantitative rules based on x-monotone and rectilinear regions were presented
in [7]. Approach proposed in [§] works by fine-partitioning the values of the
quantitative attributes, and then generating rules of interest.
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3 Algorithm

Our implementation is based on the partitioning approach described in [8]. We
consider 20 attributes in proteins, each related to an amino acid. The value of
each attribute in a basket (here protein) is the frequency of the corresponding
amino acid in the protein. Since the proteins are of varying lengths, we normalize
this frequency by dividing by the length of the protein.

The main steps in the algorithm are as follows:

1. Partition the attributes: We have divided each of the 20 attributes into 10
intervals. In [§], the authors have discussed the notion of partial complete-
ness to quantify the amount of information lost due to partitioning. It has
been further shown that for a given number of partitions, equi-depth par-
titioning (each partition having equal support) gives the minimum loss of
information, and is thus optimal. Thus, we have used equi-depth partition-
ing in our method. For the sake of completeness and comparison, we have
also experimented with equi-distant partitioning, in which all intervals are
of equal length.

. The intervals/partitions are mapped into consecutive integers, which are
used to represent the intervals. The order of intervals is preserved in the
mapping.

. Find the support for each of the intervals. Also the consecutive intervals are
combined as long as their support is less than a predetermined maximum
support. This is actually needed in case of equi-distant partitioning when
some of the intervals may have very small support and thus it makes sense
to combine them with the adjoining intervals. In equi-depth partitioning,
all intervals have equal support, and thus this problem does not arise. We
identify the set of all intervals which have more than a minimum support
minsup. This is called the set of frequent items.

Next we find all sets of items whose support is greater than minsup. These
are called the frequent itemset, and the algorithm is based on the Apriori
algorithm, discussed in the previous section.

. The frequent itemsets are used to generate association rules. each itemset
can give rise to number of association rules by dividing into two parts: an-
tecedents and consequences. For example, an itemset {P,Q,R} can lead to
the following rules

- P—-QAR
- QAR—P
- PANQ—R
- R—=PAQ
- Q—PAR
- PAR—Q

The confidence conf for each of the rules is determined as the conditional
probability of conclusion given precedent. For example, for the rule

PAQ — R,conf = support{ P,Q, R}/support{ P, Q}
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If the confidence is greater than a pre-determined minimum confidence, min-
conf, the rule is kept, otherwise it is removed.

4 Results

The protein sequences are taken from the SCOP Astral File v1.63 [12], containing
only those sequences which are less than 40% homologous to each other. This re-
duces the bias in favour of highly populated families as compared to sparse ones.
The sequences with length less than 100 or more than 500 are not considered.
This gives us a set of 3728 non-homologous amino-acid sequences representing
the different types of proteins. In this study our focus is on deriving associations
applicable to all proteins in general.

Figure [T shows the rules obtained with minimum support of 30 proteins. We
have obtained 12 association rules, which have confidence more than 50%. The
universe of chains that can be built from 20 amino acids is extremely large and
diverse. In light of this fact, the confidence and support of the rules presented
in Figure [ are quite significant.

As an example, the eighth rule indicates that proteins containing large
amounts of Arginine(R) and very low amount of Serine(S) are likely to contain
no Cysteine (C). Cysteines are the amino acids that participate in the forma-
tion of disuphide bonds in the amino acids. This rule implies that presence of
large amounts of Arginine without compensating Serine will hinder the ability
of a protein to form the disulphide bonds. Such rules provide some insight into
the interaction and role of these amino acids in proteins, and have important
consequences in the emerging field of synthetic biology where biological entities
are designed and synthesized in the lab.

Rule Confidence(%) Support
=G,52,.500= * <5,45,.500> == <E,0..l6> 64.7 33
<E,0..16> * <L,0..26> => <T,40..500> 60.9 39
<E,0..16> " <M,0..2> => <T,40..500> 50,6 3l
<L,0..26> * <5,45,.500>= => <T,40..500> 55,0 g
<E,0..16> * <L,0..26> => <G,52..500> 54.6 35
<I,0..13> " <R,39..500> => <N,0..8> 54.4 43
<K,0..11> * «5,45,.500>= == <E,0..l6> 54.2 iz
<R,39..500> ° <§,0..14> =>»> <C,0..0> 53.5 30
<K,0..11> " <N,0..8> => <R,639..500> 53.4 3l
<P,35,.500> * <R, 3%,.500> => <N,0..8> 52.6 an
=<L,64..500> ° <p 35,.500> => <N,0..B> 51.7 30
<1,0..13> ~ <N,0..8> => <R,39..500% 50.5 43

