
Advanced Machine Learning: Homework Problem Set I
Solutions

Guidelines: You have to submit hardcopy of the solutions (printed or hand-
written) by February 14, 2018 begining of lecture class. Write your name and
roll number clearly on top of the solution. Be clear and precise in your solution.

Problem 1:

We consider a two distribution variant of the PAC model in which the learning
algorithm may explicitly request positive examples and negative examples, but
must find a hypothesis that performs well on both the distributions of positive
and negative examples.

We say that an algorithm A PAC learns a hypothesis class H in the two dis-
tribution variant of the PAC model if for any target concept c ∈ H, for any
distribution D+ over the positively labeled instances, distribution D− over the
negatively labeled instances, and for any given (ε, δ), if A is given access suffi-
ciently large number (finite) of positive and negative examples that are i.i.d. in
D+, D−, then A outputs a hypothesis h ∈ H such that with probability at least
1− δ, Prx∼D+ [h(x) = 0] ≤ ε and Prx∼D− [h(x) = 1] ≤ ε.

(a) Prove that if H is PAC learnable using the basic (one distribution) model,
then it is also PAC learnable using the two distribution model.

Proof. Let us assume that concept class H is PAC learnable using the one distri-
bution PAC model using algorithm L. Consider the distributionD = 1

2 (D+ +D−).
Let h be the hypothesis output by L. Choose s such that

Pr
[
erroD(h) ≤ ε

2

]
≥ 1− δ (1)

erroD(h) = Prx∼D[h(x) 6= c(x)]

=
1

2
[Prx∼D+ [h(x) 6= (̧x)] + Prx∼D− [h(x) 6= c(x)]]

=
1

2
[errorD+(h) + errorD−(h)]

From (1) Pr[error(D+)(h) ≤ ε] ≥ 1− δ and Pr[error(D−)(h) ≤ ε] ≥ 1− δ

Hence H is also PAC learnable using the two distribution model
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(b) Let h0 be a function that always outputs 0, and h1 be a function that always
outputs 1. Prove that if a hypothesis class H is PAC learnable using the two
distribution model, then the hypothesis class H ∪ {h0, h1} is PAC learnable in
the basic one distribution model.

Proof. Since H is PAC learnable using the two distribution model, there exists
a learning algorithm L, such that for h ∈ H, ε > 0 and δ > 0, ∃m+ and m−
such that for samples of size greater than m+ and m− we have for h output L
that Pr[errorD−(h)] ≤ ε and Pr[errorD+(h)] ≤ ε. Suppose D is a probability
distribution over both +ve and -ve examples. If m examples are drawn from D
such that m ≥ max{m+,m−} then

Pr[errorD(h)] ≤ Pr[errorD(h)|c(x) = 0] + Pr[errorD(h)|c(x) = 1]

≤ E [Pr[c(x) = 0] + Pr[c(x) = 1]]

Let Sm be a m-sample. Then by chernoff bounds Pr[Sm ≤ (1 − α)mε] ≤
e−mεα

2/2. We want to ensure that atleast m+ examples are found with α =
1
2 , m = 2m+

ε , Pr[Sm > m+] ≤ e−
m+
4 . Setting the bound to be less than

or equal to δ
2 , we have m ≥ min{ 2m+

ε , δε log 2
δ } and similarly for -ve exam-

ples. We will find atleast m+ and m− examples, if we draw m examples if
m ≥ min{ 2m+

ε , 2m−
ε , δε log

2
δ } Otherwise if D is biased to -ve examples returns

h = h0 if D is biased to +ve examples returns h = h1 both these guaran-
tee Pr[errorD(h)] ≤ ε. Hence H ∪ {h0, h1} is PAC learnable in the basic one
distribution model

Problem 2:

Let X = R2 be the domain and Y = {0, 1} be the label set of a learning problem.
Let H = {hr, r ∈ R+} be the set of hypothesis corresponding to all concentric
circles in the plane that classify as

hr(x) =

{
1 ||x||2 ≤ r
0 otherwise

}
Prove that under realizability assumption H is PAC learnable with sample com-
plexity

mH(ε, δ) ≤ 1

ε
log

1

δ
.

Proof. Our training dataset is T and learned concept L(T ) is the tightest circle
which is consistent with T . Suppose our target concept C is the circle around
origin with radius r, we will choose slightly smaller radius s by s = inf{s′ :
P (s′ ≤ ||x|| ≤ r) < ε}. Let A denote the annulus between radii s and r, i.e.,
A = {x : s ≤ ||x|| ≤ r}, by definition of s,

P (A) ≥ ε (2)

2



In addition, generalization error P (C∆L(T )) must be small if T intersects A.
We can state this as P (C∆L(T )) > ε → T ∩ A = φ. From 2, any point in T
chosen according to P will miss region A with probability at most 1−ε. Defining
error = P (C∆L(T )) we get P (error > ε) ≤ P (T ∩ A = φ) ≤ (1− ε)m ≤ e−mε

thus m ≥ 1
ε log 1

δ
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