Advanced Machine Learning: Homework Problem Set I
Solutions

Guidelines: You have to submit hardcopy of the solutions (printed or hand-
written) by February 14, 2018 begining of lecture class. Write your name and
roll number clearly on top of the solution. Be clear and precise in your solution.

Problem 1:

We consider a two distribution variant of the PAC model in which the learning
algorithm may explicitly request positive examples and negative examples, but
must find a hypothesis that performs well on both the distributions of positive
and negative examples.

We say that an algorithm A PAC learns a hypothesis class H in the two dis-
tribution variant of the PAC model if for any target concept ¢ € H, for any
distribution DT over the positively labeled instances, distribution D~ over the
negatively labeled instances, and for any given (¢,d), if A is given access suffi-
ciently large number (finite) of positive and negative examples that are i.i.d. in
DT, D, then A outputs a hypothesis h € H such that with probability at least
1—-9, Pryp+[h(z) =0] <eand Pry.p-[h(z) =1] <e.

(a) Prove that if H is PAC learnable using the basic (one distribution) model,
then it is also PAC learnable using the two distribution model.

Proof. Let us assume that concept class ‘H is PAC learnable using the one distri-
bution PAC model using algorithm L. Consider the distribution D = (DT + D).
Let A be the hypothesis output by L. Choose s such that

Pr [err‘oD(h) < %} >1-94 (1)

errop(h) = Pryplh(x) # ¢(x)]

1

= 5 [Pro~pt[M(z) # ()] + Procp-[h(z) # c(2)]]

= %[GTTOT'D-%— (h) + errorp-(h)]
From (1) Prlerrorp+y(h) <€ >1—4d and Prlerror(p-y(h) <€ >1-§

Hence H is also PAC learnable using the two distribution model O



(b) Let hg be a function that always outputs 0, and h; be a function that always
outputs 1. Prove that if a hypothesis class H is PAC learnable using the two
distribution model, then the hypothesis class H U {hg, h1} is PAC learnable in
the basic one distribution model.

Proof. Since H is PAC learnable using the two distribution model, there exists
a learning algorithm L, such that for h € H, ¢ > 0 and § > 0, Im4 and m_
such that for samples of size greater than my and m_ we have for h output L
that Prlerrorp- ()] < € and Prlerrorp+p)] < €. Suppose D is a probability
distribution over both +ve and -ve examples. If m examples are drawn from D
such that m > max{m4,m_} then

Prlerrorp(h)] < Prlerrorp(h)|c(z) = 0] + Prlerrorp(h)|c(x) = 1]
< E[Prle(zx) = 0] + Prlc(z) = 1]]

Let S,, be a m-sample. Then by chernoff bounds Pr[S,, < (1 — a)me] <
e~me”/2 We want to ensure that atleast m4 examples are found with a =

%, m = QWT, Pr[S,, > m4] < e Setting the bound to be less than
or equal to g, we have m > min{ 2T+,glog%} and similarly for -ve exam-
ples. We will find atleast my and m_ examples, if we draw m examples if
m > Jrnin{%%*7 2"6” , glog%} Otherwise if D is biased to -ve examples returns
h = hg if D is biased to +ve examples returns A = h; both these guaran-
tee Prlerrorp(h)] < e. Hence H U {ho,h1} is PAC learnable in the basic one

distribution model O

Problem 2:

Let X = R? be the domain and Y = {0, 1} be the label set of a learning problem.
Let H = {h,,r € Ry} be the set of hypothesis corresponding to all concentric
circles in the plane that classify as

h,.(a:):{ 1zl <r }

0 otherwise

Prove that under realizability assumption H is PAC learnable with sample com-
plexity

1 1
ma(e,8) < ~log <

Proof. Our training dataset is 7 and learned concept L(T") is the tightest circle
which is consistent with T. Suppose our target concept C' is the circle around
origin with radius r, we will choose slightly smaller radius s by s = inf{s’ :
P(s" <||z|]| < r) < €}. Let A denote the annulus between radii s and r, i.e.,
A={z:s<||z|| <7}, by definition of s,

P(A) > ¢ (2)



In addition, generalization error P(CAL(T)) must be small if T intersects A.
We can state this as P(CAL(T)) > e - TN A = ¢. From 2, any point in T
chosen according to P will miss region A with probability at most 1—e. Defining
error = P(CAL(T)) we get P(error > €) < P(TNA=¢)<(1—¢™ <e ™€
thus m > %log% O