Fig. 1. Associations obtained using equi-depth partitioning. Each interval (contained
in angular brackets) has an amino acid, and frequency range with protein length scaled
to 500. The support is the number of proteins in our dataset of 3728 proteins containing
all the intervals present in the association rule.
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Rule Confidence(%) Support
<I,40..4%> " <R,20..29> => <W,0..9> 94.5 139
<C,0..9> ° «<F,10..19> * <P,10..19> * <V,40..49> => <=W,0..9> 94.4 102
<C,0..9> ™ <I,40..49> " <N,10..19> => <W,0..9> 94.1 112
<I,40..49> " <L,40..49> => <W,0..9= 93.6 118
<A,60..79> * <P,20..29> ° <W,0..9> => <C,0..9> 93.6 103
<C,0..9% "~ <H,0..9% " €5,20..29> " <¥,0..9> => <W,0..9> 93.6 104
<D,20,.29> * <p,10..19> " <v,40,.4%> => <W,0,.9> 93.5 101
<h,60..79> " <T,20..29> " <W,0..9> => <C,0..9> 93.3 126
<H,0..9> " <N,10..1%> ~ <¥,0..9> => «<W,0..9> 93.2 151
<Q,10..19> "~ <5,20..29> " <¥,0..9> => <W,0..9> 93.2 110
<H,0..9> * <V,40..49> * <¥,0..9> => <W,0..9> 93.1 108
<C,0..9> " <8,20,,29> " <T,20..29> ~ <V,40..49> => <W,0..9> 93.1 109
=C,0..9> " «<H,0,.9> " «N,10,.19> " <¥,0..9> == «W,0..9> 93.0 121

Fig. 2. Associations obtained using equi-distant partitioning. Representation is same
as in Figure[Il Note that consequence part in all the rules contains either Cysteine (C)
or Tryptophan (W). See results section for the discussion of this behavior.

To see how the performance of the algorithm changes when equi-distant rules
are used, we created 10 intervals of equal length with frequency ranges 0-9,
10-19,..., 80-89 and 90-500. Note the last interval has been stretched to accom-
modate any arbitrarily high frequency, which is extremely rare. The proteins
lengths are scaled to 500 and the frequencies are increased or decreased in pro-
portion. The association rules obtained from this approach are shown in Figure
Bl As expected, the method gets heavily biased in favour of those intervals which
have very high supports. For example, Cysteine(C) and Tryptophan(W) are the
less frequent amino acids in proteins; in most proteins the frequency of these
amino acids is close to zero. Thus the lowermost intervals for these two amino
acids get very high support value, and thus generate association rules with very
high support and confidence. Note that these rules, inspite of high confidence
and support, are not useful to biologists. The consequence part of these rules
say that Cysteine and Tryptophan occur in range 0-9, which is trivially known
for majority of the proteins.

5 Discussions and Conclusion

We have used quantitative association rule mining to discuss global associations
between amino acids in proteins. We call the associations global because the
rules are not forced to be based on contiguous set of amino acids, and thus can
capture global correlations as well.

The amino acid frequencies are divided into intervals to build the rules. We
observe that equi-depth partitioning gives 12 association rules involving vari-
ous amino acids. The use of equi-distant partitioning gives skewed results, be-
cause the relative frequencies of amino acids in the proteins are highly different
and equi-distant partitioning results in some very highly populated and some
very sparsely populated partitions. This is in line with the conclusion about
supremacy of equi-depth approach drawn from the concept of partial complete-
ness in [g].
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An important property of our approach is that it can discover rules based
not only the presence of amino acids, but also on absence. For example, the
eighth rule in Figure [I] has the consequence which says C is likely to be absent.
This is a significant difference from the standard motif based works, which are
framed only the basis of presence of an amino acid. We acknowledge the fact
that absence of a particular amino acid can also be important in the structure
and/or function a protein.

To the best of our knowledge, this is the first systematic study to discover
global associations between amino acids. The rules obtained here present the
constraints in the composition of proteins, and will prove very important in the
design and synthesis of artificial peptides, outside the cell. The pharmaceutical
industry is gradually shifting from small molecule drugs to biologics which are
synthetic peptides, and is likely to benefit from the availability of knowledge
about the rules governing the composition of peptides found in the nature.

This work can be extended in following ways:

— The rules generated in this study are very interesting, and non-trivial. Ex-
perimental verification of these methods is a big challenge, and there is no
easy way to do that. One strategy could be to design synethetic amino acid
chains that violate the rules obtained here, and study their physico-chemical
properties in-vitro to see if they behave differently.

— Our approach has been based on partitions approach proposed in [§]. It is
possible to use other approaches as well, and it is to be seen if they result in
some more interesting rules.

— Instead of finding rules based on whole set of proteins, specialized rules can
be found for different classes of proteins. This, however, requires a larger
protein dataset containing sufficient number of distinct and non-homologous
represenentatives in each class.
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